
A documental approach to adventure game
development

Pablo Moreno-Gera,*, José Luis Sierraa, Iván Martínez-Ortizb, Baltasar
Fernández-Manjóna

aDpto. Ingeniería del Software e Inteligencia Artificial. Universidad Complutense de Madrid, Spain
bCentro de Estudios Superiores Felipe II, Aranjuez, Madrid, Spain.

Elsevier use only: Received date here; revised date here; accepted date here

Abstract In this paper, we propose a documental approach to the development of graphical adventure
videogames. This approach is oriented to the production and maintenance of adventure videogames
using the game’s storyboard as the key development element. The videogame storyboard is marked up
with a suitable domain-specific descriptive markup language, from which the different art assets needed
are referred, and then the final executable videogame itself is automatically produced by processing the
marked storyboard with a suitable processor for such a language. This document-oriented approach
opens new authoring possibilities in videogame development and allows a rational collaboration between
the different communities that participate in the development process: game writers, artists and
programmers. We have implemented the approach in the context of the <e-Game> project, by defining a
suitable markup language for the storyboards (the <e-Game> language) and by building a suitable
processor for this language (the <e-Game> engine).

Keywords: videogames; adventure games; development process; document-oriented approach; storyboard markup
language; game engine

1. Introduction

The development of videogames, which started out as small individual projects initiated by
groups of friends, has evolved rapidly in the last few years into a massive entertainment
industry. Nowadays, videogames are huge software projects developed by heterogeneous
teams, usually grouping more than one hundred people. Therefore, it is no longer possible to
have a single programmer coding a game, and advanced software engineering techniques have
become a necessity [34].

* Corresponding author. Tel.: +34-91-394-7623;
 E-mail adresses: pablom@fdi.ucm.es (P. Moreno-Ger), jlsierra@fdi.ucm.es (J.L. Sierra),

imartinez@cesfelipesegundo.com (I. Martínez-Ortiz), balta@fdi.ucm.es (B. Fernández-Manjón).

1

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

This paper addresses the relationships between game writers, artists and programmers in
the development of graphical adventure videogames [15]. The skills of the different
participants in the development of this kind of games are usually orthogonal, but their
collaborative work is essential for the successful development of the final product. The main
role of game writers is to create the game storyboard, where the story, development and all the
different elements of the game are described. Artists in turn are engaged in producing the
artworks that are integrated in the final game (e.g. graphical designs, musical compositions,
etc.). Finally, programmers are in charge of implementing and customizing the software
infrastructure of the game.

We propose a documental approach to rule the collaboration between the aforementioned
communities. In this approach, the final program implementing the videogame is not the
centre of the development process because the focus is on producing and maintaining the
game storyboard. For this purpose, the structure of this document is characterized and
formalized in terms of an easy-to-use and easy-to-understand descriptive markup language
that can be used by game writers to make the structure of their storyboards explicit. This
approach follows the concepts described in [6, 11, 12], where the writer of a document of a
given type (a book, a technical manual, etc.) can use a descriptive markup language tailored to
such a document type. In the context of this project, additional markup is added to refer the
assets provided by the artists and the executable games can be automatically generated from
the marked up storyboards by using a suitable processor for the descriptive markup language.
An entire family of videogames (in this case, classic graphical adventure games) shares this
processor. The processor is provided and maintained by the programmers. In this approach,
game writers, who are the true experts in the conception of adventure videogames, rule the
writing and development process.

We have implemented the documental approach in the <e-Game> project. This project
proposes a development process model centred on the creation of a complete script or
storyboard that is then marked with a domain-specific XML-based markup language (the
<e-Game> language). The resulting marked document, along with the art assets to be
integrated in the final game, can be interpreted by a highly modular and extensible processor
(the <e-Game> engine) in order to automatically produce the executable videogame. Since
writers are the main stakeholders in the process, <e-Game> focuses on facilitating their task as
much as possible. A high level of technological skill should not be a requirement, which
makes is necessary to design the process in such a way that authors will be able to develop all
their potential without having to struggle with programming concepts. It should also be
noticed that the main contribution and innovation of the work presented in this paper is not the
use of specific standards or technologies (e.g. XML), but the use of the basic principles behind
descriptive markup in the production and maintenance of graphical adventure videogames.
These principles promote the separation between document structure and processing, and lead
to a rational separation of roles in the development process.

The structure of this paper is as follows. In section 2 we briefly survey some related work
in the field of domain-specific languages and tools for the development of videogames. In
section 3 we describe the document-oriented process model proposed by <e-Game>. The
<e-Game> language is presented in section 4. The <e-Game> engine is described in section 5.
Section 6 presents a qualitative evaluation of <e-Game>’s usability. Finally, section 7
provides some conclusions and lines of future work.

2

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

2. Domain-specific Languages and Tools for Creating Videogames

The notion of allowing authors (as opposed to programmers) to create videogames is not
new. Videogames capture the imagination of all ages and genres [9] and the concept of
allowing authors to develop their own videogames without the distraction of complex low-
level programming is quite popular. Many initiatives allow for this kind of rapid development,
all with different approaches and varied levels of sophistication. These initiatives can be
broadly categorized in three different approaches: authoring environments for non-
programmers, scripting solutions,and special-purpose programming languages. The following
subsections briefly outline each one of these alternatives.

2.1. Special-purpose Programming Languages

There are programming languages specifically designed for videogame development that
require authors to have good programming skills. Perhaps the most popular option nowadays
is the DarkBasic1 project [13]. Dark Basic and its spin-offs (DarkBasic Pro or the DarkMatter
SDK with C++ support) are probably the main reference when speaking about specific
videogame programming. A previous initiative in the field, the DIV Games Studio2, had a
reasonable success in the late 90’s, although it was never properly supported by its publishers.
However, several open-source initiatives emerged from within the DIV community and
projects like Fenix3, eDIV4 or cDIV5 are still valid alternatives to DarkBasic.

A common characteristic of all these languages is that they include functionalities specially
suited for videogame development. These functionalities usually act as simplified high-level
wrappings of complex low-level constructions typically found in videogames (graphics
management, game synchronization, sound management, collision detection, etc.). However,
they are full-featured programming languages and, therefore, their use is too complex for the
average user without an extensive programming background.

2.2. Scripting languages

Many modern videogames separate low-level logic from data and high-level definitions of
the behavior of the game (AI management, game design, etc.). The core of such games is an
engine that may have been specifically built, reused from previous development or provided
by a third party. This engine is written by expert programmers, but it is not a game in itself.
The game is actually a set of scripts that are interpreted and executed by the engine [31].

The advantage of scripting approaches is that these languages are usually simpler than fully
featured programming languages, which facilitates game programming and maintenance.
There are many scripting languages with different approaches and levels of complexity.
Sometimes scripting languages are designed for a specific game engine, although general
purpose languages such as LUA [14] are used in many developments.

Some commercial games disclose their scripting languages to promote the appearance of
modding communities, formed by non-affiliated players that create customizations and

1 http://www.thegamecreators.com/
2 http://www.divsite.net/
3 http://fenix.divsite.net
4 http://ediv.divsite.net
5 http://cdiv.sourceforge.net/

3

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

modifications of the game. Sometimes this approach is so flexible that communities have
developed completely new games6.

This approach has a clear advantage: If the scripting language is targeted to a specific game
(or family of games), it is possible to simplify the language by abstracting different elements
of the game. This is useful in graphical adventure games that include many widely accepted
commonalities. Thus, there are several engines and scripting languages specifically tailored to
suit the needs of the genre. Some common examples are initiatives like the MAD Adventure
Game Engine7 (which uses LUA as scripting language), SLUDGE8 (Scripting Language for
Unhindered Development of a Gaming Environment) or the WinterMute Engine9 (featuring a
very powerful Object-Oriented scripting language). A pioneer of this approach was the
SCUMM system [33], employed in most commercial LucasArts [43] games but not available
for the general public.

 The genre of graphical adventure games is very synergetic with the Interactive Fiction (IF)
community (text-based adventures, in which the computer is used as a medium for the
delivery of richly interactive stories). The IF scene is dominated by scripting initiatives like
TADS10 (originally developed in 1987 that nowadays uses an object-oriented language with
Pascal-like syntax), INFORM11 (developed in 1993 and having a customizable parser which
by default supports a C-like language) and HUGO12 (developed in 1995 with a syntax
reminiscent of Basic). Although all these initiatives were developed with IF and text-based
adventures in mind, nowadays they all support graphics and sounds to different extents, thus
making them suitable for the development of graphical adventure games.

Even though scripting languages are usually easier to learn and to use than general-purpose
programming languages, they still demand that authors have good programming skills.
Therefore, they are not accessible for average authors but only for those with certain skills in
computer science or highly motivated enthusiasts.

2.3. Authoring Approaches

On the no-programming side of the spectrum, there are several authoring proposals, which
allow authors to create videogames without resorting to programming. These initiatives
usually trade expressive power for simplicity, although some include an extension mechanism
with sophisticated programmatic resources for more advanced users.

One of the most popular initiatives is the Game Maker13, which has been used as a rapid
development tool in a number of academic research projects [1, 29, 32]. There are also similar
commercial projects like The FPS Creator (for quick creation of typical First-Person-Shooters
with just a few mouse clicks) or the more sophisticated The 3D Game Maker (also GUI-
driven, although much more powerful), both produced by the same company that distributes
DarkBasic14. Finally, the academic-oriented ToonTalk [17] takes a radical approach where the

6 The engine of the science fiction game Half-Life is the base for the more realism-oriented Counter Strike, arguably

the most popular multi-player First-Person-Shooter
7 http://mad-project.sourceforge.net/
8 http://www.hungrysoftware.com/tools/sludge/
9 http://www.dead-code.org/index2.php/en
10 http://www.tads.org/
11 http://www.inform-fiction.org/
12 http://www.generalcoffee.com/hugo.html
13 http://www.gamemaker.nl
14 http://www.thegamecreators.com/

4

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

development environment is a game itself, designed to be usable by children but without
compromising expressive power. It must be noted that ToonTalk can be used for the
development of any kind of program and not only videogames.

Regarding the narrower domain of graphical adventure games, there are also several
initiatives that promote an authoring approach. For example, the Adventure Game Studio15 (a
drag and drop tool, although it does support some scripting optionally), the Adventure Maker
project16 (which can target the games produced to the PlayStation Portable console), or the 3D
Adventure Studio17 (which provides a very simple GUI for the creation of 3D adventure
games, but is still at a very early stage of development).

In the IF field there are also examples of the authoring approach that try to eliminate
programming to allow authors without a technical background to participate. Since most
authors in the scene define themselves as closer to writers of novels than to programmers, it is
especially important to have tools that do not require any programming background. In this
regard, ADRIFT18 is probably the most extended tool, allowing the author to create the
adventures using a number of windows and forms, and with an extended support for graphics
and sounds that, again, blurs the barriers between Interactive-Fiction and graphical adventures.
A more classical approach like ALAN19 provides a language similar to written English and is
considered as a modern alternative to the classic AGT20.

While the author-centred conception maintained by these approaches is in accordance with
our documental approach, they are usually oriented to the description of the different features
of the videogame as an executable artifact. In addition, all these initiatives assume that the
process is focused on the tool that you use. There is no well-defined development process and
it is common to start writing the game with the tool itself (although having a full script
previously written would be desirable). In this paper we propose a different general approach,
focused on producing and maintaining the document with the storyboard describing the game.
The proposed development process permits a rational collaboration between the different
participants in this process.

3. Document-Oriented Development of Adventure Videogames: The <e-Game> Project

In the last ten years our research group at the Complutense University of Madrid has been
applying a document-oriented approach to the development of content-intensive applications
(e.g. e-learning systems, museum object repositories, knowledge based systems, etc) [10, 35,
36, 40]. These applications share the common feature of integrating large amounts of highly
structured contents that are usually authored by domain experts as collections of well-
structured documents. With these requirements, the approach focuses on the production and
maintenance of the documents with the contents and with other aspects of the application (e.g.
some features of the user interface) instead of the application itself. The structure of these
documents is then made explicit by marking them up with suitable domain-specific descriptive
markup languages, which are specific for each particular application domain. Finally,
applications are automatically produced by processing the documents with suitable processors.

15 http://www.adventuregamestudio.co.uk/
16 http://www.adventuremaker.com/
17 http://3das.noeska.com/
18 http://www.adrift.org.uk/
19 http://www.alanif.se/
20 http://www.markwelch.com/agt.htm

5

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

Therefore, the approach greatly improves the collaboration between domain experts, who are
mainly responsible for producing and maintaining the documents, and developers, who are
responsible for formalizing the markup languages and building their processors.

The main goal of the <e-Game> project is to apply the documental approach to the
development of graphical adventure videogames [21, 22, 24, 25]. The idea is to allow game
writers without a strong technical background to produce and maintain an entire game as a
document using a language that is easy-to-understand, which is then fed to a
compiler/interpreter that produces a fully functional game. In addition, the approach also
defines a model of collaboration with other stakeholders: artists and developers. The resulting
process model is outlined in Fig 1, where the development activities, the participants in these
activities, and the main products produced during the <e-Game> development of a videogame
are outlined. In support of this process model, two different components are introduced: the
<e-Game> language, which is used by writers to mark their storyboards up, and the <e-Game>
engine, which is used for executing the games from their describing storyboards marked up
with the <e-Game> language. While these two components are detailed in the next sections,
here we will give a high-level description of the development process model introduced by
<e-Game>.

In order to illustrate the development process model, as well as other aspects of the
<e-Game> project, a very simple educational graphical adventure game has been taken as a
common case study. This game is designed to be used as a support tool in a course on
workplace safety regulations. The game describes the story of José, a young unemployed
worker who gets a job at a construction site. During his first trial week, the worker must
perform the different tasks ordered by the foreman, paying special attention to workplace
safety regulations. Whenever the player omits a safety regulation, he either is injured or is
rebuked by the foreman.

Production of
the Storyboard

Mark up of the
Storyboard

<…>

Production of
the Art Assets

Production of
the Videogame

Game
 writer

Programmer

Artist

Storyboard

<e-game>
document

Art assets

Videogame

Fig 1. The <e-Game> development process

6

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

The following subsections detail the different aspects of the process model from the
perspective of its activities.

3.1. Production of the storyboard

The development process model proposed by <e-Game> starts with the independent
elaboration of a storyboard of the adventure game written in plain natural language (e.g.
English). The game writer carries out this activity. <e-Game> imposes some guidelines
restricting the style of the resulting document in order to facilitate its subsequent markup.
Summarizing:

Dressing
room

Main
Hall

Site
access

Third
Floor

Exterior
scaffold

End
Game-1

End
Game-2

AmbulanceSite access
Description
Just after crossing the gate,
José finds himself in an open space.
There is a small pre-fabricated barn apart from the building in construction. The building has four floors and one
if its walls is surrounded by a scaffold.
Objects:
Crowbar: There is a crowbar lying on the floor.
Exits:
Barn door: The barn has a door that leads to the “Dressing room”
Building gate: Leads to the “Main Hall”.
Exterior gate: Only available after completing all the tasks indicated by the foreman. It leads to either ending
cutscene (End Game 1 or End Game 2) according to whether the user has returned all the tools to the toolbox.
Characters:
Foreman: the foreman is standing in front of the building.
Story: (….)

Fig 2. An excerpt of the sample storyboard displaying the map and the description
of a scene. End game cutscenes are identified by a double circle.

• The writer should begin by documenting the different scenes and cutscenes that form the
adventure game. Scenes are the basic modelling units in <e-Game> and correspond to the
different locations that can be visited when playing it. Typical examples might be a
dressing room, a construction site or a street. Cutscenes in turn can be considered as special
kinds of scenes that can be used to include special events in the game flow (e.g. to play a
video with some sort of explanation about the game). The writer should also indicate the
contents of the scenes (objects and characters) and indicate the connections between these
scenes. The storyboard from our sample also includes a conceptual map of the scenes that
clarifies the connections, as depicted in Fig 2. It must be noted that the different objects
and characters that populate the scenes are not defined directly. Instead, they will be

7

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

detailed later. This has the advantage of being more modular and naturally leads to a
systematic writing methodology.

 Toolbox
Description: It is a standard toolbox
Detailed Description: Safety regulations demand that work tools are always stored properly. I should put here
any tools I find around.
Actions: The toolbox can not be grabbed. Different tools may be used with the toolbox and be stored into it.
(…)

Fig 3. Storyboard definitions of some objects.

• After defining all the scenes and cutscenes, the author is advised to give details about the

objects populating the scenes. This definition should resemble that given in Fig 3.
• Following the <e-Game> guidelines, the next step is to describe the player and the rest of

the characters as in Fig 4. Again, rather than writing out the entire contents of the different
conversations, only a brief explanation is given instead. The actual content of the
conversation will be detailed later.

 José

José is an eager young man trying to make some money. He is not an unexperienced worker, although he is
not familiar with the safety regulations in the Spanish workplace.
Description: Hey! It’s me!
Detailed Description: I’m not as fit as I used to be. I hope this job will help me to lose some weight.

The foreman
The foreman is well into his forties. He always smiles and treats his employees fairly, although he usually
gets angry at the sight of any breach of safety regulations due to a past bad experience that he never talks
about.
Description: A friendly man with occasional bursts of anger.
Detailed Description: He is the foreman in this construction site. I think I’d better not make him angry, for
my work depends on his reports.
Conversations:

• “Greeting”: The first time he speaks, he greets José and welcomes him. He advises José on clothing
regulations and suggests he go to the dressing room.

• “Undressed”: If after the first conversation José speaks with the foreman, he is directed to the
dressing room.

• “First task”: The foreman asks José to go to the third floor and collect some sacks of sand that
must be brought down to the hall.

• “Complete first task”: If José is in the middle of the first task, the foreman insists that he must
complete the action. (…)

Fig 4. Storyboard definitions of the player (José) and some characters (The Foreman)

• The last step is to describe the conversations supported by the characters. Conversations are
perhaps the most delicate element in a graphical adventure. Most of the game content and
clues are obtained by interacting with characters (although the use of visual clues is also
common). A long, enticing conversation with varied interaction options and different
possible outcomes is one of the aspects that require more dedication from the author. In
addition, one of the main checkpoints for the quality of such an adventure is the quality of
its dialogues. <e-Game> works with the model of multiple-choice dialog structures
organized as a tree with the possible answers as nodes that open to new sub-conversations.

8

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

We recommend using a format to describe the conversations that reflects the notion of a
tree like the one suggested in Fig 5.

 F: Well José, have you measured the scaffold?
 ->J: No sir, not yet
 F: And what are you waiting for?
 J: At once, sir
 ->J: Yes sir, it's ready
 F: And...
 -> J: It's rather high, sir
 F: That is not a reliable measurement!
 F: I need precise data (go-back)
 ->J: It is 2.5 meters high, sir
 F: Hmmmm....
 F: That is over the 2 meter limit
 F: It must have handrails then and the plank must be wider than 60 centimeters
 F: Does it comply to those specifications?
 ->J: Yes, it does
 F: Ah, that's perfect
 F: In that case, I need you to climb to the top of the scaffold
 F: and help David with the window frames
 J: Yes, sir (end of conversation)
 ->J: No, it doesn't
 F: I can't believe they installed a bad scaffold!
 F: Please, check it out again or I will have to call them
 F: and have a new scaffold installed
 F: That would delay the entire schedule! (end of conversation)

Fig 5. Conversation between José and the foreman

After completing the conversations, the writer has a document that describes the complete
game, defining scenes, navigation, objects, characters and all the possible interactions. This
document is the most valuable asset produced during the development process, since it
contains the essence and is the key to the success of the final videogame. Therefore, the
documental approach develops the idea that the entire development process be focused on this
document. In the end, the videogame itself will be automatically produced by processing this
document, although this requires the author to define its structure explicitly.

3.2. Mark up of the storyboard

The goal of this activity is to mark up the storyboard using a suitable domain-specific
markup language that indicates its structure and the semantics of each portion of the
document. In addition, the language proposed in <e-Game> also includes markup to describe
presentational and operational aspects needed for the execution of the actual game. The
<e-Game> language itself will be detailed in section 4.

The main workload of this activity is also for the game writers. Nevertheless, the markup
must also formalize aspects that are not so straightforward for the writers and may require the
assistance of the other stakeholders.

First, as will be detailed in section 4, the language requires some occasional deep thinking
while formalizing abstract ideas about the state of the game. In the example shown in Fig 6,
the statement “Only available after completing all the tasks indicated by the foreman” found
in the description of the exit Exterior Gate in the definition of Site Access is establishing a

9

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

condition for traversing the exit that must be adequately formalized. For this purpose, the
programmers may also be involved in the mark up process, in order to advise writers about the
description of these operational aspects of the <e-Game> document.

<exit x="50" y="100" width="20" height="20">
 <documentation>
 Exterior gate: Only available after completing all the tasks
 indicated by the foreman. It leads to either ending cutscene
 (End Game 1 or End Game 2) according to whether the user has
 returned all the tools to the toolbox.
 </documentation>
 <next-scene idTarget="EndGame1">
 <condition>
 <active flag="EndThirdTask"/>
 <active flag="StoredHammer"/>
 </condition>
 </next-scene>
 <next-scene idTarget="EndGame2">
 <condition>
 <active flag="EndThirdTask"/>
 <inactive flag="StoredHammer"/>
 </condition>
 </next-scene>
</exit>

Presentational
aspects

Operational
aspects

Fig 6. Example of markup in <e-Game>. The markup makes the rhetorical
structure of the storyboard explicit, and also includes other operational and

presentational aspects.

As shown in Fig 6, there are some presentational characteristics that must also be made
explicit in the markup. In the example, it is necessary to indicate the coordinates and
dimensions of the rectangle that delimitates the exit (i.e. the zone that triggers the change of
scene when clicked with the mouse). This process requires access to the art assets, and
therefore, the collaboration of the artists.

Nevertheless, our experience is that these situations can be tackled without excessive effort
in typical adventure games. The process is not overly complex, and most writers are
comfortable enough so as to need barely any assistance, as detailed in section 6.

3.3. Production of the art assets

In this activity, the artists, following the descriptions of the storyboard, produce the
different artwork that will finally be integrated into the game. The resulting files can be
referred from the markup added to the storyboard, therefore yielding a complete description of
the final videogame.

In Fig 7 some art assets for the proposed case study are shown. It is important to note that
these assets can be changed by others if required, while most of the effort applied in the
production of the storyboard and the markup process is preserved (presentational markup as
object coordinates may need some adjustments). This possibility is a direct consequence of the
documental approach and the descriptive markup spirit, which promotes an explicit separation
between contents, structure and the subsequent processing of the marked documents.

10

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

(c)

(e)

(d)

(b)

(a)

Fig 7. Some simple artworks from the case study: (a) draft of the player’s avatar, (b) the Foreman, (c) sprite for an
object (boots), (d) a composed scene (Site Acess), (e) a frame of a cutscene (ambulance).

3.4. Production of the videogame

Once the <e-Game> document with the marked storyboard and the art assets are available,
the videogame can be produced by processing all this material with the <e-Game> engine (Fig
8).

<…>

<e-Game>
document

Art assets

<e-Game>
engine

Videogame

Fig 8. The videogame is automatically generated by processing the <e-Game>

document and the art assets with the <e-Game> engine.

The <e-Game> engine, which will be described in section 5, is highly modular and
configurable. This allows programmers to extend it with the appropriate components in order
to accommodate the particular needs of a videogame. For instance, the introduction of more
sophisticated art assets and presentation requirements in a game can be readily accommodated
in a systematic way by customizing the <e-Game> engine with new presentation capabilities.

11

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

In addition, the newly added components can be reused both in the production of future
versions of the game and of other similar games.

4. The <e-Game> Language

The <e-Game> language allows game writers to describe graphical adventure game as a
document containing the game’s storyboard, and to mark this document up using easy-to-use
and easy-to-understand descriptive markup. Therefore, the game writer does not specify how
the characters move or how the lighting works, but what the actual content of the game is (i.e.
scenarios, items, conversations, etc.).

The <e-Game> language is an XML application (i.e. a markup language defined using
XML). XML is the de facto standard markup metalanguage recommended by the World Wide
Web Consortium [3]. Human readability for the defined markup languages is one of the key
XML design features, which makes XML especially well suited for our needs. In addition,
XML languages can also readily include mechanisms for identification and reference of
document elements, which will be very useful in the context of <e-Game> for modelling
scenes, characters and conversations separately and then linking them by using references.
Finally, XML also allows the description of the markup languages using declarative
grammatical formalisms [20, 28] such as DTDs (Document Type Definitions) [42] and XML
Schema [8]. It is important to note that XML is used here with an emphasis on its original use
as a document markup metalanguage, instead of its use as a storage format definition
language.

Although we have formulated <e-Game> in terms of an XML Schema in order to facilitate
language extensibility and evolution, for the sake of simplicity in this paper we will describe
the structure of the language using an XML DTD, since this formalism is less verbose and
more easily understood by most people.

In the following subsections, the different aspects of the language are detailed from a
technical point of view. The examples relate to the aforementioned educational game about
workplace safety regulations.

4.1. Top-level <e-Game> document

As described in the previous section, an <e-Game> document is structured as a sequence of
scenes and cutscenes, objects, the description of the player, characters and conversations,
which are marked up as an eGame element, as indicated in Fig 9.

 <!ELEMENT eGame (title?, story?, (scene | cutscene)+, object*,
 player, character*, conversation*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT story ANY>

Fig 9. <e-Game> DTD fragment defining the top-level structure for an <e-Game>

document

As indicated in Fig 9, an <e-Game> document also includes the game’s title (it must be
marked up as a title element), and a summary of the game’s story (marked up as a story
element). This kind of human-readable documentation will usually be ignored by the engine

12

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

described in section 5, although it will be very valuable for designers and developers during
the production and maintenance stages, since it is an integral part of the game’s storyboard.

4.2. Flags and Conditions

An unstructured plain game, where every door is always open, every character always says
the same things and every exit leads to the same place is too limiting. An absolute lack of
order could lead to incoherency and could make it difficult to perceive any progress in the
game. A graphical adventure requires a sense of narrative coherence in the succession of
events. We can achieve this by introducing a notion of state. Every action performed in the
game should be able to affect future actions. Some objects may be hidden until something
happens (e.g. the object appears only if the player has performed a given action), some exits
may be locked (e.g. you can’t use the elevator unless you have been instructed to do so and
received the key), and a character may offer a different conversation (e.g. the foreman does
not always give the same commands). The <e-Game> language allows a declarative
representation of the game’s state which is mainly based on boolean propositional variables
called flags. These variables can be used to describe the conditions that the player must have
previously achieved in order to be allowed to carry out an action in a game, such as to see an
object or activate an exit. When a flag holds, it is said to be active. Otherwise, it is said to be
inactive.

This can be conceptually modelled by allowing each interaction (with an object or
character) to activate a condition. Then, we can add preconditions to anything we want in the
form of a list of conditions that indicate which actions must have been performed. The state in
any given point of the game is determined by set of actions that have already been performed.

 <!ELEMENT condition (%basic-condition; | either)+>

<!ELEMENT active EMPTY>
<!ATTLIST active flag NMTOKEN #REQUIRED>
<!ELEMENT inactive EMPTY>
<!ATTLIST inactive flag NMTOKEN #REQUIRED>
<!ELEMENT either (%basic-condition;)+>
<!ENTITY % basic-condition "(active|inactive)">

 -0-

(a)

<condition>
 <active flag="FirstTaskInitiated"/>
 <either>
 <inactive flag="UsedSandSack1Container"/>
 <inactive flag="UsedSandSack2Container"/>
 </either>
</condition>

(b)

Fig 10. (a) DTD fragment for conditions; (b) an example of condition

In Fig 10a the markup used to describe conditions is formalized. Notice that conditions are
expressed as conjunctive normal forms on the flags. Indeed, atomic conditions are introduced
either with an active element (requiring a flag to be active) or with an inactive one
(requiring it to be inactive). The flags themselves are indicated using flag attributes. Clauses
(disjunctions of atoms) are expressed using either elements. In turn, conjunctions are
marked up as condition elements. As stated in section 6, we have realized that, in the
context of graphical adventure games, the use of conjunctive normal forms is more natural for
writers than the use of disjunctive ones (i.e. the presence of several groups of conditions
interpreted as different alternatives).

13

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

Fig 10b shows a meaningful condition in our case study. It is important to note that in spite
of the formal grounding of the condition system, the resulting markup is not far from how an
author would write conditions in a storyboard: “The worker can only use the lift if he has been
instructed to go to the third floor (FirstTaskInitiated) but hasn’t yet collected both sacks of
sand (one of the sacks can not have been dumped in the container yet)”.

4.3. Effects

<e-Game> also allows a declarative representation of the effects caused by the different
actions performed during the game. These effects are described using the markup formalized
in Fig 11a. In Fig 11b the use of this markup is exemplified in the case study. Lists of effects
are marked up as effects elements. Individual effects can be in turn of the following types:
• Activation of a flag. The most transcendent effect of an action is activating a flag (and thus

modifying the state of the game). This is noted as an activate element and the activated
condition is indicated with a flag attribute. Notice that in <e-Game> it is not possible to
deactivate flags, since it includes a monotonic notion of logical truth: once a proposition
becomes true, it will stay true forever. Intuitively, a flag represents an achievement, which
cannot be “unachieved”.

 <!ELEMENT effects ((activate|consume-object|speak-player|
 speak-char)*,trigger-cutscene?)>
<!ELEMENT activate EMPTY>
<!ATTLIST activate flag NMTOKEN #REQUIRED>
<!ELEMENT consume-object EMPTY>
<!ELEMENT speak-player (#PCDATA)>
<!ELEMENT speak-char (#PCDATA)>
<!ELEMENT trigger-cutscene EMPTY>
<!ATTLIST trigger-cutscene idTarget IDREF #REQUIRED>

 -0-

(a)

<effects>
 <speak-player>Aaaahhhhh!!!</speak-player>
 <activate flag="PlayerDamaged"/>
 <trigger-cutscene idTarget="Ambulance"/>
</effects>

(b)

Fig 11. (a) Markup for effects; (b) example of effects.

• Consumption of an object. Like most of the usual adventure games, games in <e-Game>
maintain an inventory of objects, which can be used in different ways. Some of these uses
(e.g. combining the object with another one in a specific way) can cause the consumption
of the used objects. This change is expressed using a consume-object element. The
object actually consumed will be determined by the context of the effect.

• Lines spoken by the characters. Some actions can cause the characters populating a scene
to say something. Lines said by the player’s avatar are marked up as speak-player
elements, while phrases said by characters are marked up as speak-char elements. In
this last case, the character that speaks the line is determined by the context.

• Triggering a cutscene. Some actions can cause the visualization of a cutscene illustrating
their consequences. This effect is described using a trigger-cutscene element. The
cutscene is referred to with an idTarget attribute. If there is a sequence of effects, this
type of effect must be the last one to appear, since when entering a cutscene, the action will
continue from that cutscene.

14

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

4.4. Resources

The presentation of the different elements (scenes, cutscenes, objects, player and
characters) involved in a game requires the location of external assets provided by the artists
(e.g. background bitmap, environmental music, hardness maps, etc). Therefore, for each
element to be presented it is possible to associate a set of resources containing references to
all the artworks required. The markup used in <e-Game> to refer to these assets is depicted in
Fig 12a. Each asset is referred to using an asset element. The type attribute allows the
identification of the asset’s type (e.g. a jpg image, an mp3 file, etc.), while uri is used to
locate the actual asset. Also, notice that a set of resources can be made conditional on an
appropriate condition. This allows authors to tailor the presentation of the elements to
different circumstances (e.g. a character that changes her clothes or a chest that appears open
or closed depending on the state of the game).

 <!ELEMENT resources (condition?, asset+)>

<!ATTLIST resources id ID #IMPLIED>
<!ELEMENT asset EMPTY>
<!ATTLIST asset type CDATA #REQUIRED uri CDATA #REQUIRED>

 -0-

(a)

<resources>
 <asset type="image/jpeg" uri="images/background1.jpg"/>
 <asset type="audio/mpeg" uri="sounds/working1.mp3"/>
</resources>

(b)

Fig 12. (a) Markup for the resources; (b) sample resources for a scene of the game.

In Fig 12b we illustrate the use of resources with a (very simplified) example where a
background image and an ambient sound for a scene are referred to.

<!ELEMENT scene (documentation?, resources*, exits, objects?,
 characters?)>
<!ATTLIST scene id ID #REQUIRED start (yes|no) "no">
<!ELEMENT documentation ANY>
<!ELEMENT exits (exit+)>
<!ELEMENT objects (object-ref+)>
<!ELEMENT characters (character-ref+)>

 -0-

(a)

<scene id="SiteAccess">
 <documentation>
Just after crossing the gate, José finds himself in an open space.
There is a small pre-fabricated barn apart from the building in
construction. ...
...
 </documentation>
 <resources> ... </resources>
 <exits> ... </exits>
 <objects> ... </objects>
 <characters> ... </characters>
</scene>

(b)

Fig 13. (a) Markup for the scenes; (b) simplified example of using the (a) markup for describing a scene.

4.5. Scenes

Scenes in <e-Game> are marked up with scene elements, using the structure formalized
in Fig 13a. According to this definition, each scene can contain the fragment of the storyboard

15

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

that describes its structure, context and other aspects concerning it (documentation
element). The scene also contains the list of alternative resources for its visualization, the
sequence of exits leading to other scenes or cutscenes (exits element), the objects
(objects element) and the characters (characters element) that may appear in the
scene. Notice that each element of type scene has associated an id attribute that identifies
the element within the document. This feature, which is also shared by the other top-level
elements, allows other elements to refer to it. In addition, it is possible to indicate that the
scene is the starting point of the game by using the attribute start. These markup
conventions are exemplified in Fig 13b, where the (simplified) top-level markup for a scene
in the case-study is depicted.

 <!ENTITY % position "x NMTOKEN #REQUIRED y NMTOKEN #REQUIRED">
<!ENTITY % rectangle "%position; width NMTOKEN #REQUIRED
 height NMTOKEN #REQUIRED">
<!ELEMENT exit (documentation?, next-scene+)>
<!ATTLIST exit %rectangle;>
<!ELEMENT next-scene (condition?, effects?)>
<!ATTLIST next-scene idTarget IDREF #REQUIRED
 xTarget NMTOKEN #IMPLIED
 yTarget NMTOKEN #IMPLIED>

Fig 14. Markup for the exits.

<!ELEMENT object-ref (documentation?,condition?)>
<!ATTLIST object-ref idTarget IDREF #REQUIRED %position;>

<!ELEMENT character-ref (documentation?,condition?)>
<!ATTLIST character-ref idTarget IDREF #REQUIRED %position;>

 -0-

(a)

<object-ref idTarget="Hole" x="45" y="50">
 <documentation>Hole:There is a big hole in the middle of the room.</documentation>
 <condition>
 <inactive flag="UsedFencesHole"/>
 </condition>
</object-ref>
...
<character-ref idTarget="Foreman" x="45" y="200">
 <documentation>The foreman is standing in front of the building.</documentation>
</character-ref>

(b)

Fig 15. (a) Markup for the references to the objects and the characters in a scene;
(b) example of use of the markup in (a).

In Fig 14 the markup for the description of each exit is formalized. Each exit is marked up
as an element of type exit. The exit is located in the scene with a bounding rectangle defined
by the x and y coordinates in its upper-left corner, its height and its width (this information is
encoded into the exit elements with attributes). In <e-Game> it is possible to make the place
where an exit leads conditional according to a condition formulated in the game’s state.
Therefore, and as indicated in Fig 14, an exit element also contains a sequence of possible
follow up scenes, each one marked up as a next-scene element. These elements can
contain the conditions that must hold, and the effects achieved by traversing the exits under
such conditions (in this context, such effects only contemplate the activation of flags). In turn,
the target of the exit, which must be a scene or a cutscene, is referred to using idTarget
attributes, and for scenes, the starting position for the player’s avatar in the target scenes is

16

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

referred with xTarget and yTarget attributes. The use of this markup is illustrated in Fig
6 with an exit leading to different scenes depending on the holding condition.

Finally, the markup for the objects and the characters that can appear in a scene are
characterized in Fig 15a. Again, it is important to take into account that such objects and
characters are not described at this point. Instead, they are described as top-level elements in
the <e-Game> document and they are referred to in the scenes using object-ref and
character-ref elements. The references are indicated using idTarget attributes.

In addition, it is important to note that the visibility of an object or character in a scene can
depend on a condition of the game’s state (element condition), as stated in Fig 15a.
Indeed, objects and characters will be visible only when their associated conditions hold.
Finally, the position of objects and characters in the scene are given using x,y attributes and
their role in the scene can be documented using a documentation element. The use of this
markup is exemplified in Fig 15b.

4.6. Cutscenes

Cutscenes are marked up as cutscene elements, as formalized in Fig 16a. The structure
of these elements is very simple. Indeed, the description of the cutscene can contain the
fragment of the storyboard describing it, a list of alternative sets of assets used to visualize it,
and a list with the next scenes that can be visited once the cutscene has been played. As with
scenes, it is possible to mark a cutscene up to identify it as the game’s starting point (start
attribute). In addition, when the cutscene does not have a practicable next scene in the current
state of the game, the game finishes. Fig 16b depicts the markup for a simple cutscene.

<!ELEMENT cutscene (documentation?,resources*,next-scene*)>
<!ATTLIST cutscene id ID #REQUIRED start (yes|no) "no">

 -0-
<cutscene id="LiftUp">
 <documentation>The lift is moving up</documentation>
 <resources>
 <asset type="video/mpeg" uri="video/liftup.mpg"/>
 </resources>
 <next-scene idTarget="ThirdFloor"/>
</cutscene>

(a)

(b)

Fig 16. (a) Markup for the cutscenes; (b) an example of cutscene.

4.7. Objects

Objects in an <e-Game> document are marked up as object elements, as stated in Fig
17a. Hence that <e-Game> discriminates between two different situations:
• There is a single object distinguished (e.g. a toolbox in the case study), which is identified

using an id attribute (Fig 17b).
• There is a collection of objects sharing the same features (e.g. in the case study we can find

two sacks of sand, which are identical from a descriptive point of view). In this case the
particular objects that share the description are enumerated using instance elements (Fig
17c).
As illustrated in Fig 17b and Fig 17c, the textual description of an object is marked up as a

description element. Authors must provide three kinds of descriptions: a name (name
element), a brief description (brief element), and a detailed one (detailed element).

17

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

<!ELEMENT object (documentation?,instance*,
 resources*,description,actions?)>
<!ATTLIST object id ID #IMPLIED>
<!ELEMENT instance EMPTY>
<!ATTLIST instance id ID #REQUIRED>
<!ELEMENT description (name,brief,detailed)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT brief (#PCDATA)>
<!ELEMENT detailed (#PCDATA)>

 -0- <object id="Toolbox">
 <documentation>...</documentation>
 <resources>...</resources>
 <description>
 <name>Toolbox</name>
 <brief>It is a standard toolbox.</brief>
 <detailed>Safety regulations demand that work tools are always stored
 properly. I should put here any tools I find around.</detailed>
</description>
 ...
</object>

 -0-

(a)

(b)

<object>
 <documentation>....</documentation>
 <instance id="SandSack1"/>
 <instance id="SandSack2"/>
 <resources>...</resources>
 <description>
 <name>Sand Sack</name>
 <brief>It is full of sand.</brief>
 <detailed>The sacks seem very heavy. I may be able to carry more than one
 with great effort, although safety regulations do not recommend it.</detailed>
 </description>
 ...
</object>

(c)

Fig 17. (a) Markup for the objects; (b) a single object; (c) a collection of objects sharing common descriptive
features.

In addition, objects in <e-Game> also include the set of actions that the player is allowed to
carry out with the object. Markup for actions is formalized in Fig 18a. Actions are enclosed in
an actions element and can be of the following types:
• The player can pick up the object. This action is marked up as a grab element (Fig 18b).

Objects without a grab action cannot be picked up.
• A player can combine the object with another one. This action is marked up as a
use-with element, and the object that can be combined with the current one is referred to
using an idTarget attribute (Fig 18c).

• The player can also give an item to a character. The corresponding action is marked up as a
give-to element. The character is referred to with an idTarget attribute (Fig 18d).
All these actions may include natural language documentation, as well as a condition and

effects. In the case of grab actions, the effects are constrained to the activation of flags,
triggering cutscenes or having the player speak a line of dialoge. In the case of use-with and
give-to actions, they can also include object consumption and lines spoken by the player or the
character affected.

18

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

<!ELEMENT actions (grab|use-with|give-to)+>
<!ELEMENT grab (documentation?,condition?, effects?)>
<!ELEMENT use-with (documentation?,condition?, effects?)>
<!ATTLIST use-with idTarget IDREF #REQUIRED>
<!ELEMENT give-to (documentation?,condition?, effects?)>
<!ATTLIST give-to idTarget IDREF #REQUIRED>

 -0-

(a)

(b)

(c)

(d)
<give-to idTarget="Foreman">
 <documentation>It can be given to the foreman, who asks José to go
 to the dressing room and put it in the toolbox.</documentation>
 <effects>
 <speak-char>Put that into the toolbox which is in the dressing
 room, please</speak-char>
 </effects>
</give-to>

<grab>
 <documentation>The hole must have been secured before grabbing
 the sacks.</documentation>
 <condition>
 <inactive flag="UsedFencesHole"/>
 </condition>
 <effects>
 <trigger-cutscene idTarget="Ambulance"/>
 </effects>
</grab>

 -0-
<use-with idTarget="Toolbox">
 <documentation>It can be used with the toolbox (Dressing room)</documentation>
 <effects>
 <activate flag="UsedCrowbarToolbox"/>
 </effects>
</use-with>

 -0-

Fig 18. (a) Markup for the actions involving an object; (b) example of a complex
grab action that triggers a cutscene; (c) example of a use with action; (d) example

of a give to action.

4.8. Characters and the Player

Characters are, to some extent, similar to objects, as reflected in Fig 19a. It is possible to
have either individual characters or collections of common characters. Descriptions of
characters are also analogous to those of objects. Nevertheless, while objects support actions,
characters support conversations that can be maintained with the player (conversations
element) as indicated in section 3. Each possible conversation is cross-referred using the
idTarget attribute of a conversation-ref element. In addition, authors are also
allowed to specify a condition that must hold before starting a conversation with a character (if
not specified, it is assumed to be true). Also notice that Fig 19a includes markup for the
player’s description (player element).

In Fig 19b an example of character is depicted. In this example the reference to a potential
conversation is also detailed, while the others are omitted for brevity.

19

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

 <!ELEMENT character (documentation?,instance*,resources*,
 description,conversations?)>
<!ELEMENT player (documentation?,resources*, description)>
<!ATTLIST character id ID #IMPLIED>
<!ELEMENT conversations (conversation-ref+)>
<!ELEMENT conversation-ref (documentation?,condition?)>
<!ATTLIST conversation-ref idTarget IDREF #REQUIRED>

 -0-

(a)

<character id="Foreman">
 <documentation>The foreman is well into his forties. He always smiles and
 treats his employees fairly, although he usually gets angry at the sight of any
 breach of safety regulations due to a past bad experience that he
 never talks about.</documentation>
 <description>
 <name>Foreman</name>
 <brief>A friendly man with occasional bursts of anger.</brief>
 <detailed>He is the foreman at this construction site. I think I’d better
 not make him angry, cause my work depends on his reports.</detailed>
 </description>
 <conversations>
 <conversation-ref idTarget="greeting">
 <documentation> The first time he speaks, he greets José and welcomes
 him. He advises José on clothing regulations and suggests he
 go to the dressing room.</documentation>
 <condition>
 <inactive flag="SpeakGreeting"/>
 </condition>
 </conversation-ref>
 ...
 </conversations>
</character>

(b)

Fig 19. (a) Markup for the characters; (b) an example (the foreman).

4.9. Conversations

<e-Game> contemplates tree-like conversations between characters and the player, whose
structure is characterized in Fig 20a. Fig 20b depicts the markup for part of the conversation
shown in Fig 5. According to this markup:

• A conversation always starts with a dialogue between the character and the player’s avatar.
This dialogue is characterized as a talk initiated by the character (speak-char element),
and continued by either the character (speak-char element) or the player’s avatar
(speak-player element).

• The dialogue finishes when a list of options is offered to the (human) player (response
element), or when the conversation itself is finished (end-conversation element,
which also encloses the effects achieved by the conversation).

• Each option is in turn characterized by the option itself (marked with an speak-player
element), followed by another dialogue that could lead to another response (thus leading to
the previously mentioned tree-like structure), end the conversation, or go back to the
previous set of responses (go-back element).

20

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

<conversation id="CompleteSecondTask">
 <speak-char>Well José, did you measure the scaffold?</speak-char>
 <response>
 <option>
 <speak-player>No sir, not yet</speak-player>
 <speak-char>And what are you waiting for, boy?</speak-char>
 <speak-player>At once, sir</speak-player>
 <end-conversation/>
 </option>
 <option>
 <speak-player>Yes sir, it's ready</speak-player>
 <speak-char>And...</speak-char>
 <response>
 <option>
 <speak-player>It's rather tall, sir</speak-player>
 <speak-char>That is not a reasonable measure!</speak-char>
 <speak-char>I need precise data</speak-char>
 <go-back/>
 </option> (...)

<!ELEMENT conversation (%dialogue;, %continuation;)>
<!ATTLIST conversation id ID #REQUIRED>
<!ENTITY % dialogue "(speak-char,(speak-char|speak-player)*)">
<!ENTITY % continuation "(response|end-conversation)">
<!ELEMENT response (option)+>
<!ELEMENT option (speak-player,%dialogue;,(%continuation;|go-back))>
<!ELEMENT go-back EMPTY>
<!ELEMENT end-conversation (effects?)>

 -0-

(a)

(b)

Fig 20. (a) Markup for the conversations; (b) part of a conversation.

5. The <e-Game> Engine

<e-Game> documents and the art assets can feed an <e-Game> engine in order to execute
the documented videogames. The core of this engine is based on the addition of suitable
operational semantics to the <e-Game> language described in the previous section. This
operational semantics is detailed in subsection 5.1. In addition, the engine has a highly
modular architecture in order to facilitate its adaptation to many different application contexts
and to accommodate future evolutions of the <e-Game> language. This architecture is briefly
outlined in subsection 5.2.

5.1. An Operational Semantics for the <e-Game> language

Given that <e-Game> is a descriptive markup language for adventure game storyboards,
<e-Game> documents can be used for many different purposes (like producing well formatted
XHTML documents using an XSL Transformation [4]). Nevertheless, the more relevant use of
these documents is to produce running games by automatically processing these documents
with the <e-Game> engine. This use relies in turn on the addition of well-defined operational
semantics for the <e-Game> language. The formal specification of these semantics will be a
very useful guide for developers who build and maintain the <e-Game> engine. Therefore, the
primary goal of this specification is to provide a strong, unambiguous and implementation-
independent description of the dynamic behaviour of <e-Game>, which is a key aspect for a
successful language design and implementation process [23]. Besides, regardless of its formal
flavour, the specified semantics are based on the usual interactions and system behaviours
found in the genre of graphical adventure games, instead of on sophisticated or abstract

21

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

mathematical concepts. This makes the language easy to use for authors, who will usually
have enough intuitive knowledge about these interactions and behaviours.

o n

;;...;;
;;..;;

o kΦ Φ
Ψ Ψ

Fig 21. Structure of the inference rules. Each Fi in the premise and Yj in the
conclusion are expressions in a suitable formal language.

The description of the <e-Game>’s operational semantics follows the style of the structural
approach to the specification of the operational semantics of artificial programming languages
[16, 27, 30]. This approach leads to reasonably understandable specifications, which can also
be easily prototyped in order to check the adequacy of the subsequent implementation with
very little additional effort [5]. According to the approach, the operational semantics of a
language is characterized by modelling the behaviour of an abstract machine that executes this
language as a formal calculus made up of inference rules like those depicted in Fig 21. The
reading of such rules is the usual one: when all the elements in the premise hold, the elements
in the conclusion hold. Empty premises can be omitted, and the resulting rules are used to
introduce axioms into the calculus. Most of the interesting calculi will usually consist of an
infinite number of inference rules. In order to give a finite characterization, a finite number of
rule patterns can be provided instead by using syntactic variables. We will use a cursive font
to denote syntactic variables in our specification. In addition, this specification will mainly
adopt a small-step specification style, since we are interested in the rigorous modelling of the
basic state transitions of the <e-Game> engine. Nevertheless, we will also give a big-step
characterization of the overall behaviour of the engine by taking, as usual, the transitive
closure of the transition relation in the small-step one. In our formalization we will be use the
following notations:

,

p

p v
v
ρ

ρ
〈 〉∈

=
¢

¢

() { } { }: ', ' | ', ' ' ,p v p v p v p p p vρ ρ= = 〈 〉 〈 〉∈ ∧ ≠ ∪ 〈 〉¢

Fig 22. Consulting and updating the values in set of property-value pairs.

• ¢F for denoting a set-theoretical formula F that must hold. In our formalization, we will
freely make use of typical first-order logic and set theoretical constructs and operations,
and therefore it will be assumed that the <e-Game> semantics will be built upon an
appropriate axiomatization for such constructs (see, for instance, [19]). On the contrary, we
only define the set-related notations specifically introduced for the <e-Game> semantics.
This is the case of the sets of property – value pairs that will be used for several purposes in
the semantics, in order to facilitate the modular evolution of the specification without the
need to resort to more sophisticated formalisms with built-in modularity facilities, like [26].
In Fig 22 we provide consulting and updating facilities for managing these sets. With rp
we will denote the value of property p in set r. With rp := v we will denote the set that
results from substituting the value of p in r by v.

• so Ø s1 for denoting a basic (small-step) state transition.

22

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

• so Ø+ s1 for denoting that the state s1 can be reached from the state so with a sequence of
one or more basic state transitions (i.e. for denoting a big-step state transition).
In the following sections we describe this <e-Game>’s operational semantics. We will start

by designing a suitable formal representation for the computation states of a very high-level
and abstract intended view of the <e-Game> engine. Then we will formalize the <e-Game>’s
semantics rules.

5.1.1. Computation states
In Fig 23 a very high-level view of the <e-Game> engine is informally outlined.

According to this view, the engine is made up of a core and a user interface, which are
connected using two streams: input and output. The user interface collects the user’s inputs
and puts them in the input stream. The core in turn encodes the operational behaviour of the
engine, and therefore is able to process the inputs to write presentation commands in the
output stream according to the description in the <e-Game> document taken as input. These
commands are in turn interpreted by the user interface in order to produce suitable
presentations.

User
InterfaceCore

input

output

<e-Game>
Document

Art assets

Fig 23. A very high-level view of the <e-Game> engine.

Therefore, the computation states for this engine will include a suitable abstract
representation of the e-game document (which will be maintained invariable during the entire
execution), the internal game’s state maintained by the game’s core, the control state of this
core, and the state of the input and the output streams. Notice that the user interface will be
actually abstracted in terms of the user’s inputs and the presentation commands read and
written in such streams. Therefore, the computation state will be formally represented by
5-tuples < q,G,σ ,in,out> where:
• G is an abstract representation of the game that is being played. This representation is a set

of information items containing all the data about the <e-Game> document required to
execute the game. For the purpose of formalization these items will be represented as
ordered tuples, and they will include tuples of (but not necessarily restricted to) the types
described in Fig 24. Notice that this representation, which is specially tailored to the
formalization described in this section, can be readily generated for each <e-Game>
document as a domain-specific infoset [7] for such a document. For simplicity, we omit the
formalization of the translation process. Also, notice that the representation can include

23

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

additional information that, like the assets associated with the different elements, could be
required for the user interface in order to interpret the presentation commands correctly. In
these items, conditions are further represented as ordered pairs <f+,f->, where f+ is the set
of flags that must be active, and f- the set of those that must be inactive. Rules in Fig 25
introduce shortcuts for accessing these two components. In turn, effects are represented as a
list of tuples representing the individual effects. In this representation, the first element
identifies the effect’s type, and the other elements represent the effect’s arguments (e.g.
<activate,f> for activating the flag f). Lists themselves will be represented either by <> (in
case of the empty list) or by <e,l> (in case of a list with head e and with rest l). Finally,
conversations will be represented as lists of tuples representing the basic conversation
steps. Option lists in the conversation will be represented as lists of pairs of the form
<m,conv>, where m is the message to be said by the player, and conv is the conversation
that follows.

Information item Intended meaning Information item Intended meaning

<scene,s> s is a scene. <cutscene,cs> cs is a cutscene.

<next-scene,cs,ns,c,es> If condition c holds, once the
cutscene cs is finished, it is
possible to enter ns and get es
as effects.

<grab,o,c,es> If condition c holds, object o
can be grabbed. The effect is
the achievement of es.

<next-scene,s,i,ns,c,es> If condition c holds, it is
possible to go from scene s to
ns by traversing the exit
number i and to achieve es as
effects.

<use-with,os, ot ,c,es> Object os can be combined
with object ot provided that
condition c holds. Then the
effects es are achieved.

<object,s,o,c> Object o is visible in the
scene s provided that c holds.

<give-to,o, ch ,c,es> Object o can be given to
character ch when condition
c holds. Then effects es are
achieved.

<character,s,ch,c> Character ch is visible in
scene s provided that c holds.

<conversation,ch,conv,c> The conversation conv can
be maintained with character
ch when condition c holds.

<start,s> Scene or cutscene s is the
starting point.

Fig 24. Information items in the abstract representation of the game relevant for
the operational semantics.

+

, _
F ()
c fs

c fs
= 〈 〉

=
¢

¢

-

_,
F ()
c fs

c fs
= 〈 〉

=
¢

¢

Fig 25. Shortcuts for accessing the components of a condition. With _ we will
denote an anonymous unique syntactic variable.

• q is the control state of the engine’s core. This state is used to decide how the execution is
to proceed. It is represented as a set of property – value pairs. In Fig 26 we characterize
the types of control states to be used in the semantics. Ctrl-enter(s) indicates that the player

24

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

is entering the scene or cutscene s, while ctrl-in(s) indicates that he/she is actually in s.
Ctrl-app-effects(es, q’) indicates that effects es must be applied, and, if the application is
completed, control state q’ must be used in continuation. Ctrl-use-with (o,es, q’) indicates
an object as an additional context for the application of such effects, and
ctrl-give-to(o,ch,es, q’) indicates an object and a character as such an additional context.
Ctrl-talking(s,ch,conv) indicates that the conversation conv is being carried out with
character ch in scene s. Ctrl-goto-choosing(q’, os) changes such a state to let the player
choose an option, while ctrl-goto-talking(q’, conv) changes the choosing state to the talking
one and sets the conversation associated with the option chosen. Finally, ctrl-game-over is
the state associated with the end of the game. In Fig 27 a set of rules for discriminating
between these control states and accessing some of their relevant properties are introduced.

 { }ctrl-enter() = ctrl,enter , scene,s s〈 〉 〈 〉¢

 { }ctrl-in() ctrl,in , scene,s s= 〈 〉 〈 〉¢

 { }ctrl-app-effects(,) ctrl,app-effects , effects, , next-ctrl,es esθ θ= 〈 〉 〈 〉 〈 〉¢

 { }ctrl-use-with(, ,) ctrl-app-effects(,) obj,o es es oθ θ= ∪ 〈 〉¢

 { }ctrl-give-to(, , ,) ctrl-app-effects(,) obj, , char,o ch es es o chθ θ= ∪ 〈 〉 〈 〉¢

 { }ctrl-talking(, ,) ctrl,talking , scene, , char, , conv,s ch conv s ch conv= 〈 〉 〈 〉 〈 〉 〈 〉¢

ctrl optionsctrl-goto-choosing(,) (: choosing) :θ θ= = =os os¢

ctrl convctrl-goto-talking(,) (: talking) :θ θ= = =conv conv ¢

 { }ctrl-game-over= ctrl,game-over〈 〉¢

Fig 26. Characterization of the control states of the engine’s core.

 ctrl scene=enter ;; =
is-enter(,)

s
s

θ θ
θ

¢ ¢

¢

ctrl scenein ;;
is-in(,)

s
s

θ θ
θ

= =¢ ¢

¢

 ctrl effectsapp-effects ;;
is-app-effects(,)

es
es

θ θ
θ

= =¢ ¢

¢

ctrl convtalking ;;
is-talking(,)

conv
conv

θ θ
θ

= =¢ ¢

¢

ctrl options choosing ;;
is-choosing(,)

os
os

θ θ
θ

= =¢ ¢

¢

Fig 27. Shortcuts for discriminating between control states and accessing some of
their properties.

• σ represents the game state. As with the control state, it will be represented as a set of
property – value pairs. In the semantics presented in this paper, this state includes two

25

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

properties: the set of active flags (flags) and the set of objects in the inventory (inv). The
game’s initial state is characterized in Fig 28. Rules in Fig 29 introduce a notation for
testing when a condition c holds in a game state σ’ –holds(c,σ’); when an object or a
character e is in a scene s of the game G provided the game state σ’ –is-in-scene(G,σ’,s,e);
when an object o is visible in such conditions, either by being in the scene or being in the
inventory –is-visible(G,σ’,s,o); and when a cutscene cs triggers the end of the game G
given the state σ’ –is-game-over(cs, σ’,G).

{ }gs-init = flags, , inv,〈 ∅〉 〈 ∅〉¢

Fig 28. The game’s initial state.

+ -
flags flagsF () ;; F () =
holds(,)

c c
c

σ σ
σ

⊆ ∩ ∅¢ ¢

¢

object, , , character, , , ;; holds(,)
is-in-scene(, , , e)

s e c G s e c G c
G s

σ
σ

〈 〉∈ ∨ 〈 〉∈¢ ¢

¢

invis-in-scene(, , ,)
is-visible(, , ,)

G s o o
G s o

σ σ
σ

∨ ∈¢

¢

cutscene, ;; ns,c,es(next-scene, , ns,c,es holds(c,))
is-game-over(, ,)

cs G cs G
cs G

σ
σ

〈 〉∈ 〈 〉∈ ∧¢ ¢ ±

¢

Fig 29. Some rules for dealing with the game’s state.

User’s input Intended meaning User’s input Intended meaning

<go,e> Go to the exit e in the current scene. <give-to,o,ch> Give object o stored in the inventory to
character ch.

<inspect,e,l> Inspect element e (object or
character) in the current scene with a
detail level l (brief or detailed).

<talk-to,ch> Initiate a conversation with character
ch.

<grab,o> Grab object o in the current scene. <select,o> Continue the current conversation
from option o.

<use-with,os,ot> Combine object os in the inventory
with object ot, in the current scene.

Fig 30. Encoding of the user’s inputs.

• in is the input stream. This stream will be represented as a list. In this case this list will
contain the user’s actions, which will be represented as tuples of the types shown in Fig
30.

• out is the output stream. It will contain the presentation’s commands represented as tuples,
whose intended meaning will be clear from the context of use (e.g. <do-inspect,o,l> will be
the presentation command associated with the inspection of object o with a level of detail
l). The stream itself will be represented using <> for the empty stream, and pairs of the
form <s,e> for the result of appending element e to stream s.

26

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

5.1.2. Semantic rules
In Fig 31 the rules characterizing the state transitions caused by the application of effects

are shown:
• Rule end-apply-effects deals with an empty list of effects. In this case, the control state

indicated as a continuation is established as a new control state.
• The other rules address the application of the different types of effects. The activate-flag

rule adds the activated flag to the set of active flags in the game’s state. The speak-player1
and speak-char1 rules write suitable presentation commands in the output to force the
player’s avatar or the character to speak. The consume-obj rule extracts the current object
from the inventory (this object will be the value of the obj property). Finally, the trigger-cs
rule causes the indicated cutscene to be entered by setting a suitable control state. Notice
that all the rules except this last one imply the application of the rest of the effects. On the
contrary, trigger-cs interrupts the application of the list of effects (regardless of the fact that
the corresponding effect should be the last on such a list), discards the continuation state,
and forces a control state leading to the triggering of the cutscene.
Rules in Fig 32 formalize the walk through the scenes and the cutscenes:

• Rule entering establishes what happens when a scene or cutscene is entered: a presentation
command for playing it is written in the output.

• The logic for abandoning a cutscene is mirrored in rules leaving-cs and game-over. In
leaving-cs a suitable next scene is discovered, whose condition is active and therefore the
referred destination can be entered. In turn game-over deals with the case where such a next
exit is not found. In this case the game finishes.

• The logic for abandoning scenes is in turn reflected in leaving-s, which is almost identical
to leaving-cs with the exception of the user being the one who chooses the exit where
he/she wants to go.

next-ctrl

is-app-effects(,)
, , , , , , , ,G in out G in out

θ
θ σ θ σ

〈〉
〈 〉 → 〈 〉

¢ end-apply-effects

{ }effects flags flags

is-app-effects(, activate-flag, ,)
, , , , := , , : = , , , do-activate-flag,

f es
G in out es G f in out f

θ
θ σ θ σ σ

〈〈 〉 〉
〈 〉 → 〈 ∪ 〈 〈 〉〉〉

¢ activate-flag

effects

is-app-effects(, speak-player, ,)
, , , , : , , , , , do-speak-player,

m es
G in out es G in out m

θ
θ σ θ σ

〈〈 〉 〉
〈 〉 → 〈 = 〈 〈 〉〉〉

¢ speak-player1

effects char

is-app-effects(, speak-char, ,)
, , , , : , , , , , do-speak-char, ,

m es
G in out es G in out m

θ
θ σ θ σ θ

〈〈 〉 〉
〈 〉 → 〈 = 〈 〈 〉〉〉

¢ speak-char1

{ }effects inv obj obj

is-app-effects(, consume-object,)
, , , , : , , : , , , do-consume-object,inv

es
G in out es G in out

θ
θ σ θ σ σ θ θ

〈 〉
〈 〉 → 〈 = = − 〈 〈 〉〉〉

¢ consume-obj

is-app-effects(, trigger-cs, , _)
, , , , ctrl-enter(), , , , , do-trigger-cs,

cs
G in out cs G in out cs

θ
θ σ σ

〈〈 〉 〉
〈 〉 → 〈 〈 〈 〉〉〉

¢ trigger-cs

Fig 31. Application of the effects.

27

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

is-enter(,)
, , , , ctrl-in(), , , , , do-enter,

s
G in out s G in out s

θ
θ σ σ〈 〉 → 〈 〈 〈 〉〉〉

¢ entering

is-in(,) ;; cutscene, ;; next-scene, , , , ;; holds(,)
, ,σ, , ctrl-app-effects(,ctrl-enter()), ,σ, , ,do-leaving

cs cs G cs ns c es G c
G in out es ns G in out
θ σ

θ
〈 〉∈ 〈 〉∈

〈 〉 → 〈 〈 〉〉
¢ ¢ ¢ ¢ leaving-cs

is-in(,) ;; is-game-over(, ,)
, ,σ, , ctrl-game-over, ,σ, , ,do-finish

θ σ
θ〈 〉 → 〈 〈 〉〉

cs cs G
G in out G in out

¢ ¢ game-over

is-in(,) ;; scene, ;; next-scene, , , , , ;; holds(,)
, ,σ, go, , , ctrl-app-effects(,ctrl-enter()), ,σ , , , do-leaving,

s s G s e ns c es G c
G e in out es ns G in out e

θ σ
θ

〈 〉∈ 〈 〉∈
〈 〈〈 〉 〉 〉 → 〈 〈 〈 〉〉〉

¢ ¢ ¢ ¢ leaving-s

Fig 32. Entering and leaving scenes and cutscenes, and finishing the game.

The inspection of objects and characters is formalized in Fig 33 with the rule inspect.
Notice that only the visible elements (including the objects in the inventory) can be inspected.

is-in(,) ;; is-visible(, , ,)

, , , inspect, , , , , ,σ, , , do-inspect, ,
s G s e

G e l in out G in out e l
θ σ

θ σ θ〈 〈〈 〉 〉 〉 → 〈 〈 〈 〉〉〉
¢ ¢ inspect

Fig 33. Inspecting objects and characters.

The different actions applicable to objects (grabbing them, combining them with other
objects, and donating them to other characters) are formalized in Fig 34:
• Grabbing an object is supported by the grabbing rule. For an object to be grabbed it must

be in the scene, grabbing it must be permitted, and the user must want to grab it. The object
is added to the inventory, and the corresponding effects are applied.

{ }inv inv

is-in(,) ;; is-in-scene(, , ,) ;; grab, , , ;; holds(,)
, , , grab, , , ctrl-app-effects(,), , : , , , do-grab,

s G s o o c es G c
G o in out es G o in out o

θ σ σ
θ σ θ σ σ

〈 〉∈
〈 〈〈 〉 〉 〉 →〈 = ∪ 〈 〈 〉〉〉

¢ ¢ ¢ ¢

grabbing

is-in(,) ;; use-with, , , , ;; ;; is-in-scene(, , ,) ;; holds(,)
, , , use-with, , , , ctrl-use-with(, ,), , , , , do-comb, ,

s t s inv t

s t s s t

s o o c es G o G s o c
G o o in out o es G in out o o
θ σ σ σ

θ σ θ σ
〈 〉∈ ∈

〈 〈〈 〉 〉 〉 → 〈 〈 〈 〉〉〉
¢ ¢ ¢ ¢ combining

is-in(,) ;; give-to, , , , ;; ;; is-in-scene(, , ,) ;; holds(,)
, , , give-to, , , , ctrl-give-to(, , ,), , , , , do-give-to, ,

invs o ch c es G o G s ch c
G o ch in out o ch es G in out o ch

θ σ σ σ
θ σ θ σ

〈 〉∈ ∈
〈 〈〈 〉 〉 〉 → 〈 〈 〈 〉〉〉
¢ ¢ ¢ ¢ giving

Fig 34. Using the objects.

• The combination of objects is addressed in the combining rule. The source object must be
in the inventory, the target object must be in the scene, the combination must be allowed by
the game description, it must be feasible in the current state, and the user must trigger such
a combination. The result is the application of the effects induced by the action.

• Finally, the donation of an object to a character is contemplated by the giving rule. The
object donated must be in the inventory, the character must be in the scene, the donation
must be contemplated in the game description, and it also must be viable in the current state
and desired by the user. As a result the donation is carried out by executing the
corresponding effects.
The characterization of the operational semantics of the conversations with the characters is

addressed by the rules in Fig 35:

28

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

• The init-conv rule characterizes the beginning of a conversation: the character is in the
current scene, is able to maintain a conversation in the current game state, and the user
initiates such a conversation. Then the control state is properly established to proceed with
the conversation.

• Dialogue that proceeds automatically between the characters and the player’s avatar is
managed by the speak-player2 and the speak-char2 rules. These rules reflect the writing of
the corresponding presentation commands in the output.

• Interaction with the user in order to let him/her choose an option is addressed by the
choosing1 and choosing2 rules. The first rule deals with the presentation of a list of options
during the course of the conversation. Notice that the option list itself is stored in the
control state in order to backtrack to it if needed. The second rule deals with the actual
selection of an option and the conversation continues by the branch attached to that option.

• Backtracking to the nearest option list is actually addressed by the going-back rule.
• Finally, the ending-conv rule deals with the end of the conversation and applies the

corresponding effects.

is-in(,) ;; is-in-scene(, , ,) ;; conversation, , , ;; holds(,)
, , , talk-to, , , ctrl-talking(, ,), , , , , do-talk-to,

θ σ σ
θ σ σ

〈 〉∈
〈 〈〈 〉 〉 〉 → 〈 〈 〈 〉〉〉

s G s ch ch conv c G c
G ch in out s ch conv G in out ch

¢ ¢ ¢ ¢ init-conv

conv

is-talking(, speak-player, ,)
, , , , : , , , , , do-speak-player,

m conv
G in out conv G in out m

θ
θ σ θ σ

〈〈 〉 〉
〈 〉 → 〈 = 〈 〈 〉〉〉

¢ speak-player2

conv char

is-talking(, speak-char, ,)
, , , , : , , , , , do-speak-char, ,

m conv
G in out conv G in out m

θ
θ σ θ σ θ

〈〈 〉 〉
〈 〉 → 〈 = 〈 〈 〉〉〉

¢ speak-char2

is-talking(, options, ,)
, , , , ctrl-goto-choosing(,), , , , , do-choosing,

os
G in out os G in out os

θ
θ σ θ σ

〈〈 〉 〈〉〉
〈 〉 → 〈 〈 〈 〉〉〉

¢ choosing1

is-choosing(,) ;; ,
, , , select, , , ctrl-goto-talking(,), , , , , do-choosen,

os o conv os
G o in out conv G in out o

θ
θ σ θ σ

〈 〉∈
〈 〈〈 〉 〉 〉 → 〈 〈 〈 〉〉〉

¢ ¢ choosing2

ctrl options

is-talking(, go-back,)
, , , , : choosing, , , , , do-going-back,

θ
θ σ θ σ θ

〈 〈〉〉
〈 〉 → 〈 = 〈 〈 〉〉〉G in out G in out

¢ going-back

scene

is-talking(, end-conversation, ,)
, , , , ctrl-app-effects(,ctrl-in()), , , , ,do-end-conv

es
G in out es G in out

θ
θ σ θ σ

〈〈 〉 〈〉〉
〈 〉 → 〈 〈 〉〉

¢ ending-conv

Fig 35. Talking.

Finally,the big-step rules in Fig 36 deal with the behavior of the engine itself. Rule playing
takes the transitive closure of the state transition relation. In turn, rule play models the
complete behavior, starting at an initial state and ending at a final one.

As a final remark, notice that a game can exhibit several sources of non-determinism, as
revealed by this formal specification of the semantics (e.g. an exit can be practicable in several
ways, a character is able to maintain several conversations, combining two objects or giving
one to a character can have several associated effects, etc.). Practical implementation will deal
with a non-deterministic situation by randomly choosing one of the possible outcomes. These

29

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

situations could be considered as a flaw in a fixed storyboard. However, they should not be
considered a design flaw in the <e-Game> language. Although in the current implementation
the engine issues a warning whenever these situations are detected, authors may want to
innovate and explore this kind of non-deterministic behavior.

1 1 2

2

 ;; o

o

s s s s
s s

+

+

→ →
→

 playing

ctrlstart, ;; ctrl-enter(), ,gs-init, , , , , , ;; game-over
, , , , ,

s G s G in G out
G in G out

θ σ θ
θ σ

+

+

〈 〉 ∈ 〈 〈〉〉 → 〈 〈〉 〉 =
〈 〉 → 〈 〈〉 〉

¢ ¢ play

 Fig 36. Playing the game.

5.2. Implementation details

The architecture of the <e-Game> engine is depicted in Fig 37. This architecture is a
refinement of the high-level view of Fig 23 and its design has been driven by the operational
semantics described above. According to this architecture, the engine includes the following
elements:
• A tree builder. This artefact is based on a standard DOM parser [2], and it builds a tree

representation of the <e-Game> document.
• A component repository. This repository contains a set of game components, which can be

adequately selected and assembled to create the final videogame. There are two kinds of
game components: core rules, which roughly correspond to the small-step rules of the
<e-Game> operational semantics, and GUI components, which implement interaction and
presentation services for supporting the final presentation layer of the videogame. These
components follow a common component model, which is an evolution of the model
described in [37].

• The core and user interface were presented in the previous subsection. The engine core can
be customized with an appropriate set of core rules, and it includes a core driver that
implements the selection and application strategies for such rules. The behaviour of this
driver roughly corresponds with that modelled by the big-step rules of the semantics,
enriched with randomized conflict resolution. In turn, the user interface is customized with
a suitable collection of GUI components, and its behaviour is controlled by a pre-
established GUI shell.

• A game generator. This artifact processes the document, selects the appropriate game
components, and registers them in the core and user interface of the engine. The game
generator is architected according to the model for the incremental construction of
processors for domain-specific markup languages described in [39]. Therefore, it contains a
general-purpose tree processor and a set of operationalizers that are used to assign a set of
semantic attributes and an evaluator to each node of the document tree. In turn, the
evaluators will be responsible for computing these values for the semantic attributes
associated with their nodes.

30

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

<e-Game>
Document

Tree
Builder

Game
Generator

Operationalizers

Tree
Processor

Component Repository
GUI
Components

Core Rules

Core

Core
driver

Rules

input

output

User
Interface

GUI
Shell

Components

Art assets

Fig 37. Architecture of the <e-Game> engine.

This architecture is modular enough to accommodate evolutions in the <e-Game>
language, as we realised at earlier design stages of this language. Indeed, these evolutions are
confronted by extending the game generator with new operationalizers, with the modification
and/or adaptation of existing ones, with the addition of new game components to the
component repository, and with the extension and/or replacement of existing ones. In addition,
the predefined components are simple enough to be extended, modified, or even replaced if
required.

6. Qualitative Evaluation of the Approach’s Usability

In order to assess the usability of the documental approach and <e-Game> we have
collected feedback from two different application scenarios:
• The first evaluation consisted of the implementation of the case study about safety

regulations discussed in the present paper. Three informal volunteer writers independently

31

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

followed the steps suggested and reported the difficulties found at each step. An artist
provided a single set of assets to be used by the three authors. The writers had been
previously exposed to the <e-Game> syntax and had some working experience using XML
technologies. They had also played several graphical adventure games and were
familiarized with the genre. On the other hand, they had not been exposed to the
operational semantics of the language or to any details of the engine. This is relatively close
to the average expected user of <e-Game>, although previous XML experience should not
be a requisite.

• The second experience describes a more challenging scenario, carried out in collaboration
with the Spanish National Center of Information and Educative Communication (CNICE,
an office of the Spanish Ministry of Science and Education). CNICE contains Spain’s
largest repository of educational computer assisted material written in Spanish including
interactive videogames to support K-12 education. The experience consisted in reusing the
instructional design and the art assets of the videogames corresponding to a History of
Music course provided by the CNICE. Those games were not adventure games strictly
speaking, which added the challenge of having to write an entirely new story adapted to the
needs of the genre. Thus, a repurposed and redesigned version of those games was made
using the <e-Game> project with promising results.
The reports presented by the writers and the artists during these experiences highlighted

some caveats of the process and provide interesting ideas for future development:
• The storyboard authoring guidelines were accepted as quite a natural way to write an

adventure game, although putting the descriptions of the objects, characters and
conversations apart felt a bit strange at first. When queried about whether the size of the
definition of a scene would be manageable if they included the full definitions of
characters, including complete conversations, the methodology was accepted as reasonable.

• In the repurposing experience, several authors reported that fixed tree-like conversations
were excessively limiting when compared to current adventure game standards. The
complex conversation system of Star Wars: Knights of the Old Republic21 was suggested as
an ideal.

• The condition system, which is one the most delicate design choices in <e-Game>, did not
cause special problems. The results suggest that its use is intuitive while being powerful
enough to cover most of the usual situations in typical graphical adventures. We contrasted
with authors that the use of conjunctive normal forms for expressing conditions was more
natural in this context than the pattern-matching intuition behind disjunctive normal forms.

• Authors who attempted to mark up long conversations directly using XML syntax reported
the experience as unmanageable. On the other hand, marking directly on top of the
simplified structure of the storyboard in a systematic way proved to be an effective method
to mark up relatively long conversations. Given their smaller size, the short conversations
from the case study did not cause similar problems and proved to be manageable.

• The authors complained about the lack of an easy-to-use mechanism to adjust the
coordinates for the positioning of objects, characters and exits. Currently, the mechanism is
purely manual and trial and error approaches are enormously time consuming, thus proving
the necessity for artists to collaborate during this stage.

21http://www.lucasarts.com/products/swkotor/ : It must be noted that Knights of the Old Republic is not an adventure

game, but a Role-Playing Game in which the player character has specific attributes. Its conversation system
includes options and outcomes dependant on the characteristics of the player character.

32

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

• For the artist, cutscenes done manually were challenging both in effort and in technological
knowledge (the used setting of the engine was able to reproduce only MPEG videos, and
authoring and coding MPEG assets is not an easy task without a technical background).
However, the main result of our experiences was realizing that writers could easily learn

and dominate the operational and presentational aspects of the language to the point of
maintaining <e-Game> documents on their own. When they reach the adequate level of
proficiency, they can proceed with little support from the other participants.

7. Conclusions and future work

In this paper, we have presented a documental approach to the development of graphical
adventure videogames that provides a rational collaboration framework between writers,
artists and computer technicians. This approach has been implemented in the <e-Game>
project, by defining the <e-Game> language and building the <e-Game> engine.

The <e-Game> language has been designed to mark up the storyboards for a very specific
videogame genre. On the one hand, this narrowing of the genre increases the simplicity and
the usability of the language. On the other hand, it sacrifices flexibility, and it is not possible
to develop videogames outside this genre using <e-Game>. Nevertheless, as indicated in [25],
it would be possible to provide languages and engines to support other types of games, as long
as they can be meaningfully described using marked up documents. Hence the documental
approach promotes the definition of domain-specific languages for each domain and, the more
precise the domain, the simpler the authoring process can be.

We have also detected some issues in the approach during our experience with <e-Game>.
Our work in the near future will be oriented to tackle these issues. On the one hand, we have
realized that there is an extensive use of XML (usually an error-prone task), and working with
coordinates is not comfortable for writers. Such conflictive tasks may benefit from a different
authoring approach in which the author is provided with a GUI like with several of the tools
presented in Section 2. On the other hand, we have noted that one of the most controversial
design decisions is that <e-Game> was too limiting with regard to the expressivity of its
conversation system. This is perhaps the most delicate point when trying to find a balance
between simplicity and power. The insights provided by the authors suggest that the simple
tree-like structures marked up with the present syntax of the <e-Game> language is near the
frontier of some authors’ expertise, while more experienced authors demand more expressive
power like conditioned answers (using the condition system) or an enhancement of the tree
structure (a graph structure was suggested). To address this point we will explore the
implications of different dialects of the <e-Game> language to accommodate different levels
of expertise. A similar approach has already been successfully applied in the context of some
XML-based languages. One of whose most notorious examples is the definition in Levels (A,
B and C) of the IMS Learning Design specification [18]. IMS Learning Design authors may
initially sacrifice part of the power of the specification for the sake of a simpler use. Later on,
if an author feels comfortable managing the basic syntax and is limited by it, he/she may start
using the next level. In <e-Game> we will explore different types of conversations. In
particular, we will support conversations structured as graphs, although it must be noted that
defining graphs in an XML document is a reference-intensive process and requires a certain
level of expertise.

As of now, we have mainly applied this model in the educational domain. As described in
[21], we are working on the integration of <e-Game> with different e-learning platforms,

33

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

including our <e-Aula> experimental Leaning Management System [38, 41]. Nevertheless, we
also would like to apply <e-Game> to alternative environments other than the educational
domain of our case studies. Of course <e-Game> is not expected to have a significant impact
on mainstream business, where high-tech commercial games with huge development costs are
the stars of this medium and the current market demand is not likely to change anytime soon.
However, there are alternative markets in which <e-Game> can be a very useful tool. The
most obvious example is of course Interactive Fiction, but there are other fields that may
benefit from this approach like casual gaming, advertising or the diffusion of ideas.

Finally, taking advantage of the formal grounding of the <e-Game> language, we are also
working on the application of several validation tasks (e.g. reachability analysis, shortest path
to end the game, etc.) to the marked storyboards.

Acknowledgements

The Spanish Committee of Science and Technology (TIN2004-08367-C02-02 and
TIN2005-08788-C04-01) and the Regional Government of Madrid (4155/2005) have partially
supported this work. Thanks to the Spanish National Center of Information and Educative
Communication (CNICE) for the game design documents and graphical assets provided.

References

[1] Academic ADL Co-Lab. Outbreak Quest: A 90-day Game Development initiative. (2004) Available at:
http://www.academiccolab.org/resources/documents/OutbreakQuest.pdf. 24th July 2006.

[2] M. Birbeck, et al., Professional XML 2nd Edition. (Wrox Press,2001).
[3] T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E. Maler. Extensible Markup Language (XML) 1.0. W3C

Recommendation (2000) Available at: www.w3c.org. July 24th 2006.
[4] J. Clark. XSL Transformations (XSLT) Version 1.0. W3C Recommendation (1999) Available at: www.w3.org.

24th July 2006
[5] D. Clément, et al., Natural Semantics on the Computer, in Rapport de Recherche N 416. 1985, INRIA Sophia

Antipolis: Valbonne, France.
[6] J.H. Coombs, A.H. Renear, and S.J. DeRose, Markup Systems and the Future of Scholarly Text Processing.

Communications of the ACM. 30(11) (1987) 933-947.
[7] J. Cowan and R. Tobin. XML Information Sets. W3C Recommendation (2004) Available at: www.w3c.org.

24th July 2006.
[8] J. Duckett, et al., Professional XML Schema. (Wrox Press,2002).
[9] E.S.A. ESA. Essential Facts about the Computer and Videogame Industry. (2005) Available at:

http://www.theesa.com/files/2005EssentialFacts.pdf. 24th July 2006.
[10] B. Fernández-Manjón and A. Fernández-Valmayor, Improving World Wide Web Educational Uses Promoting

Hypertext and Standard General Markup Languages. Education and Information Technologies. 2(3) (1997) 193-
206.

[11] C.F. Goldfarb, A Generalized Approach to Document Markup. ACM SIGPLAN Notices. 16(6) (1981) 68-73.
[12] C.F. Goldfarb, The SGML Handbook. (Oxford Univerisity Press,Oxford,1990).
[13] J. Harbour and J. Smith, Beginner's Guide to DarkBasic Game Programming. (Premier Press,2003).
[14] R. Ierusalimschy, L.H. Figueirido, and W. Celes Filho, LUA-An Extensible Extension Language. Software

Practice & Experience. 26(5) (1996) 635-652.
[15] E. Ju and C. Wagner, Personal computer adventure games: Their structure, principles and applicability for

training. The Database for Advances in Information Systems. 28(2) (1997) 78-92.
[16] G. Kahn. Natural semantics. In 4th Annual Symposium on Theoretical Aspects of Computer Science (STACS

87). (Passau, Germany, 1987) Lecture Notes in Computer Science Vol 247, Springer.
[17] K. Kahn, ToonTalk -An Animated Programming Environment for Children. Journal of Visual Languages &

Computing. 7(2) (1996) 197-217.

34

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

[18] R. Koper and B. Olivier, Representing the Learning Design of Units of Learning. Educational Technology &
Society. 7(3) (2004) 97-111.

[19] C.P. Lawrence and K. Grabczewski, Mechanizing Set Theory. Journal of Automatic Reasoning. 17(3) (1996)
291-323.

[20] D. Lee and W.W. Chu, Comparative Analysis of Six XML Schema Languages. ACM SIGMOD Record. 29(3)
(2000) 76-87.

[21] I. Martinez-Ortiz, P. Moreno-Ger, J.L. Sierra, and B. Fernández-Manjón. Production and Deployment of
Educational Videogames as Assessable Learning Objects. In First European Conference on Technology
Enhanced Learning (ECTEL 2006). (Crete, Greece, 2006) Lecture Notes in Computer Science, Springer (In
press).

[22] I. Martinez-Ortiz, P. Moreno-Ger, J.L. Sierra, and B. Fernández-Manjón. Production and Maintenance of Content
Intensive Videogames: A Document-Oriented Approach. In International Conference on Information
Technology: New Generations (ITNG 2006). (Las Vegas, NV, USA, 2006) IEEE Society Press.

[23] S. Mauw, W.T. Wiersma, and T.A.C. Willemse, Language-driven System Design. International Journal of
Software Engineering and Knowledge Engineering. 14(6) (2004) 625-664.

[24] P. Moreno-Ger, I. Martinez-Ortiz, and B. Fernández-Manjón. The <e-Game> project: Facilitating the
Development of Educational Adventure Games. In Cognition and Exploratory Learning in the Digital age
(CELDA 2005). (Porto, Portugal, 2005) IADIS.

[25] P. Moreno-Ger, I. Martínez-Ortiz, J.L. Sierra, and B. Fernández-Manjón. Language-Driven Development of
Videogames: The <e-Game> Experience. In 5th International Conference in Entertainment Computing (ICEC
2006). (Cambridge, UK, 2006) Lecture Notes in Computer Science 4146, Springer.

[26] P.D. Mosses, Modular Structural Operational Semantics. Journal of Logic and Algebraic Programming. 60-61
(2004) 195-228.

[27] P.D. Mosses, Formal Semantics of Programming Languages: An Overview. Electronic Notes in Theoretical
Computer Science. 148(1) (2006) 41-73.

[28] M. Murata, D. Lee, M. Mani, and K. Kawaguchi, Taxonomy of XML schema languages using formal language
theory. ACM Transactions on Internet Technology. 5(4) (2005) 660-704.

[29] M. Overmars, Teaching Computer Science through Game Design. IEEE Computer. 37(4) (2004) 81-83.
[30] G.D. Plotkin, An Structural Approach to Operational Semantics, in Tech. Report DAIMI FN-19. 1981, Computer

Science Dept. Aarhus University.
[31] S. Rabin, The Magic of Data-Driven Design, in Game Programming Gems, M. DeLoura, Editor. 2000, Charles

River Media: Rockland.
[32] J. Robertson and J. Good, Story creation in virtual game worlds. Communications of the ACM. 48(1) (2005) 61-

65.
[33] A. Rodman. SCUMM: Adventure - LucasArts Style. Just Adventure Magazine (1999) Available at:

http://www.justadventure.com/articles/Engines/SCUMM/SCUMM.shtm. 24th July 2006.
[34] R. Rucker, Software Engineering and Computer Games. (Addison-Wesley,2002).
[35] J.L. Sierra, A. Fernández-Valmayor, B. Fernández-Manjón, and A. Navarro, ADDS: A Document-Oriented

Approach for Application Development. Journal of Universal Computer Science. 10(9) (2004) 1302-1324.
[36] J.L. Sierra, B. Fernández-Manjón, A. Fernández-Valmayor, and A. Navarro, Document Oriented Development of

Content-Intensive Applications. International Journal of Software Engineering and Knowledge Engineering.
15(6) (2005) 975-993.

[37] J.L. Sierra, A. Fernández-Valmayor, B. Fernández-Manjón, and A. Navarro. Developing Content-Intensive
Applications with XML Documents, Document Transformations and Software Components. In 31st Euromicro
Conference on Software Engineering and Advanced Applications. (Porto, Portugal, 2005).

[38] J.L. Sierra, et al. Building learning management systems using IMS standards: Architecture of a manifest driven
approach. In International Conference on Web-based Learning (ICWL 2005). (Hong Kong, China, 2005)
Lecture Notes in Computer Science, 3583, Springer.

[39] J.L. Sierra, A. Navarro, B. Fernández-Manjón, and A. Fernández-Valmayor, Incremental Definition and
Operationalization of Domain-Specific Markup Languages in ADDS. ACM SIGPLAN Notices. 40(12) (2005)
28-37.

[40] J.L. Sierra, A. Fernández-Valmayor, and B. Fernández-Manjón, A document-oriented paradigm for the
construction of content-intensive applications. The Computer Journal. (In press, Advance Access published on
April 13, 2006. DOI:10.1093/comjnl/bxl008) (2006).

[41] J.L. Sierra, P. Moreno-Ger, I. Martínez-Ortiz, and B. Fernández-Manjón, A Highly Modular and Extensible
Architecture for an Integrated IMS based Authoring System: The <e-Aula> Experience. Software - Practice &
Experience. (In press) (2006).

35

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

[42] S. St. Laurent and R.J. Biggar, Inside XML DTDs: Scientific and Technical. (McGraw-Hill,1999).
[43] A. Warren, LucasArts and the Design of Successful Adventure Games. 2003, Department of Humanities and

Area Studies, Standford University.

36

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

