
A Document-Oriented Approach to the Development of
Knowledge Based Systems1

José L. Sierra, Baltasar Fernández-Manjón, Alfredo Fernández-Valmayor, Antonio
Navarro

Dpto. Sistemas Informáticos y Programación. Fac. Informática. Universidad Complutense.
28040. Madrid. Spain

{jlsierra, balta, alfredo, anavarro}@sip.ucm.es

Abstract. ADDS (Approach to Document-based Development of Software) is
an approach to the development of applications based on a document-oriented
paradigm. According to this paradigm, applications are described by means of
documents that are marked up using descriptive domain-specific markup
languages. Afterwards, applications are produced processing these marked up
documents. Formulation of domain-specific markup languages in ADDS is a
dynamic and eminently pragmatic activity since these languages evolve in
accordance with the authoring needs of the main actors that participate in the
development process (i.e. domain experts and developers). OADDS
(Operationalization in ADDS) is a processing model that promotes the
construction of modular language processors and their incremental evolution.
Thus, OADDS is specifically designed to cope with the evolutionary nature of
the domain-specific markup languages encouraged by ADDS. ADDS and
OADDS have successfully been applied to the development of applications in
knowledge-intensive domains (i.e. transport networks and educational
hypermedias). This paper also describes the advantages (incremental
development and maintenance improvement) that this approach supposes for
the development of knowledge-based systems.

1 Introduction

The development of applications in general, and of Knowledge-based Systems
(KBSs) in particular, can be considered as a linguistic activity arising from the
collaboration between the clients that have a problem to be solved, the domain experts
with the knowledge required to solve that problem, the developers building the
application, and the final users. Indeed, looking for ways to facilitate the
communication between all the actors in this process is essential in order to guarantee
a successful development. This is particularly true in the development of KBSs,
where communication between clients, knowledge engineers and developers has
always been considered to be critical.

1 The Spanish Commitee of Science and Technology (TIC2000-0737-C03-01, TIC2001-1462 and

TIC2002-04067-C03-02) has supported this work.

2 Sierra, Fernández-Valmayor, Fernández-Manjón, Navarro

This paper describes our approach for application development, which we called
document-oriented paradigm, and its specialization in the development of KBSs.
According to this paradigm, the building of an application begins by describing the
application using one or more documents, marking up these documents using a
domain-specific markup language, and finally, producing the application using a
suitable processor for this language. Thus, the development of a KBS using this
paradigm implies the provision of a document written in a natural language subset.
This document contains the knowledge that is going to be managed by the system.
Then, tags and attributes are pragmatically added to this document in accordance with
a previously defined markup language. These tags and attributes make the data and
knowledge structures relevant to the inference engine explicit. Finally, the inference
engine for the KBS is conceived as a processor driven by the markup.

The ADDS approach (Approach to Document-based Development of Software) is
an implementation of the document-oriented paradigm where the document types and
the languages used to markup them up evolve incrementally according to the needs of
domain experts and developers. OADDS (Operationalization in ADDS) is a
processing model for ADDS documents that introduces mechanisms used in the
production of modular processors to adapt to the evolutionary nature of languages in
ADDS.

The rest of this paper is structured as follows. Section 2 describes the development
of KBSs according to the document-oriented paradigm. Section 3 describes ADDS,
the approach that implements this paradigm. Section 4 describes OADDS, the
operationalization model of ADDS. Section 5 describes some related work. Finally,
section 6 presents the conclusions and gives some ideas for future work.

2 The Development of KBSs using the Document-oriented
Paradigm

Documents play an important role in human communication. Therefore, the adoption
of a document-oriented paradigm for the development of applications must be seen as
a plausible alternative that could alleviate the communication problems arising among
the different actors engaged in the software development process.

The development and maintenance of KBSs is particularly sensible to these
communication problems. Indeed, the knowledge acquisition problem is a critical
aspect of this type of system. The model-based approaches that arose during the
nineties (see [16] for a survey) conceive the solution to this problem as the explicit
formulation of a knowledge model capable of identifying and structuring the different
types of knowledge required to solve a problem, together with the roles played by
these types of knowledge in the reasoning process. Nevertheless, these approaches
usually distinguish between the model and its subsequent implementation. This means
that for the participants either an initially complete model is provided (and this is not
realistic even for little toy domains), or they must cope with the maintenance
problems derived from the translation of model changes into the implementation. This
scenario is similar to that arising in the domain of educational applications [5].

A Document-Oriented Approach to the Development of Knowledge-based Systems 3

The document-oriented paradigm gives a pragmatic solution to the maintenance
problem in the construction of model-based KBSs. Indeed, according to this
paradigm:
- The model leads to different domain-specific languages for describing the different
types of knowledge. Actually, these languages are suitable subsets of the natural
language similar to those used by the domain experts (see Fig.1a). This similarity
facilitates the experts’ elicitation of knowledge as documents in natural language.
- Then, using descriptive domain-specific markup languages the structure of this
knowledge is made explicit. Thus, documents marked using these languages are
prepared for their automatic processing (see Fig.1b). This initial markup can be
performed by the developers. But because of the simplicity and legibility of the
descriptive markup, domain experts can understand these documents, and they can
directly modify the knowledge described in them (the contents of such documents),
and with the help or supervision of the developers, they could even extend the
language by adding new tags (either directly or using a specific edition tool).

Jam Problem in Incorporation to M30.
The speed registered by the sensor S1 is low,
the speed registered by S2 also is low,
but the speed registered by S3 is normal.

(a)

(b)

<pattern>
 <name>Jam Problem in Incorporation to M30.<name>
 <body>
<and><measure>The <type>speed</type> registered by the sensor <sensor>S1</sensor> is <value>low</value></measure>,
<measure>the <type>speed</type> registered by <sensor>S2</sensor> also is <value>low</value></measure>,
but <measure>the <type>speed</type> registered by <sensor>S3</sensor> is <value>normal</value></measure>.</and>
 <body>
</pattern>

Fig. 1. (a) Knowledge about an anomalous situation pattern in a traffic network, (b) markup of
the knowledge expressed in (a).

- The developers, in turn, can include additional operational contents oriented to
make the final processing of the knowledge possible. Examples of this situation are
problem–solving methods written in some suitable formal language or knowledge
transformations given as document transformations.
- Finally, the implementation of the KBS is obtained building a suitable processor for
the markup language used in the pragmatic markup of the document.

With the document-oriented paradigm, the implementation–model duality
disappears, collapsing into documents where the knowledge provided by the experts
and other additional knowledge mix together. Tags, attributes and structure are added
by the developers and domain experts to make document processing possible. In
addition, the use of descriptive markup facilitates the incremental evolution of the
languages and documents. These domain-specific markup languages are not static,
unmovable entities, but they can evolve according to changes in the needs of experts
and/or developers, or when new markup needs are discovered as a consequence of
model evolution.

4 Sierra, Fernández-Valmayor, Fernández-Manjón, Navarro

Fig. 2 sketches the structure of a KBS according to the document-oriented
paradigm. Such a structure is a generalization of the one arising in the arena of
electronic document processing based on descriptive markup technologies [6].

Knowledge

Structure

Processing

Fig. 2. Organization of a KBS according to the document-oriented paradigm.

The next sections analyze how to adapt the pragmatic nature of the document-
oriented paradigm, either in the formulation of markup languages, or in the
construction of the processors for such languages.

Application
Contents

Markup

developers Description of
the Markup
Language

Application
Document

Application
Construction

developers

 Application

Maintenance

experts developers

Application Conception

experts developers

Fig. 3. Participants, activities and products in ADDS.

3 The ADDS Approach

ADDS [13] is an implementation of the document-oriented paradigm that is mainly
driven by the authoring needs of the people involved in the process of documenting
the applications (domain experts and developers). Fig. 3 sketches the different

A Document-Oriented Approach to the Development of Knowledge-based Systems 5

products, participants and activities involved in ADDS. The next subsections detail
each of these aspects.

3.1 Participants

ADDS distinguishes two types of participants in the application development:
- Domain experts. They are responsible for the provision and maintenance of the
application contents. In the KBS domain, they are the experts that provide the
different types of knowledge that will finally be included in the system.
- Developers. They are responsible for building the final application. In the KBS
domain, the range of developers includes, from knowledge engineers that design the
knowledge models, to programmers developing the inference engine and other
software needed to produce the executable application.

According to the document-oriented paradigm, the interaction between these
participants is mediated by the final document to be produced (application document).
For instance, during the initial stages of the development, developers interact with
domain experts to decide the type and the form of the contents to be included in the
application documentation. In addition, developers mark up these contents and assist
the domain experts during the maintenance of the marked up document.

3.2 Products

According to ADDS, application construction involves the following types of
products:
- The contents integrated in the application document.
- The application document produced by marking up such contents with tags and
attributes.
- The description of the specific markup language used for the markup process of
such contents.
- The final application produced by processing the application document.

3.3 Activities

ADDS identifies the following activities in the application production:
- Initial application conception. In this activity, the domain experts, assisted by the
developers, conceive and produce an initial description of the application to be built.
In the KBS construction, the developers help the experts to informally define the set
of documents required to describe all the knowledge needed by the system.
- Markup. In this activity, the developers decide how to mark up the application
contents documents to obtain the application document. As a result, an explicit
description of the markup language (given by an schema or DTD) is produced,
together with the application document marked up with this language. Note that
because the iterative nature of ADDS, the markup language can evolve to
accommodate newly identified markup needs.

6 Sierra, Fernández-Valmayor, Fernández-Manjón, Navarro

- Application construction. In this activity, the developers produce the application
from the application document. During this activity, developers can add new
operational contents to the document and mark up such contents. Finally, they
produce the application following the OADDS model introduced in the next section.
- Maintenance. In this activity, the experts, assisted by the developers, perform
suitable modifications on the marked contents. These modifications are driven by the
evaluation of the application produced at previous stages. The domain experts can
even master the markup language, thus being able to use this language to add new
markup. This situation is promoted by the use of descriptive markup, focused on
content structure, and providing domain significant tag names and attributes. In
addition, during this activity the need for introducing new contents may arise (in the
case of a KBS, to introduce new knowledge as a consequence of an evolution in the
model). Therefore, this will mean an evolution in the markup language used. This
evolution will be done by developers and approved by domain experts.

4 The OADDS Operationalization Model

 Operational Components
Repository

Provision of the
Processor

Markup
Language

Description
Application Construction

Application
Document

Application

Processor

Fig. 4. Products and activities in OADDS.

OADDS is the operationalization model used in ADDS to produce applications from
marked documents. OADDS is based on the classical techniques of construction of
language processors based on syntax-directed translation [1]. Thus, OADDS
conceives operationalization as the processing of the application document with an
appropriate language processor, that is, a processor specifically built for the markup
language used to mark up the application document. But, because of the evolutionary
nature of the markup languages used in ADDS, OADDS establishes mechanisms to
obtain modular processors from components. These components can be extended and
combined according to the markup language evolution. Despite being independent
from specific implementation technologies, OADDS is naturally implemented as an
object-oriented framework. Finally, the document-oriented paradigm itself can be
applied in the construction of OADDS processors. So, it is possible to describe
processors as a collection of marked documents. The contents of these documents will
be the code associated with the basic semantic actions required during the processing
of the application documents, while the markup will establish how to combine these

A Document-Oriented Approach to the Development of Knowledge-based Systems 7

actions to produce the final processor (in this point of view, OADDS extends and
combines similar approaches used in languages such as YACC and XSL [19]). Thus,
the complete documentation of an application could include not only the document
describing it, but also the documentation of the processor used to process the
application document.

Fig. 4 sketches the different products and activities involved in OADDS. All these
activities are carried out by the developers (their presence is omitted). The following
subsections detail each one of the aspects depicted in Fig. 4.

4.1 Products

In addition to the application document and the description of the language used to
mark up this document, OADDS introduces the processor of this language, together
with a repository of operational components that facilitates the modular construction
and the evolution of this processor.

Document Tree
Construction

Application
Document Document Tree Attributed Tree

Operationalized
Attributed Tree

Tree
Operationalization

Tree Evaluation

Fig. 5. Outline of the information flow in OADDS processors.

Fig. 5 sketches the information flow (that can be implemented in a modular way
using the appropriated operational components) inside the OADDS processors. The
key object of such processing is the attributed tree. Each node of this tree is
associated with a set of attributes, each one having a value. The processing starts
building the tree representing the application document. The construction of this tree
can be carried out using any of the usual parsing frameworks for structured
documents [3]. Next, the processing proceeds with the iteration of the attributed tree
over a tree operationalization stage, followed by a tree evaluation stage. During the
tree operationalization step, each node in the tree is decorated with (i) a controller,
which is a procedure determining the evaluation order for the neighbours of the node,
and (ii) an initializer, an advancer and a finalizer, which are the procedures
organizing the local processing of this node. During the evaluation stage, the
procedures decorating the tree are applied in the right order. Basically, this stage
consists of a tree traversal commanded by the controllers. In this traversal, the
processing procedures are applied in the right order. The modularity of the model is
obtained thanks to the possibility for extending these procedures. The extensions will
be devoted to propagating new attribute values in the tree, and to interrupting the

8 Sierra, Fernández-Valmayor, Fernández-Manjón, Navarro

evaluation when errors or other abnormal conditions are discovered. These adaptation
and extension capabilities are essential in order to simplify the development and
maintenance of complex systems, such as KBSs.

4.2 Activities

OADDS introduces the following two activities into the application development:
- Provision of the processor. In this activity the processor used to execute the
application documented by the application document is provided. Usually such a
processor has been previously constructed for a similar application, so it will be
reused on the new application document. In case the new application document uses
new markup structures, the old processor will be adequately extended by adding new
operational components for dealing with the new structures and with the extensions of
existing ones. Only at the initial stages of the development of a new type of
applications will the implementation of a new processor from scratch be mandatory,
and, even in this case, the provision of operational components that can be reused in
the construction of new processors will pay off in the long run
- Application construction. The application arises as the result of processing the
application document with its processor.

5 Related Work

Descriptive markup languages were introduced as a convenience for the processing of
electronic documents [6]. HyTime [9], an SGML [6] extension devised to deal with
the design and construction of hypermedia applications, demonstrated that in some
domains, these kinds of languages could be used for describing applications in terms
of documents that, in turn, could be processed for building the final application.
Moreover, proposals like DSSSL [8] proved that this document-oriented paradigm
could be used not only for the applications, but also for describing the processors used
to produce the applications. XML [19] and its related technologies have generalized
the use of descriptive markup languages as a standard way for information
interchange between applications and for many other uses. Indeed, there are several
proposals for applying markup languages to the KBSs domain (see [2]). Note that
most of these approaches conceive markup languages as static entities. ADDS takes a
more pragmatic position because markup languages are considered as dynamic
objects that evolve when the contents or the markup needs of these contents change.
OADDS gives an operational solution to this dynamic nature of the languages,
encouraging the construction of modular processors from components that can be
extended and adapted according to markup language evolution.

ADDS shares many features with the approach to software development based on
Domain-Specific Languages (DSLs [17]). The main difference is that, while these
kinds of languages are, in essence, specific purpose programming languages, ADDS
follows a document-oriented paradigm, more suitable for content intensive
applications, such as KBSs, where there is a clear distinction between contents and
the languages used to structure such contents.

A Document-Oriented Approach to the Development of Knowledge-based Systems 9

Modular language processor construction has been popularized by the functional
programming community, where the main approach is based on monads and monads
transformers [7], although proposals in the object-oriented paradigm (based on the
use of mixins [4]), and in the attribute grammar approach to the construction of
language processors can also be found [18]. OADDS semantic modularity
mechanisms are inspired by these proposals, and also resemble the extension
mechanisms of methods in CLOS [15]. Indeed, the extensions of initializers,
advancers and finalizers are similar to the definition of before, around and after
methods in CLOS. In this sense controllers are analogous to primary methods.

ADDS generalizes the methods for the construction of educational applications for
foreign language text compression presented in [5]. ADDS also generalizes the
approach for the generation of hypermedia prototypes from XML documents
describing the hypermedia contents and navigation presented in [10]. Work in
[12][13][14] shows the evolution of ADDS. Initially, in [12][14] this approach was
called DTC (structured Documents, document Transformations and software
Components). The use of this approach for the construction of applications in the
transport networks domain (more precisely, subway networks) is described in [12].
Work in [11] explores its use in the educational hypermedia domain.

6 Conclusions and Future Work

This paper outlines the development of KBSs using a document-oriented paradigm.
According to this paradigm, knowledge is initially described using documents
formulated in the same language used by the domain experts: a subset of the natural
language. Afterwards, domain-specific descriptive markup languages are used to
make the structure of the knowledge described in these documents explicit. This
makes its automatic processing possible. The ADDS approach, together with the
OADDS operationalization model, provides for an implementation of this paradigm.
The pragmatic nature of ADDS supposes the evolutionary nature of these markup
languages, as a response to the dynamic process of determining all the knowledge
needed by KBSs. The modularity and extensibility of the inference engines promoted
by OADDS simplifies the maintenance and the updating of the final application.
Moreover, it also simplifies the development of application families, because, once all
the basic components are made available, it is very simple to produce new related
applications.

As future work it seems interesting to perform a more systematic study about the
markup process applied to knowledge documentation and the cooperation between
domain experts and developers in this process. Also, a study of the viability of
knowledge acquisition tools based on ADDS / OADDS is needed. These tools will
facilitate the edition and the markup processes of knowledge documents.

References

1. Aho, A. Sethi, R. Ullman, J. D. Compilers: Principles, Techniques and Tools. Adisson-

10 Sierra, Fernández-Valmayor, Fernández-Manjón, Navarro

Wesley. 1986.
2. Antonoiou,G.; van Harmelen,F. Web Ontology Language: OWL. In Staab,S.; Studer,R.

Handbook on Ontologies in Information Systems. Springer-Verlag. 2003
3. Birbeck,M et al. Professional XML 2nd Edition. WROX Press. 2001.
4. Duggan, D. A Mixin-Based Semantic-Based Approach to Reusing Domain-Specific

Programming Languages. 14th European Conference on Object-Oriented Programming
ECOOP’2000. Cannes. France. June12-16 2000

5. Fernández-Valmayor, A.; López Alonso, C. Sèrè A. Fernández-Manjón,B. Integrating an
Interactive Learning Paradigm for Foreign Language Text Comprehension into a Flexible
Hypermedia system. IFIP WG3.2-WG3.6 Conference Building University Electronic
Educational Environments. University of California Irvine, California, USA August. 4-6
1999

6. Goldfard, C. F. The SGML Handbook. Oxford University Press. 1990
7. Hudak,P. Domain-Specific Languages. Handbook of Programming Languages V. III:

Little Languages. And Tools. Macmillan Tech. Publishing. 1998
8. International Standards Organization. Document Style Semantics and Specification

Language (DSSSL). ISO/IEC 10179. 1996.
9. International Standards Organization. Hypermedia/Time-based Structuring Language

(HyTime) – 2d Edition. ISO/IEC 10744 . 1997.
10. Navarro, A., Fernández-Manjón, B., Fernández-Valmayor, A., Sierra, J.L. Formal-Driven

Conceptualization and Prototyping of Hypermedia Applications. Fundamental
Approaches to Software Engineering FASE 2002. ETAPS 2002. Grenoble. France. April
8-12. 2002

11. Navarro,A.; Sierra, JL.; Fernández-Manjón, B.; Fernández-Valmayor, A. XML-based
Integration of Hypermedia Design and Component-Based Techniques in the Production
of Educational Applications. In M. Ortega and J. Bravo (Eds). Computers and Education
in the 21st Century. Kluwer Publisher. 2000.

12. Sierra, J. L. Fernández-Manjón, B. Fernández-Valmayor, A. Navarro, A. Integration of
Markup Languages, Document Transformations and Software Components in the
Development of Applications: the DTC Approach. International Conference on Software
ICS 2000. 16th IFIP World Computer Congress. Beijing - China. August 21-25. 2000

13. Sierra, J. L. Fernández-Valmayor, A. Fernández-Manjón, B. Navarro, A. Building
Applications with Domain-Specific Markup Languages: A Systematic Approach to the
Development of XML-based Software. Third International Conference on Web
Engineering ICWE 2003. Oviedo. July 14-18. 2003.

14. Sierra, J. L. Fernández-Valmayor, A. Fernández-Manjón, B. Navarro, A.
Operationalizing Application Descriptions with DTC: Building Applications with
Generalized Markup Technologies. 13th International Conference on Software
Engineering & Knowledge Engineering SEKE'01. Buenos Aires. Argentina. June 13-15.
2001.

15. Steele JR, G.L. Common LISP: The Language (Second Edition). Digital Press. 1990.
16. Studer, R.; Fensel, D.;Decker,S.;Benjamins,V.R: Knowledge Engineering: Survey and

Future Directions. In: F. Puppe (ed.): Knowledge-based Systems: Survey and Future
Directions. Lecture Notes in Artificial Intelligence (LNAI), vol. 1570, Springer-Verlag,
1999.

17. Van Deursen, A. Klint, P.Visser, J. Domain-Specific Languages: An Annotated
Bibliography. ACM SIGPLAN Notices. 35(6). 2000.

18. Van Wyk,E. de Moor, O. Backhouse, K. Kwiatkowski,P. Forwarding in Attribute
Grammars for Modular Language Design. Compiler Construction CC 2002. ETAPS
2002. Grenoble France. April 8-12. 2002

19. www.w3.org/TR

