
Characterizing Navigation Maps for Web

Applications with the NMM Approach

A. Navarro ∗, A. Fernández-Valmayor, B. Fernández-Manjón,
J.L. Sierra

Dpto. de Ingenieŕıa del Software e Inteligencia Artificial, Universidad Complutense
de Madrid, C/ Profesor José Garćıa Santesmases s/n, 28040 Madrid, Spain

Abstract

This paper presents the Navigation Maps Modeling approach (NMM), which pro-
vides platform independent models for characterizing navigation maps of web ap-
plications. The NMM approach is conceived to obtain a trade off between high
and low-level design notations. As high-level design notations, NMM models permit
architectural details that may hinder the overall understanding of the web appli-
cation to be left out. As low-level design notations, NMM models can easily be
transformed into detailed architectural designs, which are very valuable at coding
and maintenance stages.

Key words: model-driven architecture, web engineering, model-driven web
engineering, navigation map, multitier architecture, presentation tier

1 Introduction

A web application can be considered as a web system (web server, network,
HTTP and browser) in which user input (navigation and data input) affects

? El Ministerio de Educación y Ciencia de España (TIN2004-08367-C02-02 and
TIN2005-08788-C04-01), la Dirección General de Universidades e Investigación de
la Consejeŕıa de Educación de la Comunidad de Madrid and la Universidad Com-
plutense de Madrid (Grupo de Investigación Consolidado 910494) have supported
this work.∗ Corresponding author

Email addresses: anavarro@sip.ucm.es (A. Navarro), alfredo@sip.ucm.es
(A. Fernández-Valmayor), balta@sip.ucm.es (B. Fernández-Manjón),
jlsierra@sip.ucm.es (J.L. Sierra).

Preprint submitted to Elsevier Science 8 November 2007

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



the state of the business [8]. Despite the apparent ease with which HTML
pages are created, the successful development of large web applications is a
complex activity that requires appropriate methods and tools [14]. Because
the development of these applications is a complex task, modeling support is
essential to provide an abstract view of the application. Modeling can help de-
signers during design phases by formally defining the requirements, providing
multi-level details as well as providing support for testing prior to implemen-
tation. Support from modeling can also be obtained at later phases via, for
instance, support for verification prior to implementation [36].

Modelling web applications means characterizing each tier that makes them
up [2]: (i) the client tier, which represents all device or system clients accessing
the system or the application; (ii) the presentation tier, which encapsulates
all presentation logic required to service the clients that access the system;
(iii) the business tier, which provides the business services required by the
application; (iv) the integration tier, which is responsible for communicating
with external resources and systems; and (v) the resource tier, which contains
the business data and external resources.

Our approach focuses on the presentation tier, which includes the navigational
structure of the application (i.e. navigation maps), the description of the user
interface (its regions and appearance), and the relation between both elements.
Although navigation and presentation are presented as independent tiers in
web engineering literature [12], in our opinion, from a multitier architecture
point of view, the navigation view should be included as a component of the
presentation tier [9][10].

Navigation maps describe a global view of a web application for an audience
[1]. A navigation map describes the possible sequences of web pages displayed
to a user, and is typically part of the documentation of a web application
[16]. At present, many web sites include navigation maps to help users during
browsing, which makes their characterization a key issue during the develop-
ment of web applications [26]. Using navigation maps, developers can obtain
a global view of the whole application that can help them during the devel-
opment process. In addition, the presence of navigation maps can help users
of web sites to find the desired information much more quickly.

Notwithstanding the importance of modeling, the development of a model is
not an easy task. The Object Management Group (OMG) [28] has developed
the Model-Driven Architecture (MDA) [29] approach to guide such a develop-
ment. MDA promotes the development of software models during the design
stage. Thus, the presence of these models leads to systems that are easier to
develop, integrate and maintain, and also provides the ability to automate
at least some of the construction. MDA starts with the well-known and long
established idea of separating the specification of the operation of a system

2

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



from the details of the way that system uses its platform capabilities [29].
MDA identifies three different models that appear during the development of
a system: (i) the Computation Independent Model (CIM), focused on the envi-
ronment and the requirements for the system; the Platform Independent Model
(PIM), focused on the operation of a system while hiding the details neces-
sary for a particular platform; and (iii) the Platform Specific Model (PSM),
which combines the platform independent model with an additional focus on
the detail of the use of a specific platform by a system [29].

This paper presents the Navigation Maps Modeling approach (NMM), which
provides platform independent models for navigation maps of web applica-
tions. The NMM approach tries to obtain a trade off between the benefits
offered by high-level and low-level design notations. High-level design nota-
tions (e.g. UWE [17]) present a significant abstraction level [12][15][23]. Thus,
during design stage the models described using these notations characterize
the main elements of the web application, hiding architectural details (e.g.
the presence of Model 1 or Model 2 architecture). However, these notations
do not provide guidelines to obtain detailed architectural designs, which are
very valuable at the implementation and maintenance stages. On the contrary,
low-level design notations (e.g. UML WAE [8]) permit detailed architectural
designs to be characterized. However, due to the presence of architectural de-
tails, these designs are tied to specific architectures, and include too many
details that may hinder the overall vision of the web application [12][15][23].

As high-level notations, NMM models are independent of the selected archi-
tecture (i.e. Model 1 or Model 2). Thus, NMM models omit architectural
details enhancing their platform independent role. In addition, simpler appli-
cations can benefit from the simplicity of Model 1 architecture [5], while more
complex applications can benefit from the flexibility of Model 2 (or Model-
View-Controller, MVC) architecture [2].

As low-level design notations, NMM models are in tune with a presentation tier
totally independent of the rest of the tiers of the web application. This is a key
feature in a multitier architecture where a clear separation between business
and presentation concerns should be striven for [2][8][10]. In addition, NMM
models can be easily translated into UML WAE models. Thus, NMM models
can be conceived as high-level versions of UML Web Application Extension
(UML WAE) models [8]. Moreover, an explicit meaning is provided for NMM
notation, which facilitates the transition from platform independent models
to platform specific models.

As both types of notations, NMM models provide an independent charac-
terization of navigation and user interface of the web application. Therefore,
these components can be changed independently. This feature is present in
most design notations [21].

3

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



Finally, in navigation maps, to get from one page to another, a request from
one page is usually routed through a series of components on the server, end-
ing with the display of the response page [16]. Because NMM models are
focused on the presentation tier, it is possible to hide computational artifacts
used during the routing of web pages, making it easier to understand these
models [26]. Later, in the translation of NMM models to UML WAE models,
different computational artifacts can be automatically defined once a specific
presentation architecture is selected.

NMM notation is an evolution of the hypermedia notation Pipe [25], specifi-
cally tailored to characterize navigation maps for web applications. The use of
Pipe notation in web engineering projects has demonstrated its applicability
as a tool to characterize navigation maps for web applications [26].

The paper is organized as follows. Section 2 describes NMM modeling arti-
facts. Section 3 describes the explicit meaning of the NMM diagrams in terms
of UML WAE class diagrams. Section 4 compares the NMM approach with
related work. Finally, Section 5 presents conclusions and future work.

Throughout the paper, the Virtual Campus of the Universidad Complutense
de Madrid [35] is used as an example. The virtual campus project was started
in 2003 and its main objective is to provide students and teachers with all
the support that information and communications technologies can provide
to improve the quality of learning and research activity at the Universidad
Complutense de Madrid (UCM). At present, thousands of users (lecturers and
students) use this application. Thus, due to the size of this complex virtual
campus, modeling has become a paramount activity [27].

2 NMM modeling artifacts

The NMM approach uses three kinds of diagrams to characterize navigation
maps for web applications: (i) page diagrams, which characterize the naviga-
tional structure of web pages and their links; (ii) region diagrams, which model
the regions in which the user interface’s windows are divided; and (iii) mixing
diagrams, which relate page diagrams with region diagrams, describing the
user’s navigational access to pages through the user interface.

The NMM artifacts are formalized for a better characterization of the ap-
proach. In addition, this formalization is the basis for the definition of the
NMM browsing semantics (similar to the one defined in Pipe [25]) and helps
to define node reachability algorithms [11][34]. In particular, NMM formal-
ization is very suitable to define the links-automaton of the document [34].
Using this links-automaton and adequate formalisms, it is possible to check

4

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



if browsing specifications are met by the application [34]. Moreover, NMM
artifacts have a visual representation that simplifies their use. For the sake of
conciseness, this paper focuses on the visual representation of these artifacts,
leaving out several details of the formal components of the approach as well
as its browsing semantics.

2.1 Page Diagram

NMM page diagrams provide a characterization of the navigational structure
of web pages and their relationships. According to Conallen [8], a web page
can basically be anything that can be requested by a browser using HTTP
protocol. In NMM, web pages are more similar to the concept of client page
[8], a web page that is managed (i.e. browsed) by the client. In particular,
HTML pages or XML pages with associated style sheets can be understood
as NMM pages.

From a navigational point of view, in web applications there are anchors in-
side these pages. Anchors are endpoints of links, while links are relationships
between two anchors [38]. In NMM an anchor represents a device able to start
up an HTTP request to a web server. Therefore, HTML anchors, or buttons
inside HTML forms can be considered anchors [37]. At present, most of these
anchors start up computing processes at the server’s side, and therefore they
may have some information attached to them (e.g. the data collected in a web
form or the identifier of a product). In NMM this information is called the
anchor input.

NMM supposes the existence of three theoretical sets, which characterize
pages, anchors and inputs, and which are used as types to define the NMM
approach: (i) Page, the set of all the pages that can exist in the universe of
web applications; (ii) Anchor, the set of all the anchors that can exist inside
the pages of web applications; and (iii) Input, the set of all the inputs that
can exist related to an anchor.

Once these sets are defined and given a web application called A, the page
diagram for application A is a tuple < PageA, AnchorA, anchorA, accA >,
where:

- PageA ⊆ Page is the set of pages of application A.
- AnchorA ⊆ Anchor is the set of anchors of application A.
- anchorA : Page → 2Anchor is the anchoring function of application A.
- accA : Anchor × Input → Page is the access function of application A.

The set of pages of application A, PageA, characterizes all the web pages of the
application. NMM characterizes two types of pages: (i) lasting pages, PageA

l ,

5

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



which are static pages that exist and are completely defined prior to any user
interaction with the application (e.g. an HTML page retrieved by the web
server); and (ii) transient pages 1 (PageA

t ), which are pages dynamically built
by a computational artifact invoked by the web server, and therefore, which
temporally exist as responses generated by these computational artifacts (e.g.
an HTML page generated by a JSP [20]).

The set of anchors of application A, AnchorA, characterizes all the anchors
inside the web pages of the application. In NMM two main types of anchors are
characterized: (i) retrieval anchors, AnchorA

r , which give access to lasting pages
directly retrieved by the web server without the need for further computing;
and (ii) computing anchors, AnchorA

c , which give access to pages provided to
the user when the web server delegates to an external computational artifact
(e.g. a JSP) that generates the page.

In addition, computing anchors are classified as: (a) form computing anchors,
AnchorA

f , which characterize submit buttons of web forms [37]; and (b) non-
form computing anchors, AnchorA

nf , which characterize computing anchors
(i.e. invoke some computational process) different from submit buttons of web
forms. At a conceptual level there is no significant difference between these
types of anchors. The main difference is that inputs of form anchors are not
defined by the designer (or by the application at run-time), while inputs of
non-form anchors are predefined by the designer (or by the application at
run-time).

The anchoring function of application A, anchorA : Page → 2Anchor, is a
function that assigns a set of anchors to a page. In this way, if anchorA(p) = B,
we say that the anchors of set B are inside of page p.

For the sake of simplicity, in NMM, links are established between source an-
chors and destination pages 2 . NMM uses the access function that relates an-
chors with pages to specify this relationship. Due to the presence of computing
anchors, the access function is defined on anchors and their input, if it exists.
Thus, the access function of application A, accA : Anchor × Input → Page
is the mechanism used in NMM to relate anchors and inputs with the pages
they access. In this way, if accA(a, i) = p, we say that anchor a with input i
gives access to page p.

1 We have used the term transient page instead of the term dynamic page, because
dynamic pages (or page templates) build these transient pages (or page instances).
In addition, to keep a consistent nomenclature, we have used the term lasting page
instead of static page.
2 Although in practice links can be defined between anchors and anchors, this makes
the formalization of the NMM approach more difficult. In addition UML WAE is
unable to characterize link targets inside of pages. Thus, in the translation process
from NMM to UML WAE this information would be useless.

6

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



Because at the design stage the relationship between anchor and pages has
to be stated, one of the basic aims of NMM is to specify the access function.
To facilitate this task, the definition of the access function is split into two
functions: the retrieval and the computing function.

The retrieval function of application A, retA : AnchorA
r → PageA

l , character-
izes the relations between retrieval anchors and lasting pages. In this way, if
retA(a) = p, we say that retrieval anchor a gives access to the lasting page p.

The computing function of application A, compA : Anchorc×Input → Page×
AI, acts on anchor a with input i, and defines the generated response web page
and its anchors. This response web page is built by a computational artifact
when the web server delegates in it. The set Anchoring Information, AI, is
a complex set that describes all the types of anchors that can be included
in a generated page. There are six sets that make up the AI set. These sets
consider the nature of the anchor (retrieval, form computing and non-form
computing) and their presence in every page generated, with independence of
the input (non-dependent or common anchors), or present in the page due to
the specific input (dependent anchors 3 ). Thus, if compA(a, i) = (pi, Ai), we
say that when the web server delegates in a computational artifact to process
the computing anchor a with input i, the computer artifact provides the web
page pi, and the anchors Ai attached to that page.

The NMM approach defines only the signature of the computing function,
and every specific representation using the NMM approach for a specific ap-
plication must provide the actual definition of this function. In this way, the
computing function acts as an interface in the object-oriented sense: only
the description of the behavior is provided, while the specific behavior of the
function has to be defined in every case. The NMM approach uses formal ex-
pressions (and their visual representation) to characterize the definition of the
computing function. Later, these definitions can be complemented using UML
interaction diagrams [30].

Once these functions are defined, the access function is defined as (1) (where
Π1(x, y) = x).

accA : Anchor × Input → Page

(a, null) → retA(a), if a ∈ Anchorr

(a, i) → Π1compA(a, i), if a ∈ Anchorc

(1)

In other words, given an anchor a and an input i, if a is a retrieval anchor (and

3 These dependent anchors cannot be taken into account in the node reachability
algorithms, because they are dependent on specific inputs provided at runtime.

7

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



therefore, there is no associated input), accA is defined in terms of retrieval
function retA. If a is a computing anchor, accA is defined in terms of comput-
ing function compA. Therefore, function accA acts as a black box that hides
the nature of the relationships between anchors (retrieval or computing) and
pages (lasting or transient), providing a uniform view of the navigation in the
application. Thus, the definition of a browsing semantics is facilitated. With
retrieval anchors, function accA will have an extensional definition (in terms of
function retA). With computing anchors, function acc will have an intensional
definition (in terms of function compA). Therefore, the NMM access function
is similar to the table that guides a controller in a MVC architecture, and
therefore, it can be used to define such a table. The visual characterization of
the modeling components of NMM page diagrams is depicted in Fig. 1.

�

��������	��
���

�����
������������
��
�����	�

�
���
����������������

������
���	��
������

���	�����������

����������������	�����

	�

	�

��

��

	�	�

	�


������

�����
��������∏����	
�
��������	��

	��


������

���	���������������

����������������	�����

������

�����
��������∏����	
�
��������	��

	��


������

Fig. 1. Graphical notation for the modeling components of NMM page diagrams.
Retrieval function is characterized in terms of straight lines, while computing func-
tion is characterized in terms of dashed lines.

The distinction between retrieval and computing function is a key issue of
the NMM approach. Retrieval function is used in order to assign destination
lasting pages to retrieval anchors. Computing function is used in order to
assign the definition of generated transient pages (and the different anchors
included in them) to computing anchors. The information provided by both
functions is used to provide the detailed design of the application at later
stages of the development.

In addition, as previously mentioned, in navigation maps, to get from one
page to another, a request from one page is usually routed through a series of
components on the server, ending with the display of the response page. In the
NMM approach, the computing anchors are the devices that permit the com-
ponents involved in the routing of a page request to be hidden. Thus, NMM
computing anchors are associated to the computational components responsi-
ble for processing the dynamic request. Later, when the platform independent
model evolves towards the platform specific model, NMM computing anchors
are the basis for the definition of computational artifacts (e.g. object-oriented
classes) responsible for this computing.

NMM page diagrams focus on the characterization of the navigational rela-
tionships established among the web pages. Therefore, the characterization of
the inner structure of these pages (e.g. the HTML code that makes them up)

8

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



or the computational artifacts involved in the routing of web pages, are out-
side the scope of NMM. In any case, this information can be incorporated in
the UML WAE diagrams derived from NMM diagrams as outlined in Section
4. In addition, NMM does not provide modeling components to characterize
the data model of the application. If needed, as in the case of navigation maps
provided by UML WAE User Experience diagrams [9], UML class diagrams
can be provided [10]. The data of the application are present in NMM page
diagrams through computing function. The pages generated by this function
include data extracted from the data model of the application. Therefore,
these pages are the views of the data model that the computational views of
the application (e.g. JSPs) generate for the user. In particular, the definition
of the computing function describes the pages that these computational views
have to generate. Later, this information can be made explicit using transfer
objects [2] (see Section 4 for further details).

Fig. 2 depicts an NMM page diagram in which, a page upIndex is linked to
pages facultyMembership and notices. facultyMembership is linked to page
getDataUCMFaculty that contains a form computing anchor (UCMFaculty
Membership), which collects the data of the faculty members who wish to
register in the UCM Virtual Campus. Finally, after membership request is
analyzed, it is possible to display a success (UCMFMembershipOKi) or fail-
ure (UCMFMembershipKOi) page. This figure encodes the formal elements
of the page diagrams. Thus, the access function is encoded according to the
visual representation depicted in Fig. 1. Visual notation can represent every
component of the formal notation whenever the anchors included in a com-
puted page can be extensionally defined. If an intensional definition is needed
(e.g. as in the case of input-dependent anchors), these formal definitions should
complement visual diagrams in terms of annotations.

�

�������� 	
���
������������ ��
�


����
���
��


��
���
������������

���
�����


���
�


����
���
�

�����
���
�������������� �

��������������!"��

��������������"!��


���������
���
�#

!"�

"!�

��
�����

Fig. 2. Page diagram for the elements used in the example of the Virtual Campus.

As in the case of Pipe [25], the use of a CASE tool to generate visual diagrams
(and their underlying formal representations) is encouraged in NMM. This
CASE tool should be entrusted with: (i) the definition of NMM diagrams and
their relationships; (ii) the implementation of node reachability algorithms;
(iii) the generation of UML-WAE diagrams from NMM diagrams; (iv) the
generation of fast prototypes; and (v) the export of NMM models to other
formats (e.g. a format suitable to define the links-automaton [34]). Certainly,

9

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



the formal specification of NMM notations facilitates the precise specification
of such a CASE tool.

2.2 Region Diagram

NMM region diagrams represent the different regions in which the browser
window is divided to depict the web pages. Therefore, these diagrams include
the definition of regions, windows, and an aggregate relationship that char-
acterizes the regions inside of a window. Several definitions are necessary in
order to describe region diagrams.

NMM supposes the existence of two theoretical sets which are used as types
to define the NMM approach: (i) Window, the set of all the windows that can
exist in the universe of web applications; and (ii) Region, the set of all the
regions that can exist inside of the windows of web applications.

Once these sets are defined, and given a web application called A, the region
diagram for application A is a tuple < WindowA, RegionA, AggA > where,

- WindowA ⊆ Window is the set of windows of application A. This set rep-
resents the windows (e.g. HTML framesets [37]) used by the GUI of a web
application.

- RegionA ⊆ Region is the set of regions of application A. This set repre-
sents the regions (e.g. HTML frames [37]) used by the windows of a web
application.

- AggA ⊆ WindowA × RegionA is the set of aggregations between windows
and regions. This set represents the aggregation relationship established
among windows and regions. Therefore if (w, r) ∈ AggA, we say that region
r is part of window w.

Fig. 3 depicts the visual characterization of the elements of the notation. The
terms window and region are used instead of terms such as frameset and frame
because, in our opinion, during the development of a platform independent
model these details should be omitted. Indeed, during design this simple and
abstract conception of the user interface could be refined, provided that the
basic interaction behavior is preserved. For example, some designs could decide
to use frameset and frames to represent windows and regions, while others
could decide to use tables and cells instead. Finally, other designs could decide
to aggregate headers and footers to every page of the application omitting the
use of frameset/frames.

Fig. 4 depicts a window of the Virtual Campus with its identified regions and
the NMM representation of this window. The window is divided into three
regions. One on the top of the window (up region), another on the left of the

10

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



�

���������

��	������


		��	
�����

��

��

��

��

��
����∈��		��

Fig. 3. Graphical notation for the modeling components of NMM region diagrams

�

����

������

�	
���

��
� ��
�

������������������
��

���
���

���	� 
��
�

Fig. 4. (a) Window of the Virtual Campus with its regions. (b) NMM region diagram
for the Virtual Campus screenshot

window (left region) and another on the center-right of the window (main
region).

2.3 Mixing diagram

Mixing diagrams are the third element of NMM, and provide it with most
of its flexibility. These diagrams relate page diagrams with region diagrams.
Thus, the user’s navigational access to pages through the user interface is
described. By using mixing diagrams, the same page diagram can be mapped
(adapted) to different region diagrams, and the same region diagram can be
used with different page diagrams. A mixing diagram for application A is a
tuple < defA, destA > where,

- defA : RegionA → PageA∪{blank} is the default page assignation function
of application A. This function assigns a default page to every region (blank
page, if there is no default page). Therefore, if defA(r) = p, p is the default
page of region r (e.g. the page depicted in the frame when the frameset is
accessed).

- destA : AnchorA → RegionA is the destination region function of applica-
tion A. This function assigns a region to every anchor. Thus, given an anchor

11

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



inside a page depicted in a region and its eventual input, this function offers
information about the region where the page accessed by the anchor and
its associated input has to be displayed. Therefore, if destA(a) = r, r is the
destination region for anchor a.

Fig. 5 depicts a mixing diagram that relates previous page and region diagrams
using colors. According to this diagram leftIndex, upIndex, and CV UCM
are the default pages for the regions left, up, and main respectively (note
that contents leftIndex and CV UCM were not previously used, but they are
included here for the sake of completeness with reality). Because colors relate
the anchors (defined at the page diagram level) with the regions, if the user
traverses the links established between upIndex and facultyMembership or
notices, these pages appear in region main. Moreover, main is the destination
region for the pages accessed by the rest of the anchors. Thus, if the user acti-
vates the anchor toGetDataUCMFaculty, getDataUCMFaculty will appear
in pane main because such an anchor is assigned to region main.

�

���

����� �	
��

�
�

�����������	�

����������

������


������������	�

�
������ �	�������������

� ����	�	����	������

���	�������������

�
�����
����

������	�	����	�����

 ����	�������������

!�
"�

������������

#$
�

������������

$#
�

����������	�����%

#$�

$#�

���
����

Fig. 5. Mixing diagram for the Virtual Campus

To a certain extent, in region diagrams, destination region function plays the
role of the target attribute defined in the anchors in HTML [37]. In this way,
there are two well-defined layers that permit the reuse of the same page dia-
gram with different region diagrams, or the same region diagram with different
page diagrams. This is a very important feature in prototyping environments
where constant changes appear in any component of the application [24]. More-
over, note that the representation provided is abstract enough so as not to
impose architecture restrictions at the design stage [26].

If a non frame-based implementation approach is chosen, it is possible to use a
modelling style in NMM where the region and mixing diagrams are not neces-
sary. For example, if there are no regions, the anchors of page upIndex can be
included in every page depicted in region main. In our opinion, this is a bad
modelling practice that restricts the final implementation of the application.
Therefore, in NMM, the presence of region and mixing diagrams is encour-
aged with independence of the final implementation. This is the reason why,
it is necessary to assign a region to every anchor in NMM. If a frame-based
implementation is chosen, all the required information is included in NMM

12

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



diagrams. Otherwise, it is only necessary to include the anchors of the pages
assigned to some regions in the rest of the pages (e.g. the anchors inside of
page upIndex). Finally, in NMM nested framesets are represented by regions
in the platform independent model. These regions can later be translated into
nested framesets or into tables nested in cells of tables if desired.

Regarding NMM notation scalability, in our opinion, it is similar to the scal-
ability of other visual notations (e.g. UML WAE). If a large number of pages
appear in the diagram, their separation into several subdiagrams may be the
best choice [9]. These subdiagrams can be defined using the contexts [6], which
partition the data within a graph.

3 From NMM diagrams to UML WAE diagrams

UML-Web Application Extension, UML WAE, is a design notation that has
found a considerable impact in industry [8][9][10]. However, the explicit pres-
ence of computational artifacts, besides the interaction architecture between
the presentation and business tiers, reduce the abstraction level of this nota-
tion [12][15][23][26].

NMM models can be conceived as a high-level version of UML WAE models
where computational artifacts and interaction architecture are hidden. Thus,
NMM models can be easily translated into UML WAE models. This transla-
tion permits an explicit meaning to NMM notation to be provided. In addition,
the transition from platform independent models to platform specific models
is facilitated. Note that UML WAE models permit web pages and other ar-
chitecturally significant elements to be represented in the model alongside the
normal classes of the model [9]. Thus, although UML WAE models can still
be considered as platform independent models, they include all the ingredients
to make a smooth transition from platform independent models to platform
specific models.

This section depicts the translation of NMM diagrams to UML WAE diagrams
that make the computational artifacts of the application and the interaction
architecture between presentation and business tiers explicit.

3.1 Page diagram

UML WAE notation considers the principle of separation of concerns [8]. Ac-
cording to this principle: (i) web pages executed in the server are UML classes
stereotyped with the server page stereotype; (ii) web pages presented to

13

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



Table 1
Translation from NMM page diagram elements into UML WAE elements

NMM element UML WAE element. Model 1 UML WAE element. Model 2

lasting page p client page p client page p

transient page p client page p generated by a server
page

client page p generated by a server
page

retrieval anchor a - -

non-form computing anchor a - -

form computing anchor a inside of
page p

form a aggregated to client page p form a aggregated to client page p

link from retrieval anchor a inside of
page p1 to lasting page p2

link from page p1 to client page p2 link from page p1 to controller + for-
ward from controller to client page p2

link from non-form computing anchor
a inside of page p1 to transient page
p2

link from page p1 to server page
aSP + operation a in facade
+ application service aAS +
transfers aInputTransfer and
aOutputTransfer, with depen-
dencies from server page aSP and
application service aAS to them +
build from server page aSP to client
page p2

link from page p1 to controller
+ action aAction + operation a
in facade + application service
aAS + transfers aInputTransfer
and aOutputTransfer, with de-
pendencies from aAction and
aApplicationService to them +
forward from controller to server
page aV iew + dependence from
server page aV iew to transfer
aOutputTransfer + build from
server page aV iew to client page p2

link from form computing anchor a in-
side of page p1 to transient page p2

submit from form a to server
page aSP + operation a in fa-
cade + application service aAS
+ transfers aInputTransfer and
aOutputTransfer, with depen-
dencies from server page aSP and
application service aAS to them +
build from server page aSP to client
page p2

submit from form a to controller
+ action aAction + operation a
in facade + application service
aAS + transfers aInputTransfer
and aOutputTransfer, with de-
pendencies from aAction and
aApplicationService to them +
forward from controller to server
page aV iew + dependence from
server page aV iew to transfer
aOutputTransfer + build from
server page aV iew to client page p2

the client are UML classes stereotyped with the client page stereotype; and
(iii) the navigational relationships among pages is mainly represented using
navigated associations stereotyped with the link stereotype.

NMM transient pages are translated into UML WAE client pages generated
by a server page (e.g. a JSP). NMM lasting pages are translated into UML
WAE client pages that exist without needing to be generated. Links defined
between NMM anchors and pages are translated into UML WAE links defined
between UML WAE pages. These UML WAE links are stereotyped according
to the NMM anchors where these links have their origin. Depending on the
target architecture, these links are directly established among pages, or are
centralized by a controller. Table 1 describes this translation.

The translation depicted in this table, supposes the existence of a facade
[13] which centralizes the business logic of the application. Another option
is to choose a business delegate instead of this facade [2]. The data flow is
represented by transfer objects, whose inner structure depends on the data
model of the application [2]. In the translation, dependencies of the facade on
these transfers are left out for the sake of clarity in the generated UML WAE
diagrams. With independence of the target architecture, every time that an
application service [2] is defined, a dependence between the facade and this
application service is included. In a Model 1 architecture, every time that a
server page is defined, a dependence from the server page to the facade is
defined. In a Model 2 architecture, every time that an action [13] is defined,

14

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



a dependence from the action to the facade is defined. Of course, interfaces
and implementations are defined for actions, facade and application services
objects. For the sake of conciseness, the elements belonging to the integration
tier are left out in this translation.

Therefore, as previously mentioned, in the NMM approach, computing anchors
are the devices that permit the components involved in the routing of a page
request to be hidden. In this way NMM computing anchors are associated to
the computational components responsible for processing the dynamic request.
The translation from NMM computing anchors to object-oriented classes de-
pends on the architecture chosen for the web application. For example, the
NMM page diagram of Fig. 2 is transformed into the UML WAE diagram of
Fig. 6 if a Model 1 architecture is selected.

UCMFacultyMembershipInputTransfer

VirtualCampusImp

UCMFacultyMembershipOutputTransfer

UCMFacultyMembershipAS

UCMFacultyMembership()

<<Interface>>

notices
<<cl ient page>>

upIndex
<<cl ient page>>

<<l ink>>

UCMFMembershipOK
<<cl ient page>>

facultyMembership
<<client page>>

<<l ink>>

UCMFMembershipKO
<<cl ient page>>

UCMFacultyMembershipSP
<<server page>>

<<build>>

<<build>>

getDataUCMFaculty
<<cl ient page>>

<<link>>

UCMFacultyMembership
<<form>>

<<link>>

<<submit>>

VirtualCampus

UCMFacultyMembership()

<<Interface>>

�

Fig. 6. UML WAE class diagram for the NMM page diagram of Fig. 2 using Model
1 architecture

Note how in Fig. 6, the server page UCMFacultyMembershipSP uses the fa-
cade VirtualCampus that explicitly represents the component responsible for
the computational behavior of the membership for UCM faculty (and for
other computational behaviors). In particular, this facade uses the applica-
tion service UCMFacultyMembershipAS to implement this functionality. In the
NMM diagram of Fig. 2, the server page, the facade and the application
service that processes the membership are not present due to the existence
of the computing function that directly acts on the form computing anchor
UCMFacultyMembership. The most important advantage of this approach
is that during the development of a platform independent model for the nav-
igation of the application, computational artifacts (i.e. classes) are omitted
[26]. In addition, this figure includes a UCMFacultyMembershipInputTransfer
transfer object used to move information from the input form to the business
logic, and a UCMFacultyMembershipOutputTransfer transfer object used to
move information from the business logic to the presentation tier.

15

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



Previous design conforms to the simple page-centric (or Model 1) architecture
[5]. If the more complex Model 2 architecture is chosen, the UML class dia-
gram of Fig. 7 is obtained. This diagram becomes more detailed and complex,
getting further away from the platform independent model and getting closer
to the platform specific model. In a multitier architecture, a controller and a
facade (or a business delegate) are components that are always present. There-
fore, regarding the presentation tier, the client and server pages that conform
the navigational map are the target elements to be described. In addition, in
this architecture a class responsible for the computational behavior of the ap-
plication, input and output transfers of this class, and input and output views
have to be defined. NMM permits these components to be derived from the
structure of lasting and transient pages and the anchors they include. Thus,
from the presence of the NMM computing anchor UCMFacultyMembership
inside of the lasting page getDataUCMFaculty that links with the transient
pages UCMFMembershipOKi and UCMFMembershipKOi shown in Fig.
2, the presence of the following is derived: the computational class UCMFaculty
MembershipAS, an input (UCMFacultyMembershipInputTransfer) and an out-
put (UCMFacultyMembershipOutputTransfer) transfer, and an input (getData
UCMFaculty) and output (UCMFacultyMembershipView) view. Of course, the
computational behavior of the UCMFacultyMembershipAS class is outside the
scope of the presentation tier. Regarding the behavior of the view UCMFaculty

MembershipView, UML interaction diagrams can be provided. Therefore, NMM
page diagrams are simpler than UML WAE diagrams because they have fewer
elements and do not include information about processing [26]. In addition,
note also that NMM page diagrams are architecture-independent, i.e., the
same NMM page diagram can be mapped into a Model 1 or Model 2 UML
WAE class diagram.

<<forward>>

UCMFacultyMembershipAction-

VirtualCampusImp

UCMFacultyMembershipAS

UCMFacultyMembership()

<<Interface>>
UCMFacultyMembershipInputTransfer

UCMFacultyMembershipOutputTransfer

UCMFMembershipOK
<<client page>>

upIndex
<<client page>>

notices
<<client page>>

facultyMembership
<<client page>>

UCMFacultyMembershipView
<<server page>>

<<build>>

UCMFMembershipKO
<<client page>>

<<build>>

Controller
<<server page>><<link>>

<<forward>>

<<forward>>

<<link>>

<<link>>

getDataUCMFaculty
<<client page>><<forward>>

UCMFacultyMembership
<<form>>

<<submit>>

action

execute()

<<Interface>>

VirtualCampus

UCMFacultyMembership()

<<Interface>>

�

Fig. 7. UML WAE class diagram for the NMM page diagram of Fig. 2 using Model
2 architecture

Finally, no information regarding the underlying data model appears in the

16

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



Table 2
Translation from NMM region diagram elements into UML WAE elements

NMM element UML WAE element. Model 1 or Model 2

window w frameset w

region r frame target r

connection from window w to region r aggregation from frameset w to frame target r

diagrams of Fig. 6 and Fig. 7. This is because, as previously mentioned, NMM
diagrams do not characterize the data model of the application. Only trans-
fer objects are depicted. This is a view that is consistent with a multitier
architecture [2], where the independence between tiers is paramount.

3.2 Region diagram

Regarding the user interface, UML WAE uses frameset and target stereo-
typed classes to represent these HTML framesets and frames that are the
target of a link.

In this case, NMM windows are translated into UML WAE frameset stereo-
typed classes and NMM regions are translated into UML WAE target stereo-
typed classes. The NMM connection relationship is translated into a UML
WAE aggregation relationship. This translation is valid, with independence of
the target architecture. Table 2 depicts this simple translation.

Therefore, the region diagram of Fig. 4 can be translated into the UML WAE
diagram as depicted in Fig. 8.

up
<<target>>

main
<<target>>

vc
<<frameset>>

left
<<target>>

�

Fig. 8. UML WAE class diagram for the NMM region diagram of Fig. 4

If a non-frameset approach is chosen (see discussion in case study of page
diagrams), the client pages upIndex and leftIndex should be aggregated to
every client page (except to themselves, of course) and the diagram of Fig. 8
could be left out.

3.3 Mixing diagram

Finally, the NMM default page assignation function is used to assign default
pages to the frames in UML WAE class diagrams. The NMM region destina-
tion function is used to decorate the UML WAE navigated associations with

17

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



Table 3
Translation from NMM mixing diagram elements into UML WAE elements

NMM element UML WAE element. Model 1 or Model 2

default page assignation from region r to page p aggregation from frame target r to page p

destination region assignation from anchor a to
region r

constraint {target = r} in the UML WAE link
(or submit) in which the NMM link with origin
in anchor a is translated into

the stereotype target. This translation is valid, with independence of the
target architecture. Table 3 depicts this simple translation.

Fig. 9 depicts the UML WAE version of Fig. 5.

UCMFacultyMembershipAction

VirtualCampusImp

UCMFacultyMembershipAS

UCMFacultyMembership()

<<Interface>>
UCMFacultyMembershipInputTransfer

UCMFacultyMembershipOutputTransfer

action

execute()

<<Interface>>

UCMFMembershipOK
<<client page>>

notices
<<client page>>

facultyMembership
<<client page>>

UCMFacultyMembershipView
<<server page>>

<<build>>

UCMFMembershipKO
<<client page>>

<<build>>

getDataUCMFaculty
<<client page>>

UCMFacultyMembership
<<form>>

Controller
<<server page>>

<<forward>>

<<forward>>

{target = main}
<<link>>

<<forward>>

{target = main}

<<link>>

<<forward>>

{target = main}
<<submit>>

upIndex
<<client page>> {target = main}

<<link>>

leftIndex
<<client page>>

up
<<target>>

left
<<target>>

vc
<<frameset>>

main
<<target>>

CVUCM
<<client page>>

VirtualCampus

UCMFacultyMembership()

<<Interface>>

�

Fig. 9. UML WAE class diagram for the NMM mixing diagram of Fig. 5

4 Related work

At present, there is a plethora of design notations in the web engineering
domain. Object-Oriented hypermedia (OO-H) [15], Object-oriented Hypertext
Design Model (OOHDM) [32], Relationship Management Model (RMM) [19],
UML-based Web Engineering (UWE) [17], and Web Modeling Language (WebML)
[7] are some of the most relevant design notations in the hypermedia domain.

These notations can be classified as high-level notations. They consider three
major design dimensions during the design of a web application [12]: (i) the
structural dimension characterizes the data model of the web application in
terms of classes or entities and their relations; (ii) the navigational dimension
characterizes the navigation throughout the application content; and (iii) the
presentation dimension describes the way in which application content and
navigation are presented to the user. In addition, at present, most design
notations have included some extensions to explicitly represent the business
logic of the application [4][22][31].

These notations provide modeling primitives to characterize the structural
model of the application (i.e. the data model and the business logic of web

18

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



applications). In addition, these notations provide a navigational model of the
application, which is built on its structural model. This navigational model has
two components: (i) navigational classes, which are the perceptible represen-
tation of the conceptual/structural classes and their business processes; and
(ii) a navigational architecture model that characterizes the navigational rela-
tionships (i.e. the navigation map) between these navigational classes. Thus,
OO-H uses navigation access diagrams, OOHDM uses navigational context
schema, RMM uses RMDM diagrams, UWE uses navigation diagrams, and
WebML uses navigation specifications.

These navigational models make references to navigational classes and their
relationships (which are in fact built on the classes and relationships of the
data model) and to the business logic of the application. The presence of this
business logic varies in each approach: OO-H uses links with fragments of code
as well as object-oriented classes with methods, OOHDM uses activity nodes,
UWE uses navigational process classes, and WebML uses activities that make
up a process.

Regarding user interface (presentation dimension), these notations provide
modeling components to provide an in-depth characterization of the user in-
terface and its relationships with the navigational model.

Finally, these notations provide high-level characterizations of web applica-
tions, and most of them include CASE tools, but they do not provide explicit
mechanisms to obtain detailed architectural designs or platform specific mod-
els of the application.

As in [2], NMM relies on UML (without extensions) to characterize resource,
integration and business tiers (and therefore, the structural dimension). Re-
garding the presentation tier (including the navigation dimension), the NMM
navigational map is represented in terms of the pages perceived by the user,
and is not built over the data model. This is a consistent characterization of
the presentation tier of the user interface in a multitier architecture, where
the resource tier is represented by transfer objects [2], and the business tier
is represented by a facade or by a business delegate object [2]. In addition, in
NMM these computational artifacts are hidden. Later, if a UML WAE model
is generated, these computational artifacts, derived from the NMM comput-
ing anchors, are made explicit. Regarding the rest of the components of the
presentation tier (i.e. the presentation dimension), NMM is only focused on
the regions of the user interface and their relations with the navigation maps.
In contrast, the previously mentioned design notations provide more in-depth
descriptions of the components of the user interface.

UML WAE defines navigational maps as a part of the User Experience Model
(UX) [9]. These maps are defined in terms of screens and their links. In UML

19

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



WAE UX screens are a mixture of page information, links between these pages,
and the frameset structure in which pages are being displayed. As Conallen
defines: “A screen is something that is presented to the user. It contains
the standard user interface structure, such as menus and controls, as well
as business-relevant content” [9]. In our opinion, the definition of UX screen
and their links is not so clear as the definition of UML WAE class diagrams.
In particular, this mixture of user interface and business-data contents makes
the definition of UX navigational maps and their translation to UML WAE
class diagrams more difficult, i.e. there are no systematic rules to translate
UX diagrams into UML WAE diagrams. In contrast, NMM notation inde-
pendently defines the page diagram from the region diagram. In our opinion:
(i) this leads to clearer models; (ii) page diagrams and region diagrams can
be changed without interferences; and (iii) the transition to UML WAE class
diagrams can be made more systematically.

Regarding UML WAE class diagrams, the use of stereotyped classes permits
the presence of pages (e.g. the client page upIndex of Fig. 7) that can be used
to characterize navigation maps for Web applications. Although UML WAE
notation is able to depict Model 1 or Model 2 architectures, it is necessary
to fix the architecture in order to define the model of a specific application.
In other words, models described in terms of UML WAE notation are not
architecture-independent. In addition UML WAE models make the presence
of computational artifacts (e.g. the class UCMFacultyMembershipAS of Fig.
7) explicit, which makes them more difficult to understand [26], and lowers
the abstraction level of the notation [23]. Finally, note that in a multitier
architecture, the WAE extension is only used at the presentation tier.

Dialog Flow Notation (DFN) [3] and State WebCharts (SWC) [36] are focused
on the characterization of the navigation in Web applications. DFN represents
the dialog flow within an application as a directed graph of states connected by
transitions, and SWC uses statewebcharts to describe the navigation between
documents. To some extent, both approaches characterize the UML WAE
separation of concerns. DFN uses masks and actions while SWC uses static,
transient and dynamic states. Therefore, like UML WAE, these approaches do
not hide computational artifacts. In NMM the separation among client and
server pages is not considered because the computing processing is hidden
behind the access function. In addition, DFN and SWC use the same diagram
to characterize the navigation through the pages and their user interface, while
in NMM these items are separated using page and region diagrams. Finally,
DFN enforces the presence of a MVC architecture, while NMM is independent
of the final architecture [26].

Regarding Pipe, NMM can be understood as a web specialization of Pipe.
Therefore, the general set of dynamic anchors of Pipe [27] is specialized with
the set of NMM computing anchors (form and non-form computing anchors).

20

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



Table 4
Comparison between NMM and the related work

Approach (i) (ii) (iii) (iv) (v) (vi) (vii)

DFN × × × × × × ×
NMM

√ √ √ √ √ × ×
OO-H × √ √ × × √ ×
OOHDM × √ √ × × √ ×
Pipe

√ √ √ √ √|× × ×
RMM × √ √|× × × × ×
SWC × √ × × × × ×
UML WAE

√ × √ × √ √ √

UWE × √ √ × × √ ×
UX

√ √ × √ √|× √ ×
WebML × √ √ × × √ ×
(i) independent characterization of the presentation tier

(ii) independence of the interaction architecture between presentation and business tier

(iii) independent characterization of navigation structure and regions of the user interface

(iv) hiding of computational artifacts

(v) translation to UML WAE

(vi) in-depth characterization of the user interface

(vii) detailed characterization of every component of every tier

The Pipe navigational relationships established at the user interface level (i.e.
the pipes) are omitted in NMM, because in web applications the timing and
navigational relationships that may appear in hypermedia applications (e.g. n-
ary links) do not appear. Therefore, Pipe functions that relate contents (NMM
pages) with user interface are significantly simplified in NMM. In addition,
this paper does not provide an ad hoc browsing semantics for NMM models.
Instead, the meaning of the NMM is provided in terms of UML WAE models.

Table 4 shows these works considering the seven characteristics aforemen-
tioned: (i) independent characterization of the presentation tier; (ii) indepen-
dence of the interaction architecture between presentation and business tier;
(iii) independent characterization of navigation structure and regions of the
user interface; (iv) hiding of computational artifacts; (v) translation to UML
WAE; (vi) in-depth characterization of the user interface; (vii) detailed char-
acterization of every component of every tier. This last item depicts the un-
matched ability of UML WAE to explicitly characterize every element of every
tier of web applications, with independence of the architecture selected (un-
like DFN). In some applications, or during the provision of platform specific
models, the explicit presence of these elements can be particularly interest-
ing. Table 4 takes into account the translation from the related approaches to
UML WAE. The translation to UML itself (without the WAE extension) it is
not considered, because in a multitier architecture, UML WAE it is the best
choice to characterize the presentation tier in an UML design.

Despite Table 4, Pipe is not specially tailored to characterize navigation maps.
Our work [26] provides a web navigation map using Pipe, and sketches the
translation of Pipe models into UML WAE models. In any case, Pipe: (i) does
not provide specific modeling artifacts to characterize web navigation maps;

21

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



and (ii) includes several modeling artifacts that cannot be translated into UML
WAE. In particular, this paper provides the adaptation of Pipe into NMM,
which overcomes these drawbacks and simplifies Pipe modeling artifacts. That
is the reason why “

√|×” appears in item (v). Moreover, note that RMM
does not provide modeling components for the user interface. Therefore “×”
appears in item (i), and “

√|×” appears in item (iii).

Finally, there are another group of models which relies on well-known formal
specifications, such as statecharts [11] or Petri Nets [34], in order to define hy-
pertexts. Using these formal specifications several advantages can be gained,
such as checking node reachability, specifying synchronization of simultaneous
displays, specifying access control, defining tailored versions [11] or defining
dynamic adaptation [33]. NMM uses its own ad-hoc formal definition. Thus,
this definition has to be understood before applying the NMM approach. More-
over, this formal definition cannot rely on an underlying formal structure in
order to automatically carry out model checking, although it can be very valu-
able in the definition of checking algorithms (whenever temporal relationships
and input-dependent anchors are excluded from the requirements). These al-
gorithms use a graph-based translation of NMM models (similar to the Pipe
graphs [25]) in order to perform their function. However, NMM is not specially
suited to describe adaptive behaviors. In addition, in our opinion, NMM mod-
els can fit reasonably well in the view of hyperdocuments as automata [34]. In
this view, model checking can be used to verify that browsing specifications
are met by the behavior defined by the automaton view of the hyperdocument
(the links-automaton).

5 Conclusions and future work

The characterization of navigation maps is a key issue during the development
of Web applications. This paper presents the NMM approach, which provides
platform independent models for navigation maps of web applications.

NMM notation is conceived to obtain a trade off between the good charac-
teristics of high-level and low-level design notations. Thus, as high-level de-
sign notations, NMM models are independent of the selected architecture (i.e.
Model 1 or Model 2). As low-level design notations, NMM models are in tune
with a presentation tier totally independent of the rest of tiers of the web
application, and can be easily translated into UML WAE models. As both
types of notations, NMM models provide an independent characterization of
navigation and user interface of the web application. Finally, because NMM
models are mainly focused on presentation tier, computational artifacts used
during the routing of web pages can be hidden. Later, in the translation of
NMM models to UML WAE models, different computational artifacts can be

22

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



automatically defined once a specific presentation architecture is selected.

Throughout the paper, the Virtual Campus of the Universidad Complutense
de Madrid is used as a case study. Although the examples provided in this
paper are deliberately simple, this web application is a complex system used
by thousands of users. At a first step, UML WAE models were built, but to
obtain high-level versions of these diagrams that facilitate the navigation at the
website, NMM visual diagrams are under development. Thus, we are adapting
our CASE tool that supports the Pipe notation [25] to use it with NMM
notation. Moreover, our aim is to define NMM notation in terms of a UML
profile [30] and to define transformation rules between this profile and the
UML WAE profile. Note that this approach allows the use of general purpose
CASE tools (e.g. [18]), instead of ad hoc tools (e.g. [25]). In addition, these
CASE tools are able to support a full model-driven architecture approach.
Thus, once suitable transformation rules were defined, platform specific models
in terms of J2EE components (for example) could be automatically obtained.
Finally, the translation of NMM models to links-automaton should be further
analyzed in order allow the automatic verification of browsing specifications.

References

[1] S.M. Abrahão, L. Olsina, and O. Pastor, Towards the Quality Evaluation of
Functional Aspects of Operative Web Applications, in: Proc. IWCMQ 2002,
Lecture Notes in Computer Science, Vol. 2784 (Springer, Berlin, 2002) 325-338.

[2] D. Alur, J. Crupi and D. Malks, Core J2EE Patterns. Best Practices and Design
Strategies, 2nd edition (Sun Microsystems Press - Prentice Hall, Upper Saddle
River, 2003).

[3] M. Book, and V. Gruhn, Modeling Web-Based Dialog Flows for Automatic
Dialog Control, in: Proc. ASE 2004, (IEEE Computer Society, 2004) 100-109.

[4] M. Brambilla, S. Ceri, P. Fraternali and I. Manolescu, Process Modeling in Web
Applications, ACM Transactions on Software Engineering and Methodology 15
(2006) 360-409.

[5] S. Brown et. all, Professional JSP, 2nd edition (Wrox Press LTD, Birmingham,
2001).

[6] B. Campbell and J.M. Goodman, HAM: A General Purpose Hypertext Abstract
Machine, Communications of the ACM 31 (1988) 856-861.

[7] S. Ceri, P. Fraternali and A. Bongio, Web Modeling Language (WebML): a
Modeling Language for Designing Web Sites, Computer Networks 33 (2000)
137-157.

[8] J. Conallen, Modeling Web Application Architectures with UML, Comm. of the
ACM 42 (1999) 63-70.

23

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



[9] J. Conallen, Building Web Applications with UML, 2nd Edition (Addison-
Wesley Professional, Boston, 2002).

[10] P. Eeles, K. Houston and W. Kozaczynski, Building J2EE Applications with
the Rational Unified Process (Addisson-Wesley, Boston, 2003).

[11] M.C. Ferreira, M.A. Santos and P.C. Masiero, A Statechart-Based Model for
Hypermedia Applications, ACM Transactions on Information Systems 19 (2001)
28-52.

[12] P. Fraternali, Tools and Approaches for Developing Data-Intensive Web
Applications: A Survey, ACM Computing Surveys 31 (1999) 227-263.

[13] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software (Addison-Wesley, Boston, 1995).

[14] A. Ginige and S. Murugesan, Guest Editors’ Introduction: The Essence of
Web Engineering-Managing the Diversity and Complexity of Web Application
Development, IEEE MultiMedia 8 (2001) 22-25.

[15] J. Gómez, C. Cachero and O. Pastor, Extending a Conceptual Modelling
Approach to Web Application Design, in: Proc. CAiSE 2000, Lecture Notes
in Computer Science, Vol. 1789 (Springer, Berlin, 2000) 79-93.

[16] M. Han and C. Hofmeister, Separation of Navigation Routing Code in J2EE
Web Applications, in: Proc. ICWE 2005 (Springer, Berlin, 2005) 221-231.

[17] R. Hennicker and N. Koch, Systematic Design of Web Applications with UML,
in: K. Sian and T. Halpin, ed., Unified Modeling Language: System Analysis,
Design and Development Issues (Idea Group Publishing, 2001).

[18] IBM Rational Software Architect, http://www-
306.ibm.com/software/awdtools/architect/swarchitect/index.html

[19] T. Isakowitz, E.A Stohr and P. Balasubramanian, RMM: a Methodology of
Structured Hypermedia Design, Communications of the ACM 38 (1995) 34-43.

[20] Java Technology. Java Server Pages Technology.
http://java.sun.com/products/jsp/

[21] N. Koch and A. Kraus, Towards a Common Metamodel for the Development of
Web Applications, in: Proc. ICWE 2003, Lecture Notes in Computer Science,
Vol 2722 (Springer, Berlin, 2003) 497-506.

[22] N. Koch, A. Kraus, C. Cachero and S. Meliá, Integration of Business Processes
in Web Application Models, Journal of Web Engineering 3 (2004) 22-49.

[23] D. Lowe, Web System Requirements: an Overview, Requirements Engineering
8 (2003) 102-113.

[24] J. Nanard and M. Nanard, Hypertext Design Environments and the Hypertext
Design Process, Communications of the ACM 38 (1995) 49-56.

24

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



[25] A. Navarro, A. Fernández-Valmayor, B. Fernández-Manjón and J.L. Sierra,
Conceptualization, Prototyping and Process of Hypermedia Applications,
International Journal of Software Engineering and Knowledge Engineering 14
(2004) 565-602.

[26] A. Navarro, J.L. Sierra, A. Fernández-Valmayor and B. Fernández-Manjón,
Conceptualization of Navigational Maps for Web Applications, in: Proc. MDWE
2005 (University of Wollongong, Sydney, 2005) 80 - 88.

[27] A. Navarro and A. Fernández-Valmayor, Conceptualization of Hybrid Websites,
Internet Research 17 (2007) 207-228.

[28] Object Management Group website, http://www.omg.org

[29] Object Management Group, Model-Driven Architecture (MDA),
http://www.omg.org/mda

[30] Object Management Group, Unified Modeling Language (UML), Version 2.1.1,
http://www.uml.org, 2007.

[31] G. Rossi, H.A. Schmid and F. Lyardet, Customizing Business Processes in Web
Applications, in: Proc. EC-Web 2003, Lecture Notes in Computer Science, Vol.
2738 (Springer, Berlin, 2003) 359-368.

[32] D. Schwabe, L. Esmeraldo, G. Rossi and F. Lyardet, Engineering Web
Applications for Reuse, IEEE MultiMedia 8 (2001) 20-31.

[33] P.D. Stotts and R. Furuta, Dynamic Adaptation of Hypertext Structure, in:
Proc. Hypertext 91 (ACM, 1991).

[34] P.D. Stotts, R. Furuta and C. Ruiz, Hyperdocuments as Automata: Verification
of Trace-Based Browsing Properties by Model Checking, ACM Transactions on
Information Systems 16 (1998) 1-30.

[35] Virtual Campus of the Universidad Complutense de Madrid,
https://www.ucm.es/info/uatd/CVUCM/index.php

[36] M. Winckler and P. Palanque, StateWebCharts: a Formal Description Technique
Dedicated to Navigation Modelling of Web Applications, in: Proc. DSV-IS 2003
(Springer, Berlin, 2003) 61-76.

[37] World Wide Web Consortium, HTML 4.01 Specification, 1999,
http://www.w3.org/TR/html4/

[38] World Wide Web Consortium, Hypertext Terms,
http://www.w3.org/Terms.html

25

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information




