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Abstract. In this paper we propose a language-driven approach for the high-level design of interactive applications 
architected according to the model-view-controller pattern. The approach is especially well-suited for applications that 
incorporate contents with sophisticated structures, and whose interactive behavior is driven by these structures. In our 
approach we characterize the structure of the contents stored in the applications’ models with suitable domain-specific 
languages. Then we characterize the interactive behavior of these applications by assigning suitable operational semantics 
to these languages. The resulting designs are amenable to support rapid prototyping, exploration and early discovery of 
application features, systematic implementation using standard web-based technologies, and rational collaboration 
processes between domain-experts and developers during production and maintenance. We exemplify the approach in the 
e-learning domain with a system for the production of Socratic tutors. 
Keywords: language-driven development, domain-specific language, model-view-controller, e-learning, 
document-oriented approach 

1. Introduction 
Interactive applications structured according to the model-view-controller (MVC) design pattern (Krasner and Pope, 1988) 
have attracted great interest in the last few years. Indeed, this architecture is typically used in organizing modern web-based 
applications (Draheim et al, 2003). Some of these applications can exhibit a high degree of complexity, both in those 
aspects regarding the structure of the contents as well as in those aspects regarding interactions with the final users. An 
extreme example can be found in many web-based e-learning applications (Collier, 2002), which integrate bodies of 
contents structured according to sophisticated and evolving standards (Friesen, 2005) and which rely on complex 
interaction strategies represented by elaborated pedagogical designs (Koper and Tattersall, 2005).  

In recent years we have been heavily involved in the development of several web-based e-learning applications for 
various purposes. In all these cases we have extensively used the MVC architecture for structuring the final applications. 
One of the main lessons learned from these experiences (some of which will be briefly presented in this paper) is the 
importance of adopting a well-principled and rigorous approach to modeling the structural and behavioral aspects of these 
applications in the very first stages of development. For this purpose, we have found it natural to adopt a language-centered 
approach. In this approach, we start by identifying the language that characterizes the contents’ structure relevant for 
enabling the desired interactive behavior. Thus, modeling such behavior is naturally addressed by assigning suitable 
operational semantics to such a language. This linguistic approach has two important features; first, it naturally leads to 
rational process models that determine the collaboration between domain-experts and developers during the design, 
construction and maintenance of this kind of applications (Sierra et al, 2005a; Sierra et al, 2006b); and second, it enables an 
implementation approach where main elements in the defined language align with main elements in the MVC architecture. 

The structure of the paper is as follows. In section 2 we present some preliminaries. Section 3 gives an overview of the 
approach. Section 4 deals with the structural aspects of the design. Section 5 addresses the specification of behavior. 
Section 6 provides some implementation guidelines. Section 7 discusses some related work. Finally, section 8 presents the 
conclusions and some lines of future work.   

2. Preliminaries 
In this section we give a short introduction to language-driven software development (section 2.1). We also outline an 
example of application, an educational tutoring system, which we will use to illustrate the different aspects of our approach 
(section 2.2). Finally we describe the schema for MVC applications that will serve as reference throughout the paper 
(section 2.3).   

2.1. Language-Driven Software Development 
Language-driven approaches conceive software development as the design, implementation and maintenance of domain-
specific languages specially tailored for each application domain (Clark et al, 2004; Mauw et al, 2004). A domain-specific 
language is a computer language oriented to a particular problem domain (Mernik et al, 2005; van Deursen et al, 2000). 
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Since they incorporate primitives, means of combination and means of abstraction restricted to and closely related with 
their associated problem domains, these languages are easier to use than other general-purpose languages for solving the 
specific problems for which they are designed. Indeed, the ultimate goal of a domain-specific language is to let experts in 
the domain understand and use the language. In this sense, such a language can play the role of an authoring tool. 
Therefore, language-driven development approaches facilitate the collaboration between developers and domain-experts, 
since they promote a clear separation of roles between those different stakeholders: developers produce languages, while 
experts in the application domain use these languages to produce and maintain the applications. In the words of Harold 
Abelson and Gerald J. Sussman (1996): “… seen from this perspective, the technology for coping with large-scale 
computer systems merges with the technology for building new computer languages, and computer science itself becomes 
no more (and no less) than the discipline of constructing appropriate descriptive languages”.  As stated earlier, in the 
present work we adopt this approach for the design of MVC applications. 

Domain-specific languages are rather common in the software industry. Some examples of widely used domain-specific 
languages are HTML, for preparing web pages, SQL for querying relational databases, or JavaCC for compiler 
construction. The concept should be familiar to Unix / Linux users. Indeed, Unix-like systems include many of those 
languages (e.g. awk for string processing, troff for document formatting, make for controlling the generation of executables 
and other non-source files, etc), which can be combined by users in a smooth way to address tasks that are more complex. 
This kind of languages is also very common in e-learning. In the end, the different IMS specifications of the several aspects 
of an e-learning system (Friesen, 2005) are actually reduced to multiple domain-specific XML-based descriptive markup 
languages. In our opinion, this is what makes the application of suitable language-driven approaches to such a domain 
meaningful.  

2.2. An Example Application 
In order to illustrate our approach we will use a very simplified version of a Socratic Tutoring System, which is based on 
the works performed by Prof. Alfred Bork’s team during the eighties (Bork, 1985; Ibrahim, 1989). Although the 
pedagogical adequacy of tutoring systems as mechanisms for supporting sophisticated learning processes has been 
seriously questioned, today there is a very active community working in this field, as well as relevant initiatives (e.g. visit 
icampus.mit.edu/XTutor/). Moreover, Socratic Tutors may be considered as an extension of some aspects of widely-used 
content sequencing proposals, such as the IMS Simple Sequencing proposal adopted by SCORM, Shareable Content Object 
Reference Model specification (ADL-SCORM, 2003; visit also www.imsglobal.org/simplesequencing). However, our 
reason for choosing this kind of systems for exemplifying our approach is not so much pedagogical as technological, since 
the goal of our work is not to criticize or to defend a particular learning approach, but to provide guidelines that can be 
effectively used to produce and maintain applications. For this purpose, we need a language simple enough to be fully 
addressed in this paper, and this type of tutoring system will let us do so. 

 

35 

12 

1 

What is 5x7? 
 

Another This is not ok.  

2 

You have 
difficulties with 

this problem. 

Exactly, Let’s go with 
the next problem 

1 You’re 
adding! 

 

Try it again 

Try it again 

2 

5x7 = 35 

Let’s work it out 
together. 
5x7=35 

Try another 
problem

1 

Still confusing 
addition and 

multiplication.

Try another problem

 
Fig. 1. Graphic representation of a tutorial fragment for a Socratic tutoring system -example adapted from Bork (1985)-. 

 
Our example system runs tutorials where a problem is posed to the learner and through a master-disciple dialog a 

solution is built. The responses of the learners are analyzed by the system, which provides them with some feedback and 
determines the next step to undertake in the learning process. In order to adapt these feedbacks to the learning path 
followed, the system records the number of times that the learner gives a particular answer to a question. In general, 
feedback depends on the history of previous answers but in the simplest cases it can exclusively depend on the values of 
these counters, as assumed in the simplification used in this paper. 
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In Fig. 1 we show a simple example of this kind of organization for the tutorials. The white rounded box introduces a 
question point: it is associated with a question proffered by the system, and it is followed by a set of possible learner’s 
responses (the compartmented white box). The other rounded boxes (the shadowed ones) are associated with general 
speeches proffered by the system. The learning flow is represented by directed arcs. An arc with its starting point in a 
possible response is labeled with a value, which indicates the value of the corresponding counter required to traverse it (e.g. 
in Fig. 1, the first time that the learner gives the response 12 to the what is 5x7? question, the system traverses the 
corresponding arc labeled by 1, and the second time that labeled by 2).  

2.3. A Reference Architecture 
In Fig. 2 we sketch a very high-level organization for an MVC application, which will be adopted as a reference in the rest 
of the paper. In this organization we distinguish: 

 

Controller 

Model 

View 

view2contoller 

contoller2view 

contoller2model 

 

Fig. 2. High-level organization of an MVC architecture.  

 
- The model, which contains the contents integrated in the application together with their structure. In our application 

example, this model will be a representation of a Socratic tutorial of the kind described above. 
- The view, which presents the information to the user, and which captures his/her interactions. In our application 

example, the view will present the learner with the different problems, questions and feedback offered by the system. 
Moreover, it will also acquire the learner’s responses.  

- The controller, which reacts to the user’s interactions by querying and/or updating the model, and by updating the 
view. In our example, the controller will take care of the interaction behavior informally described in the previous 
point.  

Notice that in contrast to the more usual presentation of MVC we use streams to obtain a more abstract architecture. We 
explicitly distinguish input and output streams that communicate the controller with the view. The view2controller input 
stream will port suitable representations of the user’s interactions, while the controller will write appropriate commands to 
govern the view’s update in the controller2view output stream. Therefore, these two streams are a convenient way of 
abstracting the view for the rest of the application. Regarding the model, we will suppose that the controller has complete 
access to its structure, but not to the actual contents. In order to update the real contents, the controller must write 
appropriate update commands in the controller2model output stream. This lets us ignore the actual nature of the contents.  

3. An Overview of the Approach 
Our language-driven approach is based on our previous experiences using domain-specific descriptive markup languages 
(Coombs et al, 1987) in order to involve domain-experts in the development and maintenance of interactive applications. 
Among these experiences, which are the basis for our work on the so-called document-oriented approach to the production 
and maintenance of content-intensive applications (Sierra et al, 2005a; Sierra et al, 2006b), we can highlight the following: 
- Lire en Français, an educational hypermedia for language learning (Fernández-Valmayor et al, 1999). The main 

pedagogical aim of this application was to help students to develop the abilities needed to understand texts written in a 
foreign language close to their mother’s tongue. We used domain-specific SGML-based markup languages to regulate 
the collaboration between linguists, who provided the texts and the linguistic structures associated with them, and 
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developers, who used those descriptions to re-generate the application. The application was formerly deployed on a 
CD, but subsequently it was ported to a web environment, where an MVC architecture was also adopted.   

- Chasqui, an MVC web-based system for the construction of repositories of digital learning objects associated with 
academic museums (Sierra et al, 2006a). Learning objects in Chasqui can own documental resources structured with 
domain-specific markup languages. In this experience we put special emphasis on involving domain experts, 
archaeologists, ethnologists and historians in the design of such languages from the beginning. 

 
 

Domain-specific 
language’s  
structure 

Structuring 
the Contents 

(a) 

Modeling the 
Behavior  

Implementing 
the application

Domain-specific 
language’s  
semantics 

(c) 

[Language design is 
satisfactory] 

[Language design 
needs improvements] 

[Application 
accepted] 

[Implementation  
needs revision] 

[Language design 
needs improvements] 

Application 

Structuring 
the Contents

Modeling the 
Behaviour  

Implementing 
the application

Structuring 
the Contents

Modeling the 
Behaviour  

Implementing 
the application

Domain  
experts

Developers 

Describe the 
structure of the 

contents 

Describe the nature 
of the domain’s 

operations 

Provide and 
structure  the 
contents 

Formalize the 
structure of the 

contents 

Formalize the 
structure of the 

contents 

Implement the 
software 

(b) 

 
Fig. 3.Three views of the language-driven approach: (a) activities and products; (b) participants and their roles in the activities; (c) sequencing of the 

activities. 

- The <e-Aula> platform, a highly customizable research e-learning platform (Sierra et al, 2007c). This platform, which 
is also doted with an MVC architecture, is fully compliant with the e-learning specifications proposed by the IMS 
consortium (visit www.imsglobal.org). Our main aim in constructing this platform was to facilitate its customization 
on different application profiles. This customization can involve static, moderately interactive, and highly interactive 
contents. Lecturers, domain experts in different subject areas such as computer science, medicine and linguistics, 
structured these contents as marked documents, using suitable domain-specific markup languages.  

- <e-QTI> (Martínez-Ortiz et al, 2006a), a reusable and extensible assessment engine based on the XML binding defined 
by the IMS QTI (Question & Test Interoperability) e-learning specification (visit www.imsglobal.org/question/). 
Formerly <e-QTI> was conceived as a service in <e-Aula>, although later we deployed it as a standalone MVC-
architected web-based application. 

- <e-Game> / <e-Adventure>, a markup language for documents describing educational adventure videogames that we 
have formulated in the context of the <e-Aula> platform (Moreno-Ger et al, 2007). Indeed, the language that we have 
used in the present work is also inspired by the language used to structure conversations in <e-Adventure>.  
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In all these fields we found the use of domain-specific languages oriented to structuring the application contents 
particularly useful in reducing the average time of the maintenance iterations. Indeed, these languages can be directly used 
by domain-experts to directly structure the application contents. The resulting documents can be subsequently translated 
onto suitable abstract representations, which can be automatically processed to generate or re-generate the corresponding 
application model. 

In Fig. 3 we sketch our approach in order to highlight its main aspects. Following a similar method to the one adopted in 
the presentation of our aforementioned document-oriented approach, we include a view of activities and products, a view 
of activity sequencing, and a view of participants and roles. 
- In the activities and products view (Fig. 3a) we abstract the approach in terms of three activities and their resulting 

products. As mentioned before, the core of the approach is to provide a domain-specific language for structuring the 
application contents. In order to do so, we distinguish between the activity of structuring the contents, whose purpose 
is to characterize the domain-specific language’s structure, and the activity of modeling the behavior, whose aim, 
through the semantics of this language, is to make the application’s interactive behavior explicit. Finally, we introduce 
an activity for implementing the application, where the final application is produced according to the MVC 
architecture. In this paper we will mainly focus on the first two activities, although we also will give some guidelines 
regarding implementation. 

- In the participants and roles view (Fig. 3b) we introduce the two main participants in the development process, and the 
roles they play in each activity. These participants are domain experts, who are responsible for describing the 
application domain, providing the contents and structuring them using the domain-specific language in order to enable 
the subsequent interactive behavior, and developers, who are responsible for formalizing the abstract syntax and 
semantics of the language and implementing the application’s software by mapping those syntactic and semantic 
structures into the MVC architecture. 

- In the sequencing view (Fig.3c) we outline how the activities are actually sequenced during the development of the 
applications. Notice that there are three different development loops. On one hand, when the language (its structure 
and its semantics) has been provided, it can be evaluated in order to decide on its adequacy. For this purpose, 
techniques such as rapid prototyping can be used. As we will see below, rapid prototyping can be facilitated by the 
explicit formalization of the language’s semantics. On the other hand, during implementation the resulting application 
is evaluated. In this process some aspects to improve may be discovered, and therefore new implementation iterations 
should be carried out. It should be noticed that many of these iterations will imply only the use of the domain-specific 
language to complete and to refine the application’s contents. Indeed, it can be also extended to maintenance stages, 
where, in the limit, maintenance will be carried out by domain-experts using the cited language. Still, some iteration 
may imply fixing some bugs discovered in the application’s software. Finally, it is also possible to discover some 
features in the contents that are not addressable with the currently available language. Therefore, the design of the 
language itself must be revised in order to extend and/or to adapt it.     

Next sections detail the different aspects of the approach, focusing in the nature of its activities. 

4. Structuring the Contents 
The first step in our approach is to design a language that reflects the structure of the application’s contents that is relevant 
for user-system interactions. From the perspective of the MVC architecture, it will be equivalent to deciding the high-level 
structure of the information stored in the application’s model. It is important to notice that this language, as happens with 
descriptive markup languages, will not be intended to represent the actual contents, but only to represent their structure. 
Therefore, this language will include mechanisms to refer to the actual contents. This language will be very relevant for 
specifying the high-level application’s behavior. Indeed, in our approach we will specify the application's behavior by 
adding suitable operational semantics to such a language, which is the counterpart of determining the controller’s behavior 
in this approach. This language will also play an important role during the externalization of the contents. In application 
domains such as e-learning, this externalization is very important in order to involve domain-experts in the production and 
maintenance of the application’s contents. In fact, this language can be synthesized in a domain-specific descriptive markup 
language for the contents, as described in the previous section. 

In the case of the Socratic tutors, the design of this language will be biased to include those features that are relevant 
from an interaction point of view. This means that other features (e.g. presentation-oriented ones) will usually be omitted. 
Furthermore, the design will be focused on characterizing the abstract syntax of the language, as this syntax will serve as 
the basis for subsequent behavioral specification. The abstract structure of the Socratic dialog of the section 2 is a weighted 
graph whose nodes contain different types of information. As in our previous wok in educational adventure videogames 
(Moreno-Ger et al, 2007), where as said before we faced a similar modeling scenario regarding conversations, a relational-
oriented representation of this structure is well-suited to design needs. Indeed, modeling the behavior of the application will 
demand frequent queries to different components of the model, and it is simpler to specify these components as separate 
and distinct information items. Indeed, the representation can be conceived of as a set of such information items, which are 
in turn represented as ground terms on a suitable signature.   
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 Information item Intended meaning 
start(rs) The learning process starts with the speech rs. 
speech(s,n) The speech s is followed by n. In this item, n can be another speech, a 

question point, or the end of the learning process. In addition, s is a 
unique identifier. 

question(q) A question point identified with the unique identifier q. 
feedback(q,a,n,s) A feedback for the answer a (a unique identifier) collected in a 

question point q.  Also, n is the number of times that the answer has 
been collected. The feedback itself will start with speech s. 

end(e) An ending point for the learning process. Here, e is a unique identifier. 
 

Fig. 4. Information items for the language of the Socratic tutoring system. 

 start(s1) 
 speech(s1,q1) 
 question(q1) 
 feedback(q1,r1,1,s2) 
   speech(s2,...) 
 feedback(q1,r2,1,s3) 
   speech(s3,s7) 
   speech(s7,s1) 
 feedback(q1,r2,2,s4) 
   speech(s4,s8) 
   speech(s8,s9) 
   speech(s9,...) 
 feedback(q1,r3,1,s5) 
   speech(s5,s10) 
   speech(s10,s1) 
 feedback(q1,r3,2,s6) 
   speech(s6,s11) 
   speech(s11,s12) 
   speech(s12,...) 
... 

 q1 
   r1 
 r2 
   r3    
   s2 
  s3 
  … 

What is 5x7? 
 
     35 
    
12 
      Another 
 
Exactly, Let’s go with the 
next problem 
 
   You’re adding! 
… 

(a) (b) 

 

Fig. 5.(a) Representation of the structure of the fragment of tutorial sketched in Fig. 1; (b) actual contents are not included in the representation, but they 
are replaced by appropriate identifiers.  

In Fig. 4 we propose such a relational-oriented representation. In Fig. 5a we illustrate this representation with the tutorial 
fragment represented in Fig. 1. Only the structure of the contents, but not the actual contents, is represented. Indeed, in the 
representation, such contents are replaced by identifiers referring to them, as suggested in Fig. 5b. 

5. Modeling the Behavior 
Once the language for structuring the contents is available, the behavior of the application can be modeled by assigning 
suitable operational semantics to such a language. For this purpose we propose to use the structural style of operational 
semantics (Mosses, 2006; Plotkin, 1981). This approach leads to reasonably understandable specifications, which can also 
be easily prototyped in order to check the adequacy of the subsequent implementation with very little additional effort 
(Clément et al, 1986). According to the approach, the operational semantics of a language is characterized by modelling the 
behaviour of an abstract machine that executes this language as a formal calculus made up of inference rules like those 
depicted in Fig. 6. The reading of such rules is the usual one: when all the elements in the premise hold, the elements in the 
conclusion hold. Empty premises can be omitted, and the resulting rules are used to introduce axioms into the calculus. 
Most of the interesting calculi will usually consist of an infinite number of inference rules. In order to give a finite 
characterization, a finite number of rule patterns can be provided instead by using syntactic variables. We will use a 
cursive font to denote syntactic variables in our specification. 

o n

;;...;;
;;..;;

o kΦ Φ
Ψ Ψ

 
 

Fig. 6. Structure of the inference rules. Each FBi B in the premise and YBj B in the conclusion are formal expressions.  

5.1. Designing the Computation States 
Computation states will closely mirror the components identified in the reference architecture. Therefore, typically such 
states will include: 
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Fig. 7. Consulting and setting the counters associated with the answers. 

 Term Intended meaning 
run-ordered The learner wants to start the tutorial. 
answered (a) The learner has given the answer a to the last question. 

 
Fig. 8. Terms in the view2controller stream. 

 Term Intended meaning 
do-start The system execution is starting. 
do-speech(s) The system is proffering the speech s 
do-end The system execution is ending. 

 
Fig. 9. Terms in the controller2view stream. 

- A representation of the model, in terms of the language for structuring the contents provided. As stated in the previous 
section, typically this representation will be a set of ground terms. Therefore, we can use typical first-order logic and 
set theoretical constructs and operations in querying such representations. This lets us reuse an appropriate 
axiomatization for such basic constructs −see, for instance the work of Lawrence and Grabczewski (1996). In this way, 
we only define the set-related domain-specific notations specifically introduced for supporting particular 
specifications. In the subsequent examples, we will use ¢F for denoting a set-theoretical formula F that must hold. 

- A control term, which is the term of the model which is currently under consideration. This term will be used to decide 
how the execution is to proceed. 

- A context, which contains additional information used to perform the transitions and expresses the dependence of the 
actions on previous responses.  

- The streams identified in the reference architecture. For those applications where the model is not updated, but only 
queried, the controller2model stream can be omitted. In order to represent streams we suggest using a tuple-oriented 
notation. Empty streams will be noted by empty tuples. If s is an input stream and t is a term, with <t,s> we will 
represent the input stream whose first element is t and whose rest is s. Analogously, if o is an output stream and t is a 
term, by <o,t> we will represent the result of writing t in o. Also, in facing this aspect of the design of the computation 
state, it is very relevant to characterize the kind of terms that can appear in each one of the streams. 

In our example, we will represent computation states as 5-tuples of the form <q,T,ρ,in,out>, where: 
- q is the control term and T is the structure of the tutorial represented as a set of terms, as described in the previous 

section. 
- ρ is the context, which in this example will be constituted by a set of counters associated with the answers. 

Formally, the elements of this set will be pairs of the form <a,n>, with a an answer identifier, and n the associated 
counter. The notation introduced in Fig. 7 is a convenient way of consulting and setting these counters. Notice that, 
if the counter is not set, its value is considered 1, since it will be the first time that the learner proffers the associated 
answer. 

- in and out are the view2controller and the controller2view streams, respectively. Since in this example the model is 
not updated, the controller2model stream can be dropped from the computation state. In Fig. 8 we characterize the 
possible terms in the view2controller stream. In Fig. 9 we show the possible terms in the controller2view one. In 
this case, the structure of these streams is very simple: view2controller can contain the order for running the system, 
as well as the learner’s responses, while controller2view will only contain the commands for presenting the 
system’s speeches, as well as for announcing the init and the end of the system’s execution. 

In addition to this kind of states, we will also introduce a special format for initial and final states: 
- Initial states will be represented as <T,in,out>, with T a tutorial and in and out the view2controller and the 

controller2view streams. 
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- Final states will be represented as <out>, with out the resulting controller2view stream. 

5.2. Establishing the Semantic Rules 
For the specification of the semantic rules we will use a notation of the form Y→Y’ to denote the transition from the state Y 
to the state Y’. Furthermore, at the top of the rules we will put the applicability conditions, while at the bottom we describe 
the resulting transitions. Therefore, we will adhere to a small-step style (Mosses, 2006), which also eases the transition to a 
subsequent implementation. If needed, big-step style semantics can be subsequently obtained as usual, by taking the 
transitive closure of the involved transition relations (Fig. 10). 

 
 

+

Φ →Ψ
Φ→ Ψ

  

 ;; + +

+

Φ → Ψ Ψ→ Σ
Φ→ Σ

 

 

Fig. 10. Axiomatizing a big-step transition relation →P

+  
Pin terms of a small-step one →. 

In Fig. 11 we show the semantics rules for our example. These rules formally state the informal behavior outlined in 
section 2.1: 
 

 start( )
, run-ordered, , start( ), , , , ,do-start

∈
〈 〈 〉 〉 → 〈 ∅ 〈 〉〉

s T
T In Out s T In Out

 ¢  starting 
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s ns T
s T In Out s ns T In Out

¢  starting-speech 
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end( ) 
speech( , ), , , , end( ), , , , ,do-speech( )ρ ρ
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e T
s e T In Out e T In Out s

¢  speaking3 
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                                       feedback( , , , ), , : 1, ,

ρ
ρ

ρ ρ ρ

∈
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〈 = + 〉

a

a a a

q a s T
q T a In Out

q a s T In Out

¢  evaluating 

speech( , )  
feedback(_, _, _ , ), , , , speech( , ), , , ,ρ ρ
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s n T
s T In Out s n T In Out

¢  starting-feedback 

end( ), , , , ,do-endρ〈 〈〉 〉 → 〈〈 〉〉e T Out Out  ending 

 
Fig. 11. Semantic rules for the Socratic tutoring system. 

 
- The starting rule models the execution’s init. For this purpose, the starting speech is queried in the tutorial. Also notice 

that the context with the answers’ counters is set to the empty set (i.e. in virtue of Fig. 7, the counter for every answer 
will be 1). Finally, a suitable command announcing the beginning of the execution is written in the controller2view 
stream.  

- The starting-speech rule models the beginning of a speech. The first speech is picked from the tutorial, and it is set as 
the control term. Therefore, the system is prepared to proffer such a speech.     

- The speaking1 rule models how the system proffers a speech which is followed by another speech: a command to 
proffer the speech is written in the controller2view stream, and the next speech is set as the control term. The 
proffering of a speech when it is followed by a question point (speaking2 rule) or by an end point (speaking3 rule) is 
modeled in an identical way. 
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- The evaluating rule models what happens in a question point. The answer of the learner is read from the 
view2controller stream, a suitable feedback is picked from the tutorial, which is set as the control term, and the counter 
associated with the answer is incremented.  

- The starting-feedback rule models the offering of feedback by the system. Basically, it is reduced to starting a new 
speech (notice that with each _ we denote an anonymous different syntactic variable).  

- Finally, the ending rule models how the system finishes the execution. For this purpose, no more user interactions are 
allowed (i.e. the view2controller stream must be empty), and a command announcing the end is written in the resulting 
output stream. 

 
 start( )  ;; speech( , )  

, run-ordered, , speech( , ), , , , ,do-start
∈ ∈

〈 〈 〉 〉 → 〈 ∅ 〈 〉〉
s T s ns T
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 ¢ ¢  starting 

speech( , )
speech( , ), , , , speech( , ), , , , , do-speech( )ρ ρ

∈
〈 〉 → 〈 〈 〉〉

ns nns T
s ns T In Out ns nns T In Out s

¢  speaking1 

question( )
speech( , ), , , , question( ), , , , , do-speech( )ρ ρ

∈
〈 〉 → 〈 〈 〉〉

q T
s q T In Out q T In Out s

¢  speaking2 

feedback( , , , )  ;; speech( , )  
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                                       speech( , ), , : 1, ,

ρ
ρ

ρ ρ

∈ ∈
〈 〈 〉 〉 →

〈 = + 〉

a

a a

q a s T s n T
q T a In Out

s n T In Out

¢ ¢  evaluating 

end( ) 
speech( , ), , , , ,do-speech( ) ,do-endρ

∈
〈 〈〉 〉 → 〈〈〈 〉 〉〉

e T
s e T Out Out s

¢  ending 

 
Fig. 12. Result of simplifying the semantics of Fig. 11. 

During our experiences in the e-learning domain we have established how the effort employed in this kind of 
specifications pays out, since these specifications are very valuable in anticipating the more obscure aspects of the 
application’s dynamic behavior without being obfuscated by technological and/or implementation details. As we said 
before, based on these specifications it is possible to perform rapid prototyping of the applications using, for instance, 
approaches similar to those described by Clément et al. (1986). Finally, the formal flavor of the specifications provides the 
opportunity to apply optimizations and refinements in very early stages of the development process. For instance, in the 
specification of Fig. 11 it is possible to meld the starting and starting-speech rules into a single one. The same is true for 
speaking3 and ending, and for evaluating and starting-feedback. The resulting specification, which is sketched in Fig. 12, is 
a more compact specification, and therefore it can lead to a smaller and simpler implementation. 

6. Some Implementation Guidelines 
In this section we examine how to organize the final applications from their design in the terms stated in this paper. While 
the particular implementation strategies depend on the particular technologies and platforms chosen, we still can abstract 
some general implementation guidelines that can be useful in most of the cases. In Fig. 13 we illustrate a general 
organization, which is a refinement of the reference architecture exposed in section 2. In this organization: 
- The controller is architected with a set of control rules, which implements the semantics rules identified in the 

behavioral dimension. These components have access to a global state, which can refer to the structural representation 
of the model.  

- Communication between the view and the controller is performed using call-back mechanisms. The controller registers 
itself as an observer in the view, and it is called as response to the user’s events. Then, the control rules are activated, 
and in consequence, a view updater is invoked in the view. During this process, appropriate user’s actions and update 
commands are transferred between the controller and the view. Therefore, this call-back mechanism is a 
straightforward simplification of the stream-based communication used during specification. Indeed, readings from the 
view2controller stream are converted into callbacks, while writing the controller2view is converted into calling the 
view updater. 
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Fig. 13. A possible organization for the final implementations. 

- Contents structures are encapsulated in the model. Updating these contents is performed by invoking the appropriate 
operations on the model structure, which in turn will act on the actual contents. Also notice that this structure can be 
referenced in the user’s actions and in the update commands, therefore making the relevant parts of the model 
accessible for the view. Finally, notice that we explicitly identify a model’s loader, which enables us to load bodies of 
author-oriented contents in the application’s model. As indicated in section 3, in our experiences we have made 
extensive use of descriptive markup technologies to implement this stage. Indeed, we provide authors with appropriate 
domain-specific descriptive markup languages, and they provide the contents as documents structured according to 
such languages (Sierra et al, 2005a; Sierra et al, 2006b).  

In Fig. 14 we exemplify the high-level structure of the Socratic tutoring system in the terms proposed in this section. 
This implementation has been deployed as a web-based application and is architected as follows: 
- We architect the controller in terms of the simplified set of semantics rules shown in Fig. 12. Also, the control state is 

derived by dropping the streams from the operational semantics’ computational state: it maintains a reference to the 
overall model’s structure, another reference to the current control term, and a table with the answers’ counters. 

- The view updater is implemented using a Java applet. Indeed, by inspecting the operational semantics the proactive 
nature of the controller is revealed in a very early stage of the development process: once the controller has read a 
user’s action, it can communicate to the view several update commands (i.e. the speeches proffered by the tutoring 
systems can proceed in several acts). This behavior is not directly supported in HTTP, and therefore we need an active 
component in the client side (in this case, the control applet) taking care of it. Indeed, this kind of behavior is very 
common in the e-learning domain, where similar solutions have been also adopted −e.g. the runtime in SCORM− and 
the rigorous design of the application can help to anticipate it.   

- The model exhibits a tutorial structure that is a direct implementation of the structuring language’s abstract syntax 
described above. The actual contents are organized as a set of basic multimedia assets (e.g. images, videos, sounds, 
etc.) and HTML pages. In order to produce all these components, we introduce a user-friendly XML-based markup 
language (Bray et al, 2000), which can be used by instructors to structure the tutorials. The resulting XML documents 
are then processed to produce the abstract representations of the structure of the tutorials. Instructors can prepare the 
actual contents directly as HTML pages, but they can also use other domain-specific XML-based markup languages. 
The resulting XML documents can be transformed into final HTML presentations using suitable XSLT 
transformations (Clark, 1999).   
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Fig. 14. High-level organization of the Socratic Tutoring System’s implementation 

 
Currently we are re-factoring this implementation in terms of AJAX technology (Paulson, 2005). Regardless of the 

migration of the controller aspect to the client side, the implementation is being substantially facilitated by the earlier effort 
made in the formal design, which has been shown to be fairly independent of the subsequent platform or technology.  

7. Related Work 
In this section we present some work related to our language-driven proposal and we discuss the similarities, differences, 
advantages, disadvantages and limitations of our approach with respect to these proposals. As an exhaustive analysis is not 
possible we have specifically focus on: a) approaches to the specification of interactive behavior based on state machines 
(section 7.1), b) approaches based on general-purpose formal specification languages (section 7.2), and c) approaches based 
on general-purpose software modeling languages (section 7.3).   

7.1. Approaches based on state machines 
System behavior in our language-driven approach is ultimately characterized in terms of computation states and transitions 
between those states. In many cases, state transition systems have been used for characterizing the interactive behavior of 
user interfaces (Parnas 1969; Jacob 1983; Wasserman 1985; Green 1987). In particular, several formal specification 
approaches based on finite state machines have been proposed in the web-based applications scenario, which is also the 
main focus of our approach. Draheim and Weber (2005) propose the use of bipartite state machines. These machines 
comprise states where the user is observing web pages, and states where he/she is acting on a web form. The second kind of 
state can further trigger a web action, which produces a new web page to be seen. Therefore, the resulting machine is 
bipartite. A similar approach is described by Doubrovski (2001). In Doubrovski’s work the state machines used are called 
interaction machines, and transitions are fired by predicates in the application’s context, which can include the result of the 
user’s actions (e.g. input collected on a form). Actually, applications modeled using this approach are limited to the so-
called submit/response interfaces, where all the screen or page updates must be triggered by distinguished user actions (e.g. 
clicking a link or pressing a submit button). While many interesting web-based applications can be grouped into this 
category, it leaves out applications where the view is automatically updated as a consequence of the proactive behavior of 
the server side (e.g. AJAX technologies in the web domain). As we have already discussed, applications beyond the 
submit/response style naturally arise in domains such as e-learning. For this purpose, more sophisticated approaches can be 
used. Comai and Fraternali (2001) propose Statecharts (Harel 1987; Horrocks 1999) as the semantic base for WebML (Ceri 
et al, 2000), a structurally-rich language for the design of web applications. While the resulting machines are more complex 
than the previously mentioned ones (e.g. they are equipped with concurrent states in order to allow the activation of 
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multiple units of content in the same page), they still stay in the finite state machine category. Moreover, the original 
WebML proposal is semantically neutral and also covers a wide variety of aspects that are beyond the scope of our 
proposal (e.g. presentation, personalization, etc.). Proposals such as Pipe (Navarro et al. 2004), a modeling approach for 
hypermedia and web-based applications, are similar in nature to WebML. Pipe models are equipped with default browsing 
semantics that is also finite state based.  

According to the guidelines previously presented in this paper, each domain-specific language denotes a (usually, 
although not necessarily, finite) state-machine operating as a translator and whose input language are sequences of user’s 
actions, and whose output(s) language(s) are sequences of presentation commands (and/or of model updating commands). 
In this way, when domain-experts impose structure on the contents of the application using a collaboratively defined 
domain-specific language, they are implicitly providing a state-machine based specification of the application’s interactive 
behavior. While in the other approaches referenced in this section the focus is put on characterizing the interactive behavior 
of each particular application in terms of a state-machine using a predefined notation, in our language-driven approach 
developers and domain-experts collaborate to define a notation appropriate for an entire family of applications in a domain. 
Since in domains involving content-rich applications, such as e-learning, those who really know the peculiarities of each 
kind of applications are domain-experts themselves (e.g. those who really know how to build a Socratic tutor in Medicine 
are the medical instructors), by providing them with languages closer to the domain, the active participation of domain-
experts in the whole life cycle of the applications will be facilitated and therefore the final quality of the models produced 
will be improved. Hence the main implications of using operational semantics as a previous and systematic step to state-
machine based specification are as follows: 
- There is not a predefined notation to describe finite-state machines (such as the Draheim and Weber’, the Doubrovski’s 

or the WebML ones). Instead, developers and domain-experts collaborate to produce notations specifically tailored for 
each intended type of application. 

- Each particular description in one of these domain-specific languages denotes a (usually finite) state-machine, which is 
characterized by the language’s operational semantics.  

- These machines are implicitly specified and maintained by the domain-experts when they structure the contents using 
the domain-specific languages, but with the advantage that actually they are not aware of this fact! The machines 
themselves are the semantics of the structures imposed. Experts are only required to use a suitable concrete binding of 
a notation that they understand (e.g. encoded with a suitable descriptive markup language), since it is close to their 
domains of expertise, and since they have actively collaborated during their conception. Therefore, specifying the 
interactive behavior using these domain-specific notations is easier for domain-experts than doing it using a wider-
domain or a general-purpose (domain-independent) notation.  

- The main shortcoming of our approach with respect to those proposing predefined notations is the drawback common 
to any approach based on the design and implementation of domain-specific languages: the costs associated with the 
production and maintenance of specific languages for each application domain (van Deursen et al. 2000; Mernick et al. 
2005). Nevertheless, as we have said before, for domains where close collaboration between domain-experts and 
developers is required, these costs will pay off during the subsequent development and maintenance stages, since 
applications will be largely maintained, and even produced, by domain-experts with little or no intervention of 
developers. 

Notice also that, when defining the structure of each domain-specific notation, that is, the abstract syntax of each 
language, developers should include suitable expressive mechanisms to deal with the interaction context (e.g. dialogue 
history). Addressing the context however is not a distinctive feature of our approach, since it is an intrinsic feature of any 
reasonably complex interaction style, and thus it should be addressed by any method used for interactive systems 
description. For instance, Dranhein and Weber’ formcharts (a particular type of bipartite state machines) constrain dialogue 
by using an extension of the OCL language (Clark and Warmer 2002). Doubrovski’s interaction machines use predicates on 
the application’s internal state in order to constrain transitions. WebML uses contextual links in its navigation models to 
carry some information (context) from source to destination units, which can be used to determine the actual content to be 
shown. Similar mechanisms are also used in our previous Pipe modeling approach for hypermedia and web-based 
applications. In the language-driven approach interaction context must be also addressed, but the way to do it will depend 
on (and will vary with) each specific application domain. When defining the structure of domain-specific languages, 
developers should include suitable expressive mechanisms to deal with the context, and these mechanisms will be 
particular to each application domain addressed. The use of these mechanisms by domain-experts will be easier than the 
use of general-purpose and universal ones. For instance, in our Socratic tutorial example counters play this role, although in 
more complex cases using more complex mechanisms could be needed to describe context (e.g. stacks or any other 
recursive feature). In addition, the operational semantics should clearly describe how to propagate and manipulate context 
during interaction (e.g. in our example, it is done by updating counters each time the learner gives a particular answer). 

Finally, it could be questioned why structural operational semantics is chosen to characterize the state-machines 
associated with each phrase in the domain-specific notations instead of another more usual formalism in human-computer 
interaction. Regarding finite state-machines, it is done because pure finite automata are not enough, since, in the end, for 
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each domain-specific language we must characterize an interpreter for all the finite state machines that can be described 
using the language and therefore the number of states of this interpreter could be infinite. For instance, in the Socratic 
Tutoring System it would not be pedagogically sound to limit the number of answers anticipated by the instructor, the 
number of times that the learner can respond a particular answer, or the number of distinguished feedbacks for each 
response. Thus, while a particular Socratic tutor has a finite number of states, we can not anticipate the number of states 
that an arbitrary Socratic tutor can have. Therefore, we will be unable to model our resulting Socratic Tutoring System (i.e. 
the system able to run any Socratic tutorial) as a finite automaton. Of course the basic computational model of finite state 
machines can be extended. In recursive transition diagrams (Woods, 1970) transitions can refer to other diagrams, and the 
resulting formalism is equivalent in power to context-free grammars and pushdown automata (Woods, 1970). Augmented 
transition networks (ATNs) (Woods, 1970) add records and actions to compute the value of these records, and they are 
equivalent to Turing Machines and similar to translation schemas in the description of programming languages and their 
processors (Aho et al. 2007). Indeed, in principle anything modeled with structural operational semantics could be also 
modeled as an ATN. The reason to choose structural operational semantics instead of ATNs (or, equivalently, translation 
schemas for those developers preferring more textual and symbolic formalisms) is that this formalism is especially suited to 
talk about the dynamic meaning of a language, while ATN-like formalisms are more translation-oriented. Remark again 
than in the language-oriented approach we are dealing with a two-level linguistic situation: on one hand, the domain-
specific language, on the other hand, the languages involved in the man-machine communication, as well as in the 
communication between application components. We may find it natural to think of an ATN for a particular Socratic 
tutorial, but, in order to deal with all the possible Socratic tutorials using the ATN formalism (or a computationally-
complete equivalent one) we should devise some sort of universal machine. Indeed, this task can be easier tackled using 
operational semantics rules, where the transitions can be explicitly axiomatized as showed in the Socratic tutoring example.  

7.2. Approaches based on general-purpose formal specification languages 
There are also several initiatives focused on the use of more general-purpose formal modeling languages in the 
specification of web applications. Rezazadeh and Butler (2005) propose the B-method (Abrial 96) for this purpose, and 
they exemplify their approach with the modeling of a complex multi-tier web application. Syriani and Mansour (2003) 
propose SDL (Mitschele-Thiel 2001) as the basic modeling language. Deutsch et al (2006) use a relational approach in the 
specification of data-driven web applications, and they impose additional constraints on the specifications in order to make 
verifiability of the resulting applications decidable. A similar approach is adopted by Redouane (2004), with the use of a 
first-order definitional specification language, and by German (2002), who applies Hadez, a specification language similar 
to Z (Spivey 1992), in the modeling of a web museum. Regardless of being more extensive than our approach, which is 
mainly focused on high-level model structure and interaction, these approaches are usually data-driven. Ultimately, they 
conceive web applications as a suitable set of data types representing the contents, together with operations defined in these 
data types.  

In our opinion comparing our approach with general-purpose formal modeling languages cited above such as SDL, Z or 
B is not easy mainly because the purpose is very different. On one hand, the aforementioned works mainly focus on the use 
by developers of the formal modeling languages for modeling particular web applications. This use is out of consideration 
of whether we need to make domain-experts responsible for describing relevant parts of the application. In effect, 
regardless of their expressivity, domain-experts without a prior background in Computer Science and/or formal methods 
could hardly use general-purpose formal modeling languages such as Z, SDL or B for making the structure of the 
application’s contents explicit. Therefore, in order to align both approaches we should use those formal modeling languages 
with another objective: instead of modeling particular applications, we might model application frameworks, which 
subsequently could be extended and instantiated to yield particular applications. For instance, and thinking of our particular 
example of Socratic tutors, we could use a general-purpose language to give a set of modules with data types and 
operations representing the commonalities of such systems. In this respect, it is possible to find several formal specification 
initiatives in the field of interaction architectures and frameworks. Regarding the formal specification of MVC applications, 
Hussey and Carrington (1997) use Z to model this kind of architecture and to compare it with presentation-abstraction-
control (Coutaz, 1987), another well-known architecture for interactive applications. Abstract Data Views (Cowan and 
Lucena, 1995) is another formal modeling technique of interactive applications that promotes the separation between the 
model and the user interface. The approach distinguishes between Abstract Data Objects (the application components) and 
Abstract Data Views (the interfaces to these components), and also regulates the connections between the two types of 
artifacts. Similar abstractions, this time based on the concept of interactor, are managed in the Abstraction-Display-
Controller formal modeling approach (Markopoulos et al, 1997). In the Interactive Cooperative Objects, framework 
(Bastide et al, 2003) structural aspects are described using object-oriented concepts, while behavioral aspects are described 
using Petri nets. Still, all these approaches are largely data-driven, instead of language-driven. Therefore, the problem of 
instantiating these frameworks must be faced, and it should be lastly carried out at the level of the formal general-purpose 
modeling language used. As said before, it could hardly be performed by a domain-expert (e.g. an instructor who writes 
Socratic tutors) without the help of an external tool that hides the representational complexities of formal (e.g. algebraic or 
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logic-based) modeling languages. Hence additional authoring support for domain-experts should be provided, leading to a 
similar approach to that of using a suitable domain-specific language.  

Thus, the main advantage of the language-driven approach with respect to the direct use of general-purpose formal 
modeling languages is to directly address the design of a language that can be used by domain-experts. As disadvantages 
we could cite the need to model some semantic constructs from scratch, which could be present in a general-purpose 
modeling language as primitive features, and whose modeling might not be so straightforward. As an example, we could 
think of the primitive support for concurrency in formalisms such as SDL, Petri’s nets or Harel’s statecharts mentioned in 
the previous discussion. A possible solution for this complexity could be the use of a suitable metalanguage for specifying 
structural operational semantics with built-in support for modularity to facilitate the reuse of pre-built semantic modules in 
the conception of new ones. For this purpose, proposals addressing the modular specification of the semantics of computer 
languages like the described by Mosses (2004) could be helpful.         

7.3. Approaches based on general-purpose software modeling languages 
General modeling languages, such as UML (Booch et al, 1998), as well as their specific web-oriented profiles (Conallen, 
1999), are very valuable for expressing the main concepts of the application’s design. While UML and the related 
technologies are very valuable artifacts for the description of the high-level aspect of the system (e.g. architectural design 
of the final implementation), in our opinion the description of the structure and the semantics of computer languages can 
take advantage of the more specific and rigorous approaches developed by the programming languages community. Indeed, 
language design and implementation is a very mature field, which has its own techniques regardless of the use of UML and 
UML-related technologies. For instance, instead of using UML to describe a context-free grammar, most developers would 
prefer a more standard notation, such as Backus-Naur Form (Naur 1960). The same is true of structural operational 
semantics versus UML if they must precisely describe the dynamic behavior of a computer language. While UML 
interaction diagrams can be very valuable for describing dynamics of pre-established groups of objects, it is not necessarily 
true when describing the evaluation of the abstract syntax trees/structures of a computer language, whose number of objects 
depend on each particular phrase among the infinite phrases of the language. Also, since some language processing 
techniques can rely on recursion, the modeling of recursive behaviors in UML must be also faced (Tenzer and Stevens, 
2006). 

However, our language-driven approach has more points in common with the recent model-driven engineering 
approaches to the use of software modeling languages (Beydeda et al. 2005). These approaches have also been applied to 
the field of interactive web applications (Koch and Kraus, 2003). Indeed, in model-driven engineering it is possible to 
distinguish a prior metamodeling activity, where, by using a metamodeling language, a suitable modeling language is 
provided, which can subsequently be used for modeling particular applications. Using a domain-specific modeling 
language makes modeling easier since it makes the translation of domain-concepts into the language easier. A similar 
consideration also holds for language-driven approaches, and, in particular, for the approach proposed in the present work. 
Perhaps the main difference lies in the operational flavor of language-driven approaches, which leads to the precise 
definition of the language’s operational semantics in order to allow for the subsequent implementation of a suitable 
language processor.   

8. Conclusions and Future Work 
In this paper we have presented a language-driven approach to the high-level design of interactive content-intensive 
applications architected according to the MVC pattern. The approach is focused on characterizing the model’s structure 
with a language specifically designed for the kind of applications at hand, and also on describing their interactive behavior 
with an appropriate operational semantics for this language. The approach has been successfully used in the e-learning 
domain, where applications are usually based on contents with sophisticated structures, which can be used to drive the 
interactive behavior of the applications.  

One of the main features of the language-driven approach is promoting a rational collaboration between domain-experts 
and developers. Indeed, the role of the application designer is largely carried out by the domain-experts providing and 
structuring the contents and planning the interactions. For instance, a designer of a Socratic tutor for a subject in Biology is 
a biologist, not a computer scientist. In their turn, developers are designers of domain-specific languages. Regarding the 
cost for a developer to create a new language and integrate it into the proposed architecture, it largely depends on the nature 
of the language. Indeed, developers must devise, with the collaboration of domain experts, suitable abstract structures for 
the language, as well as suitable concrete bindings of the language (e.g. as an XML-based descriptive markup language). 
More important, they must specify its operational semantics, to refine it and to abstract suitable control rules to be 
integrated in the final controller. Here the most critical part is to find a suitable language able to address all the expressive 
needs required by domain-experts. Because once the language structure and semantics have been defined, the subsequent 
implementation can be carried out systematically by using, for instance, the guidelines proposed in section 6. Since finding 
the perfect language can imply a prohibitively high initial cost associated with an exhaustive domain-analysis, we promote 
an iterative and incremental strategy, as described in the section 3. This strategy can contribute to alleviating these initial 
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costs by amortizing them during application production and maintenance, and during the production and maintenance of 
new applications.  

The adoption of the language-driven approach (i.e. the design of new languages) depends on several factors. The most 
relevant one, in our opinion, is the need to actively involve domain-experts in the production and, more important, in the 
maintenance of the application. It also depends on the type of domain expert and on his/her prior knowledge of pre-existing 
languages. For instance, in technical domains it could be possible to reuse pre-existing domain-specific languages, such as 
we report in some of our experiences with the use of DocBook (a descriptive markup language for the elaboration of 
technical manuals −Walsh 99) for the production and maintenance of learning contents in the context of the <e-Aula> 
platform mentioned in section 3 (Martínez-Ortiz et al. 2006). This is because experts in technical domains are able to 
understand some of the more advanced technical details behind wider-domain languages such as DocBook. Finally, it also 
depends on the availability of languages in the domain that, conveniently adapted, can fill the development needs. Indeed, 
another strategy to leverage the cost of formulating and maintaining new languages is to reuse part or the totality of 
languages already proposed in the domain. For instance, the IMS standardization efforts in e-learning are largely reduced to 
different domain-specific languages oriented to expressing different features of an e-learning system. While in our opinion 
these languages can sometimes be unnecessarily expressive for the application at hand, it is still possible to reuse some of 
their parts, or even to reuse some of their concepts without needing to reinvent the wheel. In this case the effort of 
educating domain-experts to assimilate the pre-existing languages with respect to the effort of developing a new language 
specially tailored to the experts’ needs should be adequately pondered. Hence two different, although complementary 
possibilities arise: (i) a bottom up approach, where the languages are specifically provided for each development scenario, 
and many times these languages emerge from the practice of structuring the contents (e.g. by marking them up with 
descriptive markup), and (ii) a top down approach, where the structure of the contents is analyzed as a preliminary step, and 
then suitable languages are devised to describe such a structure.   

Regarding the expressive limitations of the languages obtained, it is a consequence of the domain-specific nature of the 
approach. For instance, the language for the Socratic tutorials introduces a particular pedagogical strategy oriented to 
formative learning. If any other pedagogical strategy is required, the language can be extended in new language design 
iterations, or, depending on the pedagogical discrepancy, a new language specially tailored to the new requirements can be 
developed. In this sense the approach differs from the use of universal languages such as IMS Learning Design (Koper and 
Olivier 2004), which has pedagogical neutrality as one of its main design assumptions. Again a trade-off between domain 
adequacy and generality arises. In the IMS Leaning Design community a way of addressing it is by formulating patterns of 
learning designs, which subsequently can be used to produce concrete designs expressed in the language (McAndrew et al. 
2006). In our opinion, it is equivalent in spirit to the application of a language-driven approach. The advantage of the 
language-driven approach with respect to patterns in wider-domain language as IMS Learning Design is to provide better 
linguistic support (in effect, in last terms patterns will be referred to general linguistic constructs, which hinders usability). 
The main disadvantage is again the effort of designing, producing and maintaining new domain-specific languages. Here 
the appropriate combination of a bottom up and a top down approach could help. Indeed, currently we are investigating 
how to apply the approach to systems driven by suitable adaptations and projections of educational modeling languages 
such as the cited IMS Learning Design and other similar ones (Koper and Tattersall, 2005). Ideally, it could be facilitated 
by the use of mechanisms for the incremental design of the languages, which also could contribute to making the evolution 
of the applications easier. For this purpose, we are considering the use of the aforementioned approaches to the 
modularization of operational semantics (Mosses, 2004) and ways to link these with our approach to the incremental 
construction of translators for descriptive markup language described in (Sierra et al, 2005b). Another line of work is to 
align some of the principles behind the approach with current tendencies in e-learning. As discussed in (Sierra et al. 2007a), 
abstract syntaxes for domain-specific languages could well be identified with the information models that are usually 
developed in relation with the different IMS e-learning specifications. Indeed, these specifications are firstly characterized 
as suitable data models, which are subsequently mapped onto different concrete formats (usually XML-based descriptive 
markup languages). Finally, we are also working on the development of a systematic way to encode prototypes for the 
application’s controllers based on the operational semantics specifications. We follow patterns similar to those of the 
already mentioned works of Clément et al. (1986) on the prototyping of natural semantics of programming languages to 
carry out rapid prototyping using the Prolog language (Sterling and Shapiro 1994). We also use standard Prolog static 
metaprogramming facilities to define a concrete syntax embedded in Prolog that can be also used by domain-experts in 
order to involve them in the prototyping activity. Finally, we use Prolog’s coroutining mechanisms to emulate the 
communication channels with the application’s model and view. This approach is detailed in (Sierra et al. 2007b).     
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