
feature

68	 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

mar kup l angua ge s

From Documents
to Applications Using
Markup Languages

José Luis Sierra, Alfredo Fernández-Valmayor, and Baltasar Fernández-Manjón,
Complutense University of Madrid

This document-
oriented approach to
developing content-
intensive applications
uses markup
languages to involve
domain experts in
development and to
simplify application
production and
maintenance.

I n typical publishing scenarios, descriptive markup languages let authors describe a doc-

ument’s logical structure without compromising its processing. During the last 10 years,

we’ve realized how these languages can also play a critical role in developing content‑

intensive applications such as hypermedia and educational applications and knowledge-

based systems. These kinds of applications typically require large amounts of highly structured in-

formation and development processes that involve application domain experts at almost every stage.

Our document-oriented approach for developing
content-intensive applications1 combines the main
ideas of software development based on domain-
specific languages2 with the separation of concerns
in descriptive markup languages (see the “Descrip-
tive Markup Languages” sidebar). We illustrate this
approach with <e-tutor>, an application we built in
the educational domain.

The document-oriented approach
This approach has three main steps:

Developers collaborate with domain experts to
formalize a suitable domain-specific descriptive
markup language using a document grammar
and to decide on the language’s features.
Domain experts describe the desired applica-
tion as a marked-up application document
comprising the application’s contents and other
features. As domain experts edit the application
documents, they use the document grammar to
validate its structure.
Developers produce the application kernel—a

■

■

■

software artifact that, when fed with the marked-
up document, yields the final application.

So, by creating and manipulating documents,
the experts are actually in charge of designing and
maintaining the applications. The developers in
turn take care of the corresponding linguistic and
operational support: formalizing the markup lan-
guages and constructing the application kernels.
This approach promotes the involvement of domain
experts in producing content-intensive applications.
Indeed, it promotes the design of markup languages
that are tailored to the domain experts’ particu-
lar expertise and skills and that closely mirror the
structure of the documents that the experts manage
during their daily work. You can find other related
approaches in the “Related Work in Document-
Oriented Approaches” sidebar.

the <e-tutor> environment
Our <e-tutor> environment is an environment

for developing Socratic tutoring systems as desktop
applications.3 In a Socratic tutoring system, learners

	 March/April 2008 I E E E S o f t w a r E 	 69

build solutions to problems through master-disciple
(teacher/learner) dialogues. The system analyzes the
learner’s responses, then provides feedback. Then, it
determines the next step to undertake in the learn-
ing process. To adapt the feedback to the individ-
ual’s learning path, the system counts the number
of times the learner gives a particular answer to a
question. In our environment, the feedback depends
on these counters’ values.

We built <e-tutor> by following the three main
steps in document-oriented development outlined
earlier (see figure 1).

In the first step, the developers collaborate with
the instructors (the domain experts in this ex-

ample) to formalize the <e-tutor> language. This
XML-based language makes it possible to mark
up the tutoring system’s speech acts—that is, tex-
tual phrases or images illustrating important con-
cepts. The language also lets instructors mark up
the question points in the dialogue—those points
where the system has asked the learner a question.
At these question points, the instructors identify
an input method to collect the learner’s responses
(for example, the learner might need to give a nu-
meric quantity). The instructors also anticipate the
learner’s possible answers, the corresponding feed-
back, and the next problems that the learner must
address. In addition, the language uses elements’

Markup is the text that we add to a document to convey
information about it. When the markup identifies a docu-
ment’s logical structure instead of representing a processing
instruction or formatting command, we call it descriptive. We
can represent this logical structure using descriptive tags that
delimit the document’s logical elements. These elements can
also have lexical attributes attached that convey additional
information. Because elements can in turn contain other ele-
ments, the structure of a document that we represent with de-
scriptive markup is usually tree-like.

A descriptive markup language is a set of rules that de-
scriptively govern the markup of documents of a particular
type. We can use metalanguages such as SGML or XML
when we define a descriptive markup language. These meta-
languages let us formally define the syntax of a particular de-
scriptive markup language using a document grammar. They

also govern how to apply the markup to the document data.
SGML and XML incorporate a built-in grammatical formalism
called a DTD (document type definition).

XML practitioners have defined many other alternative,
more powerful formalisms for document grammars. One ex-
ample is XML schema.

Further readings on this topic are available elsewhere.1−3

References
 1. J.H. Coombs, A.H. Renear, and S.J. DeRose, “Markup Systems and the

Future of Scholarly Text Processing,” Comm. ACM, vol. 30, no. 11, 1987,
pp. 933−947.

 2. C.F. Goldfarb, “A Generalized Approach to Document Markup,” ACM
Sigplan Notices, vol. 16, no. 6, 1981, pp. 68−73.

 3. A. Renear, E. Mylonas, and D. Durand, “Refining Our Notion of What
Text Really Is: The Problem of Overlapping Hierarchies,” Research in Hu-
manities Computing, S. Hocky and N. Ide, eds., Oxford Univ. Press, 1986.

Descriptive Markup Languages

These initiatives have influenced our document-oriented approach:

HyTime, a sophisticated SGML application for producing hypermedia: ISO/IEC Standard
10744, Hypermedia/Time-based Structuring Language (HyTime), 2nd ed., ISO, 1997.
The literate programming paradigm, initially proposed by Donald E. Knuth, which combines
human-readable documentation with machine-readable source code in a single document:
D.E. Knuth, “Literate Programming,” Computer J., vol. 27, no. 2, 1984, pp. 97−111.
Jargons, an approach to software development that conceives of domain-specific languages
as markup languages: L.H. Nakatani and M. Jones, “Jargons and Infocentrism,” Proc. 1st
ACM Sigplan Workshop Domain-Specific Languages (DSL 97), ACM Press, 1997, pp. 15−24.
Work in program generation—in particular, J. Craig Cleaveland’s work on building pro-
gram generators with XML and Java technologies: J.C. Cleaveland, Program Generators
with XML and Java, Prentice Hall, 2001.
IMS e-learning specifications, such as Question and Test Interoperability and Simple Se-
quencing, that provide domain-specific markup languages describing different aspects of
an e-learning system: www.imsglobal.org.

■

■

■

■

■

Related Work in Document-Oriented Approaches

70	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

lexical attributes to describe other pedagogically
relevant application features (for example, the time
interval between two speech acts, when an answer
is appropriate depending on a counter’s value, or
presentation data such as the color and size of a
speech’s font).

In the second step, the instructors use the
<e-tutor> language to produce an <e-tutor> doc-
ument, which describes the tutoring system.

Finally, in the third step, the developers build
and maintain an <e-tutor> application kernel. As
the kernel acts on an <e-tutor> document, it yields
the tutoring system.

Figure 1 summarizes the document-oriented

approach in <e-tutor> and outlines the <e-tutor>
language’s document grammar. For the sake of
conciseness, we use an XML DTD (document type
definition) instead of an XML schema. This sample
also shows a document fragment describing part of
a simple tutoring system on elementary arithmetic,
which we adapted from Alfred Bork.3

the application kernel
This kernel combines an object-oriented do-

main-specific application framework with an appli-
cation generator. The generator processes marked
documents and generates the application as an in-
stantiation of the framework. Using a generator is

Document grammar of the <e-tutor> language

<!ELEMENT Tutorial (Features?,Problem+)>
<!ATTLIST Tutorial start IDREF #REQUIRED%presentAttrs;>
<!ELEMENT Problem ((Text|Image)+,QuestionPoint)>
<!ATTLIST Problem id ID #REQUIRED>
<!ELEMENT Text (#PCDATA)>
<!ATTLIST Text delay NMTOKEN "1" %presentAttrs;>
<!ELEMENT Image (#PCDATA)>
<!ATTLIST Image location CDATA #REQUIREDdelay NMTOKEN "1">
<!ELEMENT QuestionPoint (Input,Answer+, AnotherAnswer?)>
<!ELEMENT Input (#PCDATA|Feature)*>
<!ATTLIST Input %presentAttrs; type CDATA #REQUIRED>
<!ELEMENT Feature (#PCDATA)>
<!ATTLIST Feature name CDATA #REQUIRED>
<!ELEMENT Answer (Response, Feedback+)>
<!ELEMENT AnotherAnswer (Feedback+)>
<!ELEMENT Response (#PCDATA)>
<!ATTLIST Response %presentAttrs;>
<!ELEMENT Feedback ((Text|Image)+,TryAgain?)>
<!ATTLIST Feedback next IDREF #IMPLIEDcounter NMTOKENS #IMPLIED>
<!ELEMENT Features (#PCDATA | Feature)*>
<!ELEMENT TryAgain EMPTY>
<!ENTITY % colors "(black | red | yellow | blue | green | white | pink | orange)">
<!ENTITY % presentAttrs
 "bold (yes|no) #IMPLIED
 italic (yes|no) #IMPLIED
 fontSize NMTOKEN #IMPLIED
 backgroundColor %colors; #IMPLIED
 foregroundColor %colors; #IMPLIED">

<Tutorial start="p1" fontSize="1.5" foregroundColor="yellow">
 <Features>
 <Feature name="blackboardColor">black</Feature>
 </Features>
 <Problem id="p1">
 <Text>Let's add!</Text>
 <Text italic="yes">What is 5+7</Text>
 <QuestionPoint>
 <Input type="number" foregroundColor=”red”/>
 <Answer>
 <Response>12</Response>
 <Feedback next="p2">
 <Image location="imgs/happy.jpg"/>
 <Text>Exactly! Let's go with the next Problem</Text>
 </Feedback>
 </Answer>
 <AnotherAnswer>
 <Feedback next="p1" counter="First time">
 <Text>This is not ok</Text>
 <Text>Try it again!</Text>
 <TryAgain/>
 ...
</Tutorial>

Instructors

Developers

An <e-tutor> document

<e-tutor>
application

kernel

An <e-tutor> tutoring system

Figure 1. The document-
oriented approach in
<e-tutor>.

	 March/April 2008 I E E E S o f t w a r E 	 71

similar to using any component driven by XML
documents (for example, general-purpose XSLT
transformation engines or domain-specific valida-
tion engines such as jCAM). We base our genera-
tors on the main concepts behind attribute gram‑
mars, a classical tool in language processing (see the
“Attribute Grammars” sidebar). Generators turn
application documents into document trees, which
explicitly represent the hierarchical structures of
these marked-up documents. Then they add se-
mantic attributes to each of the document tree’s ele-
ment nodes (which correspond to the document’s
logical elements) and provide semantic functions to
compute these attributes’ values. Finally they gen-
erate the applications by evaluating these semantic
attributes.

This approach facilitates the incremental con-
struction of the application kernel. Indeed, in any
realistic application domain, the application lan-
guage will evolve to accommodate new features.
Therefore, the application kernel must evolve in
accordance. We can use good practices in object-
oriented software development to manage the ap-
plication framework’s evolution. In turn, the con-
cepts behind the attribute grammar paradigm also
facilitate the evolution of the generation part. They
let us decompose the generation problem in small,
affordable computations on well-defined patterns
in the document trees. Besides, because we don’t
have to make the execution order of these computa-
tions explicit, the resulting designs are more declar-
ative and maintainable than a typical ad hoc XML
processing program. We can easily extend a design

to accommodate new features or new extensions in
the application language. We can also add new se-
mantic attributes as well as redefine and extend the
computations of the exiting ones.

The kernel’s internals. Figure 2 presents an applica-
tion kernel’s internal architecture. The exact nature
of the application framework depends on the par-
ticular application domain. The generator includes
three components:

The parser receives the application language’s
document grammar and the application docu-
ment as input and produces the corresponding
document tree. Only a valid document with re-
spect to that grammar will describe legitimate
applications.
The semantic factory formalizes, in terms of
semantic attributes and functions, the meaning
of each element that the experts and develop-
ers define in the document grammar. Notice
the difference between the declarative lexical
attributes in the document grammar and the
semantic attributes that formalize the applica-
tion document’s operational semantics. Like
the application framework, semantic factories
are specific to each application domain.
The semantic tree builder receives the docu-
ment tree and the semantic factory as input and
produces a semantic tree made up of semantic
nodes, each corresponding to an element node
in the document tree. In turn, each seman-
tic node holds a set of semantic attributes. Fi-

■

■

■

Language designers usually use context-free grammars to
describe the syntax of computer languages. These grammars
include a set of syntax rules describing the language’s differ-
ent syntactic constructs. Using a context-free grammar for a
language, it’s possible to describe the syntactic structure of
each sentence in the language with a parse tree for the sen-
tence. The tree’s leaves are the primitive syntactic elements in
the sentence. Inner nodes correspond to applications of the
syntax rules.

Attribute grammars extend context-free grammars to al-
low the description of additional aspects beyond syntax (for
example, type constraints or translation into object code).
An attribute grammar adds a set of semantic attributes to
the symbols of the underlying context-free grammar and a
set of semantic equations to each syntax rule. These equa-
tions indicate how to compute some attributes’ values (that
is, how to evaluate the attributes). For this purpose, equa-
tions apply semantic functions to other attributes in the syntax

rule. As a consequence, they also introduce some dependen-
cies between attributes: when we use one set of attributes to
evaluate another attribute, we say that this attribute depends
on that set. All these dependencies let us draw a dependency
graph for each parse tree. The attribute evaluation order
must be compatible with the dependency graph. Researchers
on attribute grammars have developed many techniques to
produce evaluators that ensure such compatibility.

For more details, see Donald E. Knuth’s original work1 and
Jukka Paakki’s survey.2

References
 1. D.E. Knuth, “Semantics of Context-free Languages,” Mathematical Systems

Theory, vol. 2, no. 2, 1968, pp. 127–145; correction published in Math-
ematical System Theory, no. 5, no. 1, 1971, pp. 95–96.

 2. J. Paakki, “Attribute Grammar Paradigms—A High-Level Methodology
in Language Implementation,” ACM Computing Surveys, vol. 27, no. 2,
1995, pp. 196–255.

Attribute Grammars

72	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

nally, each semantic attribute holds a semantic
function for computing the attribute’s value,
a variable for storing its result, and a marker
(this marker is “on” when the attribute has a
value assigned, and “off” otherwise). Typically,
semantic functions perform appropriate instan-
tiation actions on the application framework
and return references to the resulting objects.
Also, these functions often consult other attri-
butes’ values. This supposes an implicit encod-
ing of the dependencies between the semantic
tree’s semantic attributes.

The goal of the semantic tree is to instantiate the
application framework to produce the final applica-
tion. Indeed, the semantic attributes in such a se-
mantic tree will typically refer to partial fragments
of the application during its generation. The appli-
cation kernel usually requires an attribute value in
the tree’s root, which will finally refer to an object
representing the whole application. The attribute
evaluation process will take care of the rest. In this
process, when a semantic node receives the request
to get a semantic attribute’s value, the node does
one of two things:

If the marker is on, it obtains the variable’s
content.
If the marker is off, it invokes the semantic
function, then stores the resulting value in the
variable, and turns the marker on. This pre-
vents the reevaluation of the semantic function
if the node receives the request again.

Application kernels reuse the same parser and

■

■

semantic tree builder. So, to build a particular
application kernel, developers must only provide a
suitable implementation of the application frame-
work, a suitable semantic factory defining the docu-
ment grammar’s operational semantics, and a main
program gluing everything together.

The generation framework. In constructing appli-
cation kernels, developers can benefit from using
a suitable framework for developing generators.
Based on our previous experiences with the docu-
ment-oriented approach, we built one such frame-
work with Java as the implementation language.
We constructed it on top of DOM (the W3C Docu-
ment Object Model specification for the tree-based
processing of XML documents) and JAXP (the
Java API for XML Processing, which lets us con-
nect with an underlying XML parsing framework
in a transparent way). We also used Java’s reflection
API to facilitate the development of semantic facto-
ries. Figure 3 depicts the framework’s most relevant
components, including external ones (shown in or-
ange). For the sake of conciseness, we omit details
concerning package organization and exception
handling as well as other minor accessory classes.

The framework lets developers implement se-
mantic functions as Java methods and package them
in a Java class that we’ll call a semantic module.
They must annotate these methods with ForAttribute
annotations (the elements property identifies the set
of elements to which the method applies, and the
attribute property the semantic attribute). They also
can derive these modules from the BaseSM class to
make all the contextual information of the corre-
sponding semantic node available to those meth-

Application

Document tree

Semantic tree

Application framework Generator

Application kernelDocument
grammar

Application
document

Semantic tree
builder

Parser

Semantic attributes

Semantic
 factory

Semantic node

Figure 2. Architecture
of an application kernel.

	 March/April 2008 I E E E S o f t w a r E 	 73

ods. Then they must turn this semantic module
into a semantic factory, which must follow the
SemanticFactory interface. For this purpose, they can
use the SemanticFactoryImpl class, which provides the
appropriate reflective support. In providing the
rest of the generator, they can use the Parser and
the SemanticTreeBuilder classes. The Parser class imple-
ments the parser component in terms of a JAXP’s
DocumentBuilder, the basic JAXP component for build-
ing DOM trees. The SemanticTreeBuilder class imple-
ments the semantic tree builder component, and,
besides building the semantic tree, it registers the
corresponding semantic node as a user property of
each element node. This makes the semantic node
accessible to any other component.

The rest of the components represent semantic
trees. We represent the nodes in these trees with the
SemanticNode class. This class includes an operation for
consulting the associated element (element method).
This also includes operations to get and set the se-
mantic nodes associated with the parent, the child
and sibling elements, as well as the node’s position
in the array of siblings. It lets semantic functions ac-

cess the semantic information of the parent, child,
and sibling nodes in a straightforward way. As in
many implementations of attribute grammars,
we also consider remote dependencies with other
nodes’ semantic attributes. For this purpose, we
equip this class with two operations that are useful
in establishing such dependencies. Remote depen-
dencies naturally arise with nodes for elements with
a unique identifier. Indeed, we allow the recovery of
the semantic nodes associated with such elements
(getNodeById method). We also allow the recovery
of the semantic node for any other element (nodeFor
method). This is useful when dealing with other
kinds of remote dependencies (for instance, with
attributes for the root). Finally, the SemanticNode class
also includes an operation to consult the seman-
tic attributes’ value (valueOf method) and an opera-
tion to register those semantic attributes (addAttribute
method). The Attribute class represents the semantic
attributes. To instantiate this class, we must pro-
vide a semantic function, which is characterized by
SemanticFunction interface. The SemanticFunctionImpl imple-
mentation is for use in the SemanticFactoryImpl class.

builds
SemanticTreeBuilder

+SemanticTreeBuilder(SemanticFactory f)
+SemanticNode build(Document d)

SemanticFactoryImpl

java.lang.Class

+SemanticFactoryImpl(ClassSemanticModule)
+SemanticNode semanticNodeFor(Element e)

introspects

has metaclass

BaseSM
+BaseSM(SemanticNode sn)
+SemanticNode parent()
+SemanticNode[] children()
+SemanticNode[] siblings()
+int position()
+SemanticNode getNodeById (String id)
+SemanticNode nodeFor(Element e)
+Object valueOf(String attribute)
+Element element()

<<interface>>
SemanticFactory

+SemanticNode semanticNodeFor(Element e)

Parser
+Document parse(String loc)

annotates

<<@interface>>
ForAttribute

+String[] elements()
+String attribute()

has context

has context

SemanticFunctionImpl
+SemanticFunctionImpl(Object semCtx, Method m)
+Object value()

Attributesupports

is implemented by

*

*

*

+Object valueOf()

SemanticNode
+SemanticNode(Element e)
+Element element()
+void setParent(SemanticNode parent)
+void setChildren(SemanticNode[] children)
+void setSiblings(SemanticNode[] sibling)
+void setPosition(int position)
+SemanticNode parent()
+SemanticNode[] children()
+SemanticNode[] siblings()
+int position()
+SemanticNode getNodeById (String id)
+SemanticNode nodeFor(Element e)
+Object valueOf(String attribute)
+void addAttribute(String attribute, SemanticFunction sf)

children ofparent of

builds semantic
tree for <<interface>>

org.w3c.dom.Document

<<interface>>
org.w3c.dom.Element

<<abstract>>
java.xml.parsers.
DocumentBuilder

siblings
of

<<interface>>
SemanticFunction +Attribute(SemanticFunction sf)

+Object valueOf()

associated
to

java.lang.
reflect.Method

Figure 3. The
generation framework’s
main components.

74	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

An example
Let’s consider the construction of the <e-tutor>

application kernel. As for any other kernel, we
must provide an appropriate application frame-
work. We also need to implement an application
generator that can translate <e-tutor> documents
into suitable instantiations of this framework. To
do so, developers start with a higher-level design
based on the main concepts behind the attribute
grammar paradigm; then they implement this de-
sign as a semantic module.

the application framework
Figure 4 outlines the application framework

for this kernel. We represent the <e-tutor> struc-
ture’s main elements as classes, using the Java
Swing API. The ETTutorial class stands for the entry
point into tutoring systems in general. The ETTuto-
rialElement class is the base for the various elements

that tutoring systems can encompass. The classes
ETImage and ETText represent the basic speech acts.
They are temporized tutorial elements: playing
them implies visualizing them and waiting some
time before moving to the next tutorial element.
The base class ETTemporizedTutorialElement takes care
of this common behavior. The ETQuestionPoint class
deals with testing learners’ knowledge. The class
ETAbstractAnswer abstracts the common behavior for
the answers: incrementing the associated counter
and setting the first speech act of the correspond-
ing feedback as the active one in the tutorial. The
ETAnswer and the ETDefaultAnswer classes respectively
represent conventional and by-default answers.
We also introduce basic interfaces for provid-
ing input methods (ETInput and ETInputContinuation).
Finally, ETInputFactory lets developers build input
methods from an input method’s type and a set of
configuration parameters.

+void setTitle(String title)
+void setLabelEndButton(String label)
+void setBlackboardColor(java.awt.Color c)
+void setLogoLocation(String loc)
+void setInitialTutorialElement(ETTutorialElement te)
+void setNextTutorialElement(ETTutorialElement te)
+void run()

ETTutorial

+void setNextElement(ETTutorialElement te)
+abstract javax.Swing.JComponent play()
+abstract void requestFocus()

<<abstract>>
ETTutorialElement

next
belongs to

+void setDelay(int d)
+void setTutorial(ETTutorial t)
+javax.Swing.JComponent play()
+void requestFocus()
+javax.Swing.JComponent play()
+abstract javax.Swing.JComponent present()

<<abstract>>
ETTemporizedTutorialElement

<<abstract>>
ETAbstractAnswer

+void setNumberOfAnswers(int n)
+void setAnswer(int i, ETAbstractAnswer a)
+void setInput(ETInput i)
+void next(String answer)
+javax.Swing.JComponent play()

+void setNumberOfFeedbacks(int i)
+void setFeedback(int i, ETTutorialElement f)
+void setTutorial(ETTutorial t)
+void next()
+abstract boolean match()

<<interface>>
ETInputContinuation

+void next(String input)

ETDefaultAnswer
+boolean match()

ETAnswer
+setResponse(String r)
+boolean match()

ETQuestionPoint

+void setText(String text)
+void setBackgroundColor(java.awt.Color c)
+void setForegroundColor(java.awt.Color c)
+void setFontStyle(int style)
+void setFontScaleFactor(double f)
+void javax.Swing.JComponent present()

ETText
+void setLocation(String loc)
+void javax.Swing.JComponent present()

ETImage

+void javax.Swing.JComponent play()
+void setInputContinuation(ETInputContinuation ic)
+void requestFocus

<<interface>>
ETInputproduces

continues execution with

gives feedback with

*

+ETInput inputFor(String type, java.util.Map<String, String>params)

ETInputFactory

Figure 4. Main
components of the
application framework
in <e-tutor>.

	 March/April 2008 I E E E S o f t w a r E 	 75

In our <e-tutor> environment, we designed the
different components to be easily customizable; we
included a set method for each relevant feature. We
also designed the framework to facilitate its exten-
sion for each particular application scenario. In-
deed, developers of tutoring systems typically pro-
vide input methods to meet instructors’ specific
requirements.

the generator
One way to design a generator is to describe in

a document how to associate semantic attributes
with the document trees’ nodes and how to com-
pute these attributes’ values. This document would
be made up of several entries, each containing

a fragment of the language’s grammar,
a set of tree patterns representing this grammar
fragment and incorporating the semantic attri-
butes, and
the semantic functions to use in computing each
semantic attribute.

Figure 5 outlines one of these entries for the
<e-tutor> generator’s design document:

The top line in the figure shows the fragment of
the language’s grammar describing the syntax

■

■

■

■

structure of the relevant element (QuestionPoint in
this example).
The middle line shows the corresponding tree
pattern and the associated semantic attributes
for the previous grammar’s fragment. When an
attribute B depends on an attribute A, we draw
an arrow starting at A and finishing at B. There-
fore, arrows in the resulting dependency graph
suggest information flow during the computa-
tion of the semantic attributes.
At the bottom of the figure and for each attri-
bute with an incoming arrow, we outline the
semantic equations by indicating the relevant
semantic attributes and the pseudocode of the
semantic functions that calculate these attri-
butes’ values.

We can easily encode this design using our gen-
eration framework. Each equation yields a method
in the resulting semantic module (see figure 6).

T he document-oriented approach comple-
ments conventional software development
approaches; it doesn’t substitute for them.

A key aspect of the approach is to find a good bal-
ance between the expressivity of markup languages
and their usability by experts. We also assume that

■

■

Question point

tutorialElement initialTutorialElement

?
+ AnswerAnswerInput

AnswerInput

<!ELEMENT QuestionPoint (Input, Answer+, AnotherAnswer?)>

QuestionPoint.tutorialElement = {
 qp = QuestionPoint.initialTutorialElement
 qp.setInput(Input.input)
 qp.setNumberOfAnswers(number of elements in [Answer,...,Answer,AnotherAnswer?])
 for i=0 to (number of elements in [Answer,...,Answer,AnotherAnswer?]) - 1
 qp.setAnswer(i, [Answer,...,Answer,AnotherAnswer?]i.answer)
 return qp
}

 QuestionPoint.initialTutorialElement = new ETQuestionPoint()

Another
answer

AnswerAnswer

Figure 5. A design
document fragment in
the <e-tutor> generator.

76	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

the approach would have high costs for setting up
the initial production environment. The develop-
ment team would need to design suitable markup
languages and provide application kernels. Never-
theless, the production team would rapidly amor-
tize this cost with successive production and mainte-
nance iterations. Besides, the effort can also pay off
with the development of similar new applications.
Finally, the smart use of a generation framework
can decrease overall implementation effort.

Acknowledgments
Spain’s Department of Education and Science sup-

ported this work through the OdA Virtual project
grant no. TIN2005-08788-C04-01 and the Adap-
taLearn project grant no. TIN2007-68125-C02-01.
The Santander/UCM grant no. 2007/1725 also sup-
ported part of the development.

References
 1. J.L. Sierra, A. Fernández-Valmayor, and B. Fernández-

Manjón, “A Document-Oriented Paradigm for the Con-
struction of Content-Intensive Applications,” Computer
J., vol. 49, no. 5, 2006, pp. 562−584.

 2. M. Mernik, J. Heering, and A.M. Sloane, “When and
How to Develop Domain-Specifi c Languages,” ACM
Computing Surveys, vol. 37, no. 4, 2005, pp. 316−344.

 3. A. Bork, Personal Computers for Education, Harper &
Row, 1985.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

public class ETutorSM extends BaseSM {
 public static void setInputFactory(ETInputFactory inputFactory) {...}
 public ETutorSM(SemanticNode sn) {super(sn);}
 @ForAttribute(elements={“Tutorial”},attribute=“initialTutorial”)
 public Object initialTutorialOfTutorial() {...}
 @ForAttribute(elements={“Tutorial”},attribute=“tutorial”)
 public Object tutorialOfTutorial() {...}
 ...
 @ForAttribute(elements={“QuestionPoint”},attribute=“tutorialElement”)
 public Object tutorialElementOfQuestionPoint() {
 ETQuestionPoint qp = (ETQuestionPoint)valueOf(“initialTutorialElement”);
 qp.setInput((ETInput)children()[0].valueOf(“input”));
 qp.setNumberOfAnswers(children().length-1);
 for(int i=1; i < children().length; i++)
 qp.setAnswer(i-1,(ETAbstractAnswer)children()[i].valueOf(“answer”));
 return qp;
 }
...
}

Figure 6. Implementation of the <e-tutor> generator’s semantic
module (excerpt).

About the Authors
José Luis Sierra is an associate profes-
sor in the Department of Software Engineering
and Artifi cial Intelligence at Complutense Uni-
versity of Madrid and a member of e-UCM, the
e-learning research group at UCM (www.e-ucm.
es). His research interests include e-learning
technologies, domain-specifi c languages, and
markup languages. He received his PhD in
com puter science from UCM. Contact him at

Fac. Informática, UCM, C/ Profesor José García Santesmases s/n, 28040
Madrid, Spain; jlsierra@fdi.ucm.es.

Alfredo Fernández-Valmayor is
an associate professor in the Department of
Software Engineering and Artifi cial Intelligence,
the scientifi c head of the Virtual Campus, and a
coleader of the e-learning research group, all at
Complutense University of Madrid. His research
focuses on the educational uses of markup
languages and the development and authoring
of educational materials for Web-based edu-
cational systems. He received his PhD in physics from the UCM. Contact
him at Fac. Informática, UCM, C/ Profesor José García Santesmases s/n,
28040 Madrid, Spain; valmayor@fdi.ucm.es.

Baltasar Fernández-Manjón is an
associate professor in the Department of Soft-
ware Engineering and Artifi cial Intelligence,
the vice dean of research and foreign relation-
ships at the Computer Science School, and a
co leader of the e-learning research group,
all at Complutense University of Madrid. His
research interests are e-learning technologies,
educational uses of markup technologies, appli-

cation of educational standards, and user modeling. He received his PhD in
physics from UCM. Contact him at Fac. Informática, UCM, C/ Profesor José
García Santesmases s/n, 28040 Madrid, Spain; balta@fdi.ucm.es.

Questions?
Comments?

IEEE Software
wants to hear

from you!

 software@computer.orgEm
ai

l

