
Information and Software Technology xxx (2008) xxx–xxx

ARTICLE IN PRESS
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/ locate/ infsof
Original papers

Model-checking for adventure videogames

Pablo Moreno-Ger, Rubén Fuentes-Fernández, José-Luis Sierra-Rodríguez *, Baltasar Fernández-Manjón
Dpto. Ingeniería del Software e Inteligencia Artificial, Facultad de Informática, Universidad Complutense de Madrid, 28040 Madrid, Spain

a r t i c l e i n f o a b s t r a c t
Article history:
Received 8 January 2008
Received in revised form 5 August 2008
Accepted 5 August 2008
Available online xxxx

Keywords:
Adventure games
Domain-specific languages
Verification of games
Model-checking
Temporal properties
0950-5849/$ - see front matter � 2008 Elsevier B.V. A
doi:10.1016/j.infsof.2008.08.003

* Corresponding author. Tel.: +34 913947548; fax:
E-mail addresses: pablom@fdi.ucm.es (P. Moreno

Fuentes-Fernández), jlsierra@fdi.ucm.es (J.-L. Sierra-
(B. Fernández-Manjón).

Please cite this article in press as: P. Mo
doi:10.1016/j.infsof.2008.08.003
This paper describes a model-checking approach for adventure games focusing on he-Adventurei, a plat-
form for the development of adaptive educational adventure videogames. In he-Adventurei, games are
described using a domain-specific language oriented to game writers. By defining a translation from this
language to suitable state-based models, it is possible to automatically extract a verification model for
each he-Adventurei game. In addition, temporal properties to be verified are described using an extensi-
ble assertion language, which can be tailored to each specific application scenario. When the framework
determines that some of these properties do not hold, it generates an animation of a counterexample.
This approach facilitates the collaboration of multidisciplinary teams of experts during the verification
of the integrity of the game scripts, exchanging hours of manual verification for semi-automatic verifica-
tion processes that also facilitate the diagnosis of the conditions that may potentially break the games.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Videogames constitute an increasingly important resource for
entertainment and education from a social and economic point of
view. They provide exciting and engaging experiences that capture
the attention of users and motivate them to solve the challenges
posed by the game [53]. Among the different videogame genres,
adventure games focus specifically on exploration and problem-
solving, presenting challenging puzzles and riddles, and connect-
ing them through appealing narratives [2].

The implementation of adventure games, which are complex
and costly software applications, requires the ability to study and
verify the validity of certain constraints in sophisticated and com-
plex interactive narratives. A common problem in the design of
such applications is how to prove that a game is correct (i.e. it sat-
isfies certain properties that the writers consider relevant). For
example these properties may refer to the presence of certain ele-
ments, the reachability of states, or the acceptable sequences of ac-
tions. Allowing the writers to actively participate in the
development process enriches the results but does not necessarily
allow for the verification of certain runtime properties regarding
the potential ways in which a game can be played. These games
can include complex chains of events in which certain interactions
unlock further actions, often without a linear structure and using
puzzles with different potential solutions. In fact, these chains of
non-linear actions are sometimes so complex that it is not feasible
ll rights reserved.

+34 913947547.
-Ger), ruben@fdi.ucm.es (R.

Rodríguez), balta@fdi.ucm.es

reno-Ger et al., Model-chec
for writers to consider every possible path of action and make sure
that no undesirable states are reached. For instance, solving some
game situations may require using a certain object (potentially
breaking the game if the player reaches the objective without the
object) and certain paths of actions may be incompatible with an
adequate game solution. Simplifying the complexity of these nar-
ratives is not a good solution since players expect elaborate chains
of interactions.

The traditional approach is therefore to be very careful when
writing the game and specifying the puzzles, and to have a thor-
ough and expensive quality-assessment process in which several
testers spend hundreds of hours exploring every possible combina-
tion of actions that may eventually break the storyline. The process
is even more challenging when we introduce the notion of adaptive
games (i.e., games that can be customized with different initial
states for different player profiles). As stated in [40], these games
are especially relevant for educational uses in e-learning. An adap-
tive game that has been validated through a detailed testing pro-
cess can be broken when applying a new adaptation profile, thus
increasing the need for sophisticated quality assurance procedures,
which must necessarily rely on some sort of automatic support.

In this research, we propose to improve the mentioned process
by employing automatic or semi-automatic verification tech-
niques, and, in particular, model-checking approaches [13]. These
approaches introduce verification techniques for concurrent sys-
tems, which are abstracted as state-based models with a given ini-
tial state. The properties to be verified are usually expressed as
temporal logic formulae. Then, the checker uses efficient algo-
rithms to traverse the model defined by the system and to check
whether the properties hold, reporting violations when counterex-
amples are found. The model-checking approach is especially
king for adventure videogames, Inform. Softw. Technol. (2008),

mailto:pablom@fdi.ucm.es
mailto:ruben@fdi.ucm.es
mailto:jlsierra@fdi.ucm.es
mailto:balta@fdi.ucm.es
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

2 P. Moreno-Ger et al. / Information and Software Technology xxx (2008) xxx–xxx

ARTICLE IN PRESS
interesting for games subjected to change and evolution (and, in
particular, for adaptive games). Indeed, the properties that must
hold in the game can be formalized at the initial design stages
and can be maintained throughout the lifecycle of the game. If
the game changes (or is adapted to meet a particular user’s need),
the testing effort required to check the suitability of the new ver-
sion is substantially less, since the properties already formalized
can be automatically checked to ensure their consistency.

However, model-checking for arbitrary videogames is a very
complex process because it would require dealing with arbitrarily
complex programs developed in general-purpose programming
languages. Fortunately, in well-defined genres such as adventure
games it is possible to formulate suitable domain-specific languages
[35,51,52] for describing the games in the genre. The games will
actually be generated from these descriptions using suitable appli-
cation generators. From a model-checking perspective it also pre-
sents a fundamental advantage, since the state-based models can
also be automatically generated from the domain-specific
descriptions.

It was precisely from the ideas of domain-specific languages
that we created the he-Adventurei platform [41] to facilitate the
development of point and click adaptive educational adventure
games.1 The definition of the he-Adventurei language (an XML-based
domain-specific language for adventure games) simplifies the spec-
ification of these games. As a language targeted to game writers, it
was designed to provide the elements required to describe these
kinds of games in a format that is very close to the common practices
of these designers. The language is specified with a document gram-
mar (in particular, with an XML Schema) and writers describe a
game by editing XML files with authoring tools (i.e. the he-Adven-
turei editor). These XML files contain all the information needed to
make an executable game, and also to automatically extract a
state-based model of the game, which can be used to model check
the game.

This paper details the model-checking process supported by he-
Adventurei. This process promotes a minimally invasive collabora-
tion model involving different experts: game writers, programmers
and experts in model-checking. For this purpose, he-Adventurei in-
cludes an extensible property description language, which can be
tailored to each specific application scenario. Then, a model check-
er verifies the properties with the automatically-extracted state-
based model of the game and provides counterexamples if any
property does not hold. Although the paper focuses on he-Adven-
turei, in our opinion the process could be applied to other game
development frameworks.

The rest of the paper is organized as follows: Section 2 presents
an overview of the theoretical foundation of the checking support
for he-Adventurei by introducing transition systems in the context
of model-checking to verify properties specified with a temporal
logic. The he-Adventurei framework for the development of educa-
tional adventure videogames is briefly reviewed in Section 3. In
Section 4, we introduce a case-study regarding an educational vid-
eogame that will be used in the rest of the article to illustrate the
different concepts. Section 5 presents the checking support devel-
oped in this research and includes examples of its use. A compar-
ison with related work can be found in Section 6. Finally Section
7 discusses several conclusions about the potential advantages,
limitations, and future work.

2. Preliminaries

The dynamic properties of he-Adventurei games can be seen as
properties expressed in a temporal logic about a finite labeled tran-
1 he-Adventurei was formerly known as he-Gamei.

Please cite this article in press as: P. Moreno-Ger et al., Model-che
doi:10.1016/j.infsof.2008.08.003
sition system automatically generated from the game, which can
be verified with model-checking techniques. Formally, a labeled
transition system (or labeled Kripke structure) [8], is a tuple
Q ;
P
;!;AP; P;Qoh iwhere Q is a set of states,

P
is a set of transition

labels, !� Q �
P
�Q is the transition relation, AP is a set of atomic

propositions, P 2 Q ? 2AP is an assignment of atomic propositions to
states, and Q0 � Q is the set of initial states. In order to prove tem-
poral properties chosen an initial state, the transition graph of the
transition system can be unwound into a usually infinite computa-
tion tree rooted in such a state. Every node in the tree has as many
child nodes as transitions leave its corresponding state in the sys-
tem. With this representation, the paths in the tree from a given
node represent the possible alternatives in the evolution of the sys-
tem from the state that corresponds to that node. Therefore, the
transition from a node to its child nodes carries out an implicit no-
tion of time.

Computation tree logic (CTL) [12,23] is a branching-time tem-
poral logic widely used to verify properties of these computation
trees. CTL interprets transitions in the computation tree as time
progresses, making explicit the idea already present in the tree. If
there is a path from a node qi to another qj in the tree, it is said that
qj belongs to a possible future of state qi. CTL is defined as an exten-
sion of the usual Boolean propositional logic with additional tem-
poral connectives. As shown in [12], the complexity of model-
checking in CTL is polynomial in the size of the model’s state space,
contrary to what occurs with more general temporal logics [23].
Still it is expressive enough to describe many interesting properties
on the dynamics of the underlying transition systems. In Table 1
the basic CTL temporal connectives, together with their meanings,
are introduced. As usual in logics, a richer vocabulary of connec-
tives can be defined in terms of the pre-existing ones. In Table 2,
other common temporal connectives are introduced, together with
their rewriting in terms of the basic ones.

The abstraction of he-Adventurei games as labeled transition
systems and the use of CTL with these systems to describe dynamic
properties provide the foundation for the checking support pro-
posed in this paper. This support is based on model-checking using
the NuSMV tool [11], which is based on the former tool SMV [34].
These tools have been extensively used in checking properties of
hardware systems with CTL. Regardless of the polynomial com-
plexity of CTL model-checking with respect to the size of the state
space, it should be noted that the size of this state space can be-
come exponential in some parameters of the modeled problem
[45]. In order to cope with this complexity, tools like SMV and NuS-
MV use symbolic model-checking to deal with huge state spaces [7].
The idea is to encode the search frontier as a boolean formula, as
well as the transition relation, and to use efficient representations
of these formulae with binary decision diagrams (BDD) [1]. A BDD
represents a boolean formula as a rooted, directed, acyclic graph
which is initially a binary tree. Each node of the tree is labeled with
a variable of the formula. The child nodes are referred to as low and
high child, where the low child represents an assignment of 0 to
the variable and the high child a 1 value. BDD can be efficiently re-
duced by merging isomorphic sub-graphs (i.e. with the same label
and identical children) and by removing redundant nodes (i.e.
those where their two children are identical).

A model for NuSMV is specified with a set of variables whose
types are finite ones (i.e. boolean, scalars, and constant sized ar-
rays). The possible combinations of values for all these variables
determine the states existing in the modeled transition system.
The transition relation is specified with expressions from the prop-
ositional calculus.

Fig. 1a shows an excerpt of code for NuSMV. These elements
model a parity machine, which detects when a sequence of bits
has an odd number of 1’s (see Fig. 1b). The specification introduces
an input variable called bit, as well as a state variable called
cking for adventure videogames, Inform. Softw. Technol. (2008),

Table 2
Other temporal connectives and their rewriting in terms of the basic ones

Symbol Meaning

Intended Formal

EF(u) There Exists a sequence of states leading to
a Future state where u holds

E(true Uu)

AF(u) All sequences of states lead to some Future
state where u holds

A(true Uu)

EG(u) There Exists a sequence of states where u holds
for each state of the sequence (i.e. where u Globally holds)

:AF(:u)

AG(u) For All possible sequences of states u Globally
holds

:EF(:u)

Table 1
Basic temporal connectives in CTL together with their semantics. M denotes a transition system Q ;

P
;!;AP; P;Qoh i

Symbol Meaning

Intended Formal

EX(_) EX(u) holds iff there Exists a neXt state where u
holds.

M; q0j ¼ EXðuÞ iff M; q1j ¼ u for some transition q0!
l

q1

AX(_) AX(u) holds iff in All neXt states u holds M; q0j ¼ AXðuÞ iff M; q1j ¼ u for all transitions q0!
l

q1

E(_ U _) E(uUw) holds iff there Exists a sequence of
states where u holds Until a state where w
holds is reached

M; q0j ¼ EðuUwÞ iff for some sequence of transitions q0!
l0 q1!

l1 q2 . . .9ið8jð0 6 j < i) M; qj j ¼ uÞ ^M; qij ¼ wÞ

A(_U _) A(uUw) holds iff in All sequence of states u
holds Until a state where w holds is reached

M; q0j ¼ AðuUwÞ iff for all sequences of transitions q0!
l0 q1!

l1 q2 . . . 9ið8jð0 6 j < i) M; qjj ¼ uÞ ^M; qij ¼ wÞ

The transitions of the form (q,l,q0) 2? will be written as q!l q0.

P. Moreno-Ger et al. / Information and Software Technology xxx (2008) xxx–xxx 3

ARTICLE IN PRESS
parity. In NuSMV states are defined by the combination of all the
possible values adopted by the state variables, while transitions are
labeled by values for the input variables. Notice that boolean val-
ues have an integer encoding with 0 being false and any other value
meaning true. In the ASSIGN section, the init construction is used
to assign a value to the parity variable for the initial state. The
next construction is used to assign the value of the variable in
the next state. The case statement sequentially evaluates their
guards. When one of them is true, the corresponding branch deter-
mines the value of the expression. Also notice that, since bit stays
unassigned, it can take any of the two possible boolean values. The
keyword CTLSPEC allows the introduction of assertions about the
execution of the model as CTL formulae. Violations of these formu-
lae are reported to the user. For instance, the CTLSPEC assertion in
Fig. 1a states that every time (i.e. AG) that parity variable is true,
then in some possible future evolution, eventually (i.e. EF) parity
becomes false. It should be noted that the language of NuSMV pro-
vides a certain level of hierarchical functional abstraction with the
definition of modules (i.e. MODULE) and their instantiation as pro-
cesses, but given that the models are automatically generated from
Fig. 1. (a) A very simple specification in NuSMV of a parity machine; and (b)

Please cite this article in press as: P. Moreno-Ger et al., Model-chec
doi:10.1016/j.infsof.2008.08.003
the game descriptions, these structuring features will not be used
in the present work.
3. The he-Adventurei framework

he-Adventurei is a framework for the development of educa-
tional point and click graphical adventures [41]. In the he-Adven-
turei framework, the development of these kinds of games is the
result of the collaborative work among three groups of people with
orthogonal skills: game writers, artists, and programmers [39].
Game writers create the storyboard that describes the story and
how the different elements of the game are integrated in it. Artists
produce the artworks used in the final product, like music, graphics
or videos. Finally, programmers implement and customize the soft-
ware infrastructure.

Among these roles, he-Adventurei considers that producing and
maintaining the storyboard are the primal activities in the devel-
opment process of this kind of games, and thus it adopts a docu-
ment-driven approach [48,49]. In this approach, the writers use a
descriptive markup language (the he-Adventurei language) to
make the structure of the story explicit. Given the focus on the sto-
ryboard, the markup language is close to the common practices of
game writers, by using their jargon and structures to model games.
Additional markup is provided to refer to the assets created by the
artists and integrate them into the story. The result is a formalized
storyboard (the he-Adventurei document). In turn, the program-
mers implement a processor for the he-Adventurei language (the
he-Adventurei engine) that can produce executable games from
the he-Adventurei documents and their associated art assets. The
process is outlined in Fig. 2.

The framework focuses on the educational applications of these
games and, for this reason, it includes a number of education-
graphical representation of the transition system for the parity machine.

king for adventure videogames, Inform. Softw. Technol. (2008),

Fig. 2. The he-Adventurei document-driven approach to adventure game development.

4 P. Moreno-Ger et al. / Information and Software Technology xxx (2008) xxx–xxx

ARTICLE IN PRESS
specific features, such as the user’s assessment, support for adap-
tive learning, and integration with e-learning environments. How-
ever, the presence of these educational features is not directly
relevant for this work. he-Adventurei can be used as an authoring
tool for traditional adventure games with or without educational
purposes. Nonetheless, the adaptation features included in the
framework are particularly relevant in this context, given that they
can suppose the invalidation of previously established properties
with each new adaptation of the game.

The rest of this section describes the features of he-Adventurei
that are relevant from a property-verification perspective. Section
3.1 briefly introduces the markup language for adventure games
provided by the framework. The characteristics of the he-Adven-
turei engine are discussed in Section 3.2. Finally, Section 3.3 de-
scribes the adaptation features of the framework.

3.1. The he-Adventurei language

The purpose of he-Adventurei language is to allow writers to
formally describe the storyboard of the game. The language con-
ceives these games as sets of interconnected scenes. In this context,
a scene is a certain static environment populated by dynamic ob-
jects. It usually represents a room (or a perspective of a room) in
the game world. The scenes contain exits that allow the player to
engage with them, and they are also populated by objects and
characters. The player can navigate the scenes by activating the ex-
its, interact with objects (examine them, grab them, combine them
with other objects, etc.) and interact with characters (giving them
objects or maintaining interactive conversations).

The language provides constructs to define all these elements
(scenes, exits, objects, characters, interactions, and conversations).
Please cite this article in press as: P. Moreno-Ger et al., Model-che
doi:10.1016/j.infsof.2008.08.003
All these components include at least a representational descrip-
tion and most of them (except for scenes and conversations) have
a behavioral description. The representational description defines
the appearance of the object by including references to art assets
while the behavioral description considers how the component is
used in the game.

However, simply describing maps of scenes and populating
them yields static games where every exit leads to the same place,
every object is always available and every in-game character al-
ways says the same thing. In order to provide a narrative flow, it
is necessary to introduce a notion of state. This is carried out by
means of flags. These flags are boolean variables that can be acti-
vated as a result of performing an action, and which can be also
used to formulate preconditions for other actions. Thus, if the
player has not performed specific actions that activate the appro-
priate flags, some exits may not be traversable, some objects or
characters may not appear in the scene, and some actions may
be forbidden or their result may be different.

As will be described later in the paper, the domain-specific nat-
ure of the he-Adventurei language makes it possible to automati-
cally extract games’ verification models as finite transition
systems. In addition, the dynamic properties regarding the execu-
tion of games can be expressed as temporal logic formulae in
which, from an initial state, some statements are made about the
potential future states of the game. Thus, as stated before, he-
Adventurei games are suitable for model-checking techniques.

3.2. The he-Adventurei environment

In the he-Adventurei framework, the running games are auto-
matically produced from XML documents. This way of working is
cking for adventure videogames, Inform. Softw. Technol. (2008),

P. Moreno-Ger et al. / Information and Software Technology xxx (2008) xxx–xxx 5

ARTICLE IN PRESS
mainly based on two tools, an editor and an engine. The he-Adven-
turei editor eases the game designers’ task of describing games as
documents, by avoiding direct XML manipulation. The editor is an
author-oriented tool in which most of the XML document is spec-
ified by graphically editing the game components. The he-Adven-
turei engine is essentially a language processor that is able to
interpret the marked up storyboards and produce the running
games. The implementation of the engine relies on the operational
semantics defined for the he-Adventurei language [41]. This
semantics provides a formal description of the dynamic behavior
of a game described in the previous section. Roughly speaking, in
he-Adventurei the game behaves as a state-machine in which the
actions of the player trigger state-transitions. Acts such as travers-
ing an exit or grabbing an object represent implicitly a state-tran-
sition (the location of the player changes and the object moves
from the scene to the inventory). Nevertheless, as he-Adventurei
is targeted to game writers, even this formal description tries to
closely reflect practices in game development. This means that
the specified semantics is based on the usual interactions govern-
ing games in the genre of adventure games instead of being based
on programming concepts. In this way, authors can get enough
intuitive knowledge to understand how the engine interprets the
game although they are not experts at programming. For instance,
they know that some actions change the state of the game by mod-
ifying the flags or that a grab action inserts an object in the
inventory.

This formalization of he-Adventurei games to describe their
operational semantics is the departure point of the work in this pa-
per. The verification framework builds its models over a more ab-
stract view of these semantics that will be introduced later on in
this paper. This verification framework is also integrated in the
he-Adventurei environment as a support tool for game writers
allowing them to check properties of the produced games.

3.3. Adaptation of he-Adventurei games

The he-Adventurei framework is focused on supporting educa-
tional adventure games. For this reason, it includes a number of
features that enhance its educational value [38]. One of these fea-
tures is the support of adaptive learning patterns. As described in
[40], he-Adventurei games can be adapted to suit different player
profiles. These adaptations include omitting some portions of the
game (for students with different levels of initial knowledge) or
changing parts of the content to suit different learning scenarios.

The behavior of this mechanism targets precisely the formal no-
tion of game state on which this work is based. By forcing an initial
game state when the game is launched, it is possible to achieve
completely different behaviors when the game runs (see Fig. 3).

Having a separation between the game definition and the initial
states that can be forced into the game improves the flexibility of
the he-Adventurei framework. For instance, it allows the modifica-
Fig. 3. When the game is launched, the engine receives the description of the game, the
depend on the initial state.

Please cite this article in press as: P. Moreno-Ger et al., Model-chec
doi:10.1016/j.infsof.2008.08.003
tion of game itineraries to fit emerging needs without modifying
the description of the game itself. However, it increases the com-
plexity of maintaining coherent games. Forcing an alternative ini-
tial state when the game is launched may introduce new side-
effects in games that were already tested thoroughly from their
original starting point. Manually checking the relevant properties
from the beginning each time the game is adapted is not a sustain-
able approach to the production and maintenance of this kind of
videogames. For this purpose, an automatic support is essential
for the successful application of the approach.

4. Case-study

This section introduces an example game that is used to show
how the verification framework for he-Adventurei works. The
framework has been applied to different fields, such as medical
training (both for undergraduate students and residents), work-
place safety regulations, the teaching of History (for mid-school le-
vel) and some student-created non-educational games. Among
those, we have based our case-study on an educational point and
click adventure game created to train medical doctors jointly devel-
oped by the Complutense University of Madrid and researchers
from the Harvard Medical School and the Massachusetts General
Hospital. The game walks the doctor through the insertion proce-
dure of central lines as described in [37]. The process takes place
in a Medical Intensive Care Unit, with different perspectives of
the room being represented as he-Adventurei scenes. During the
procedure, the player must follow a 98-step protocol in which
some steps must be performed before others. We have used this
game as a test-bed for the verification procedures. However, in or-
der to better illustrate the verification process and allow its com-
plete study, we will strip the example to a bare minimum. The
simplified game document can be observed in Fig. 4.

In the simplified game, the player is initially located at the en-
trance to the patient’s room (scene RoomEntrance, lines 2–12).
From here, it is possible to hold a conversation with the patient.
Whenever he or she wants, the player can activate a transition
(indicated with an exit element, lines 5–7) that leads to another
game location, the header of the bed (scene BedHeader, lines
13–31). In this second location, the player can grab the ultrasound
probe (indicated with a grab element, lines 39–46) or activate the
exit that leads to the third location, where the clinical procedure
happens (scene Examination, lines 32–34). The actual examina-
tion process is not relevant for the proposed example. The case-
study actually focuses on just one element of the game: the notion
of maintaining a proper communication with the patient.

There is a chain of dependencies forming the basis of this exam-
ple that prevents starting the examination of the patient without
first having had a reassuring conversation. Using the flag system
described in the previous section, we see how it is necessary to
have previously activated the flag ReadyToExaminePatient in
art assets and an initial state. The initial game scenario and the game behavior will

king for adventure videogames, Inform. Softw. Technol. (2008),

Fig. 4. Excerpt of the specification of a game in he-Adventurei. It corresponds to the simplified game of the case-study that only includes three scenes. The arrows indicate the
indirect relation between executing the conversation with the patient and unlocking the transition that allows the player to initiate the medical procedure.

6 P. Moreno-Ger et al. / Information and Software Technology xxx (2008) xxx–xxx

ARTICLE IN PRESS
order to start examining the patient (lines 18–20). This condition is
only satisfied after grabbing the ultrasound probe (lines 39–46)
and having talked to the patient is a pre-condition in order to per-
form this action (lines 41 and 64). In other words, the game pre-
vents the player from arriving at the scene Examination

without first speaking with the patient through a chain of events
(displayed in Fig. 5) in which there are different connected steps.

Even though this example is simplified and the verification
could be easily performed without support tools, it illustrates the
kind of problems that these games might pose. In this example,
the requirement of having talked to the patient before the exami-
nation holds, but the relation is indirect and depends on other
steps in a chain of actions.

Additionally, as mentioned in Section 3.3, he-Adventurei in-
cludes an adaptation mechanism that allows game writers (i.e.
Fig. 5. Playing the game in th

Please cite this article in press as: P. Moreno-Ger et al., Model-che
doi:10.1016/j.infsof.2008.08.003
the medical instructors in this case) to define new initial states
for the games in order to cover alternative learning scenarios.
The example game has different adaptation options, including
the possibility of altering the availability of the ultrasound ma-
chine. The engine can receive an adaptation rule as shown in
Fig. 6 that eliminates the ultrasound machine. In order to unlock
the examination scene, through this rule the well-intentioned
author also activates the ReadyToExaminePatient flag, so that
the elimination of the ultrasound machine does not render the
game unusable. It can be observed that the introduction of this
adaptation rule introduces an undesired side-effect that makes it
possible to examine the patient without previously talking to
him/her, by breaking the dependency between grabbing the ultra-
sound probe and speaking with the patient. Even though this is a
rather simple example, it must be noted that the chain of events
e he-Adventurei engine.

cking for adventure videogames, Inform. Softw. Technol. (2008),

Fig. 6. An adaptation rule in he-Adventurei.

P. Moreno-Ger et al. / Information and Software Technology xxx (2008) xxx–xxx 7

ARTICLE IN PRESS
connecting the conversation with the patient and the examination
could be much longer, and the instructor that particularizes the
learning scenario may not be aware of the potential side-effects
of this apparently localized change.

5. Verification of game properties in he-Adventurei games

The checking support introduced in this work describes an he-
Adventurei game as a model for a model checker. For this purpose,
he-Adventurei games are abstracted as labeled transition systems,
which are subsequently encoded into models for one of those
checkers. These encodings also include the game properties to be
verified in the form of asserts. This section describes how this
checking support is built and how to use it with NuSMV, [11]
(our model checker of choice). Section 5.1 presents the overall pro-
cess for the verification, including its stages/tools, the data, and
participants. Section 5.2 introduces the language to specify the
properties for the execution of the games that have to be verified.
These properties are stated as CTL formulae about games. Section
5.3 reports how to conceive the labeled transition system for a
game. Section 5.4 describes how to encode these transition sys-
tems as NuSMV models, which therefore can be extracted auto-
matically from the original he-Adventurei specifications, and
which also incorporate the properties to check. Section 5.5 dis-
cusses the verification of the model and the generation of counte-
rexamples when a property does not hold. Finally, Section 5.6
shows how violations of such properties can be shown to game
writers by animating the corresponding counterexamples using
the he-Adventurei robot.
<e-Adventure>
Document

[W]

Veri
M

Verification
Model

Generator

Properties
(CTL Formulae)

[W, C, D]

M
Che

(Nu

Adaptation
Specification

[W]

Fig. 7. The checking process for he-Adventurei. Providers of data are shown between squa

Please cite this article in press as: P. Moreno-Ger et al., Model-chec
doi:10.1016/j.infsof.2008.08.003
5.1. The approach

Fig. 7 illustrates the proposed checking process, which is inte-
grated in the he-Adventurei environment. It is composed by the
succession of the activities of four tools: the Verification Model Gen-
erator, the Model Checker, the Animation Generator, and the he-
Adventurei Robot.

� The Verification Model Generator is the tool that produces the
verification model used by the Model Checker. The data needed
by this tool are the description of the he-Adventurei game (for
the case-study, the code from Fig. 4), the adaptation specification
for a concrete initial situation (as described in Fig. 6), and the
properties to verify. These properties correspond to the con-
straints that the game must satisfy. In the case-study, the prop-
erty that we will attempt to verify can be informally described
as ‘‘it is not possible to start the examination process without
first talking to the patient”. The properties will appear as asserts
in the verification model. Thus, the verification model is the
encoding of a suitable transition system for the he-Adventurei
game. Currently, it is expressed in the specification language
of the NuSMV model checker.

� The Model Checker, which is currently NuSMV, takes as input the
verification model and checks the properties asserted about it. It
can ensure that the properties are satisfied or, otherwise, to find
a counterexample in terms of a path in the state space described
by the transition system of the game (i.e. the counterexample
trace). The counterexample is therefore a sequence of valid
actions that the player can perform in the game, and which vio-
fication
odel

odel
cker

SMV)

Counterexample
Trace

OK

Yes

No

Animation
Description

Animation
Generator

<e-Adventure>
Robot

re brackets: [W] for Writers, [C] for experts in Checking and [D] for other developers.

king for adventure videogames, Inform. Softw. Technol. (2008),

8 P. Moreno-Ger et al. / Information and Software Technology xxx (2008) xxx–xxx

ARTICLE IN PRESS
lates the property. As we will see below, in the case-study the
Model Checker will actually find a sequence of actions that vio-
lates the previously mentioned property.

� The Animation Generator takes a counterexample trace from the
Model Checker as input and generates animation descriptions as
outputs. An animation description is a sequence of actions in a
suitable format for the he-Adventurei Robot. This step is impor-
tant because the output of the Model Checker may be too com-
plex to be directly understood by a human. The animation
description generated by this module is a cleaner XML-based
documentation of the trace of actions that can lead to the prop-
erty or properties under study to be violated.

� The he-Adventurei Robot is a version of the he-Adventurei engine
that, taking an animation description as input, automatically
plays a trace of the game’s execution. This robot also takes the
description of the game and the adaptation rules as additional
inputs. It is used to visually illustrate the counterexample to
the game writers, so that they better understand the discrep-
ancy identified in the process. The animation hides the details
and complexity of the underlying verification from game writ-
ers. They do not see the search problem over the computation
tree, but a sequence of actions inside the game that violates their
proposed constraints. In the case-study, the result would be an
automated animation of the game in which the player manages
to start the examination process without first speaking with the
patient.

Of all four tools, only the model checker is externally developed.
The other three have been specifically built for the he-Adventurei
framework. Although NuSMV is the current model checker, the ap-
proach presented can also use other kinds of model checkers. Given
that languages to describe games, adaptation, and properties de-
pend only on the he-Adventurei language, their specifications do
not need to be changed if a different model checker is adopted.
Only the Verification Model Generator and the Animation Generator
would change in order to adapt their input/output to those re-
quired by the new checker.

These tools use three files as input to perform the verification
process: the specification of the game, its adaptation, and the prop-
erties to verify. According to the development process in Section 3,
the specification of the game and its adaptation are the work of
game writers. Artists also contribute to the game, but art assets
are not relevant for verification purposes. As observed in Fig. 7, for-
mulating the properties to verify is the result of a joint work of
these writers and other experts in Computer Science: experts in
checkers (and, more particularly, in temporal logics) and develop-
ers. This is, in fact, the most delicate part of the process. Properties
must be formalized using an assertion language based on CTL that
considers a macro mechanism to tailor this assertion language to
specific needs. Ideally, game writers should be able to formulate
the properties on their own. However, as will become obvious in
Fig. 8. Syntax of the he-Adventurei assertion language. For simplicity we d

Please cite this article in press as: P. Moreno-Ger et al., Model-che
doi:10.1016/j.infsof.2008.08.003
the next sections, the task requires a level of proficiency in Com-
puter Science and Math. In fact, the formalization of properties
with pure, non-sugarized, temporal logics can be a difficult task
even for computer programmers, requiring the participation of ex-
perts in model-checking.

In order to organize this collaboration, we propose a process in
which game writers informally state the properties to be checked
on in each specific game. The properties can be formalized by
developers using a specification language customized with derived
operators using macros. This customization can be carried out by
experts in model-checking. Fortunately, as we will later see, the ef-
fort of defining this language is primarily a one-time investment. In
time, a set of stable operators can be reached for a particular family
of games, making it unnecessary for experts in model-checking to
participate.

5.2. Describing properties

The he-Adventurei assertion language includes state proposi-
tions and CTL formulae to describe their relations over time. The
syntax of the language is depicted in Fig. 8. A specification in this
language is a sequence of elements of the following types:

� Define elements. Represented by the D syntactic variable, they
define elements through a simple abstraction mechanism based
on the use of macros.

� Include elements. These elements, which are represented by the I
syntactic variable, make it possible to include other specifica-
tions (usually containing definitions of macros). The he-Adven-
turei verification framework also enables the automatic
inclusion of macros and definitions of properties by placing
the corresponding files in an appropriate directory, therefore
making the inclusions transparent for subsequent users.

� Assertion elements. They constitute the actual properties to be
checked, and they are represented by the F syntactic variable.
The simplest properties are: (i) boolean constants (true and
false), (ii) parameter names, which can occur in the bodies of
definitions of macros, and (iii) three different types of state prop-
ositions. The types of state propositions contemplated are: (i)
Scene propositions (for each scene s there is a scene proposition
Ss with the intended meaning ‘‘the player is in scene s”), (ii)
Object propositions (for each object o the object proposition Oo
means ‘‘the object o is in the inventory”), and (iii) Flag proposi-
tions (there is a flag proposition Ff for each flag f, whose
intended meaning is ‘‘the flag f is active” — i.e. its value is true).
In addition to these basic propositions, we can combine formu-
lae with the usual boolean and temporal operators, as well as
with the new operators defined using macros. Notice that, for
the sake of simplicity, we are not making the precedence and
associativity of boolean operators explicit. Indeed, all the opera-
tors are associative, with the binary ones associating to the left.
o not make explicit the precedence and associativity of the operators.

cking for adventure videogames, Inform. Softw. Technol. (2008),

P. Moreno-Ger et al. / Information and Software Technology xxx (2008) xxx–xxx 9

ARTICLE IN PRESS
Regarding precedence, from higher to lower, the boolean opera-
tors are ordered as follows: not, and, or, -i and h-i (with -i and
h-i having the same precedence). All the temporal operators
have the lowest priority.

The macro mechanism is particularly useful to accommodate
the language to fit the specific needs of each application scenario.
Table 3 shows some of the macros currently distributed with the
he-Adventurei verification framework. In particular, the last three
have proved very useful to describe many interesting properties
in adventure games since they allow for the temporal ordering of
two related conditions.

Regarding the case-study proposed in Section 4, game writers
are interested in guaranteeing that every time a player begins
the examination of the patient, he/she has previously had a conver-
sation with that patient. According to the specification of the game
in Fig. 4, these two conditions of the property are described as fol-
lows: The player has had a conversation with the patient if the flag
PlayerSpokeWithPatient is active (lines 41 and 64), that is, if
state proposition FPlayerSpokeWithPatient is true; the player is
examining the patient if he/she is in the scene Examination (lines
32–34), which corresponds to the state proposition SExamination.
The property about the game can be expressed with the macro be-
fore from Table 3: ‘‘If a point where SExamination holds is
reached, it was done by previously visiting a point making FPlayer-
SpokeWithPatient hold”. Therefore, the final statement of the prop-
erty is ‘‘before (SExamination, FPlayerSpokeWithPatient)”.

5.3. Labeled transition systems for verification

The description of games in the he-Adventurei language allows
for the automatic extraction of verification models in the form of
labeled transition systems. In these models, the states are deter-
mined by the flags that appear in the specification of the game,
the scene that the player is visiting, and the objects that he/she
has in the inventory. The transitions between states are deter-
mined by the actions that the player can perform, the precondi-
tions of these actions, and their effects. More precisely, for each
game G will result in a transition system

Q G;
PG

;!G;APG
; PG;QG

0

D E
, where:

� States in QG will be identified with sets of atomic propositions
containing a single scene proposition (the scene where the
player is situated), an arbitrary number of flag propositions
(the flags that are active in the state), and an arbitrary number
of object propositions (the objects in the player’s inventory).

� Labels in RG will represent the actions that the player can per-
form to change the state of the game. These labels can have
the following forms: (i) Ts_i, with i a positive integer, and with
Table 3
Examples of macros in the he-Adventurei assertion language

Definition Intended meaning

DEF EF(u) = E(true U u) Standard derived temporal connectives
defined in Table 2

DEF AF(u) = A(true U u)
DEF EG(u) = not AF(not u)
DEF AG(u) = not EF(not u)
DEF after-

eventually(u,w) =
AG(u->EF(w))

If in any game point u holds, it is possible to
continue playing until reaching another
point where w holds

DEF after-always(u,w) =
AG(u-> AF(w))

If in any game point u holds, any possible
way of continuing playing will lead to a point
where w holds

DEF before(u,w) = not E(not w U u) If a point where u holds is reached, it was
done by previously visiting a point making w
hold

Please cite this article in press as: P. Moreno-Ger et al., Model-chec
doi:10.1016/j.infsof.2008.08.003
intended meaning ‘‘exit number i of the scene s has been tra-
versed” (traversing action), (ii) Go with intended meaning ‘‘the
object o has been grabbed” (grab action), (iii) Uo with intended
meaning ‘‘the object o has been used” (use action), (iv) UWo_o0

with intended meaning ‘‘the object o has been used with the
object o0” (use-with action), (v) GTo_ch with intended meaning
‘‘the object o has been given to the character ch” (give-to action),
and (vi) Cp with p a conversation path and with intended mean-
ing ‘‘conversation path p has been followed” (talking action).

� The definition of the transition relation ?G is based on a
straightforward formalization of the intended semantics of he-
Adventurei games outlined in Section 3. Transitions departing
from a state will be determined by the actions whose precondi-
tions hold in such a state. In turn, each transition will lead to the
state which comes from applying the action’s effects. The com-
plete formalization can also be consulted in the Appendix.

� APG is the set of scene, object, and flag propositions described
before.

� The assignment function PG is straightforward, since the defini-
tion of the states carries the associated propositions implicit.

� Finally, the set of initial states Q G
0 contains a single state qG

0 that
includes propositions for the scene marked in the game as the
initial one, for each object initially contained in the inventory,
and for each flag initially active.

In Fig. 9 we sketch the transition system for the simplified game
used in the case-study. As stated in Section 4, notice that we have
explicitly used a reduced version of the real game in order to allow
its different aspects to fit in the limited space of this paper. A more
realistic game can have thousands and even millions of states (as is
the case with the full example on which the simplified version for
the case-study is based).

5.4. Generating the verification model for the model checker

In the he-Adventurei framework, verification models are
encoded in the NuSMV specification language. In this encoding,
states will be represented by the variables Oo1, . . . ,
Oom,Ff1, . . . ,Ffn,Scene where there is a boolean variable Ooi asso-
ciated with each object proposition, another boolean variable Ffj
for each flag proposition, and a variable Scene for the scene prop-
osition (the type of this variable will be an enumeration s1 . . . sr of
all the possible scenes). Therefore, the set of object (respectively, of
flag and scene) propositions included in the state will be encoded
by the values assigned to these variables. If the value of Ooi
(respectively, of Ffj) is true, the state will include the proposition
Ooi (respectively, Ffj); if the value of Scene is s, the state will in-
clude the proposition Ss. In addition, transitions will be labeled
by an input variable Act, representing the current action chosen
by the user. Its type is an enumeration of the transition labels in-
duced by the game, enriched with an additional qualifier which
will determine the alternative for the action. For instance, for each
label Ts_i we will consider enumerate values Ts_i_j, which will
indicate that exit i was traversed in scene s in virtue of the alterna-
tive number j for traversing such an exit. Similarly, the suffix j in
Go_j, Uo_j, UWo_o0_j, GTo_ch_j, and Cp_j will indicate the alternative
to perform the corresponding action.

The encoding itself is based on a suitable projection of the tran-
sition relation introduced in the previous section in each variable
state. This encoding technique is similar to the one followed during
the logical design of a sequential circuit, where suitable expres-
sions are independently and consistently provided for each state
and output variable in terms of the previous values of the state
and the input variables [24]. The input variable Act will stay unas-
signed, meaning that the user is free to choose any of the possible
actions in the context of the game. For the rest of the variables, sets
king for adventure videogames, Inform. Softw. Technol. (2008),

CCalmPatient.1.1.1.1

TRoomEntrance_1

TRoomEntrance_1

GUltrasoundProbe

TBedHeader_1

Fig. 9. Transition system for the game in the case-study.

Table 4
Characterization of the next expressions

Variable Expression to be assigned

next(Scene) case
_

a2MAGðs1Þ
ECGðaÞ : s1;

. . .
_

a2MAGðsnÞ
ECGðaÞ : sn;

1 : Scene;
esac

next(Ffi) _
a2RAGðfiÞ

ECGðaÞ
 !

_ Ffi

next(Ooi) _
a2IAGðoiÞ

ECGðaÞ
 !

_ Ooi ^ : _
a2EAGðoiÞ

ECGðaÞ
 !

:, ^, and _ are translated in NuSMV by !, &, and j respectively.

10 P. Moreno-Ger et al. / Information and Software Technology xxx (2008) xxx–xxx

ARTICLE IN PRESS
of assignments are provided to determine their init and next

values:

� The init values will be derived from the initial state of the
game. Indeed, each Ooi (respectively Ffj) variable will have
true assigned when the corresponding propositions are
included in such a state, and false otherwise. Scene will be
initialized to the initial scene indicated in such a state.

� The assignments of next values consider each type of variable
individually, as well as those relevant actions that can change
their values. For each flag fi a set RAG(fi) formed by those actions
whose effects contain fi is considered during the generation pro-
cess. For each object oi, two different sets will be considered: one
with all the grab actions that can insert the object in the inven-
tory -IAG(oi), and another one with all the use, use-with and give-
to actions that can erase the object from this inventory -EAG(oi).
Finally, for each possible value si of the scene we will consider
the set MAG(si) of all those actions that can shift the action to
scene si. The computation of the next values also needs to con-
sider the executability conditions ECG(a) of each user’s action
a. This condition is an expression that is true if and only if action
a has been actually executed in the last transition. Its actual
encoding, which we will omit for the sake of conciseness, states
that an action was executed if its precondition allowed it and the
user actually selected it. Finally, the actual assignments for the
NuSMV model are determined in terms of the relevant action
sets and their applicability conditions. These are detailed in
Table 4.

� The properties to check must also be added to the resulting
encodings. For this purpose, properties are expanded to raw
CTL, then translated into the NuSMV CTL assertion language
and the result added as a CTLSPEC clause.

For the case-study introduced in Section 4, the resulting NuSMV
encoding is shown in Fig. 10. Following the guidelines in Section
5.4, the encoding first defines the state variables that correspond
to the scene (line 3), the flags (lines 4–6), and the objects that the
player can grab (line 7). The input variable Act that corresponds
to player’s inputs is defined in lines 9–10. This variable takes values
in an enumeration of all the possible actions that the player can
make in the game. In this case, he/she can traverse two exits (i.e.
T_BedHeader_1_1 and T_RoomEntrance_1_1), grab one object
(i.e. G_UltrasoundProbe_1), and keep up a conversation (i.e.
C_CalmPatient_1_1_1_1_1). Lines 12-17 define the expressions
Please cite this article in press as: P. Moreno-Ger et al., Model-che
doi:10.1016/j.infsof.2008.08.003
that will determine the applicability of the previous actions at every
state of the checking process. For instance, lines 12–13 establish
that the player can traverse exit T_BedHeader_1 if he/she selects
that action (i.e. T_BedHeader_1_1) and the conditions specified
by the game to traverse it hold (in this case the player must be in
the scene BedHeader and the flag ReadyToExaminePatient must be
active). The next elements in the encoding are the initialization of
the variables. Lines 20–22 initialize the variables according to the
description of the game. For instance, the variable Scene takes the
value of the scene marked as start in the description of the game,
RoomEntrance in this case. Lines 25–26 also perform an initializa-
tion of variables but, in this case, the values assigned come from
the adaptation of the game. Lines 28–36 perform the calculus of
the next values of the different state variables according to the
expressions in Table 4. Finally, line 38 contains the property to ver-
ify, which was described at the end of Section 5.2, appropriately ex-
panded and encoded in the NuSMV format.

5.5. Verifying properties and generating counterexamples

Once the verification model has been generated, this model is
fed to the model checker. As mentioned before, currently we are
using NuSMV, although it could be substituted by another model
checker if required. The model checker will inform where the prop-
erties to verify hold, or, otherwise, will generate a counterexample
trace. This trace will illustrate the reason why the property fails in
terms of a sequence of states.
cking for adventure videogames, Inform. Softw. Technol. (2008),

Fig. 10. NuSMV encoding for the case-study.

P. Moreno-Ger et al. / Information and Software Technology xxx (2008) xxx–xxx 11

ARTICLE IN PRESS
Turning back to the case-study, the simple game focuses on the
need for having a proper communication with the patient. For this
purpose, the player cannot examine the patient without previously
speaking with him/her. In the specification of the game (see Fig. 4),
this is assured with a sequence of conditions: to examine the pa-
tient (i.e. scene Examination), the player has to grab the ultrasound
device (i.e. flag ReadyToExaminePatient that is activated by the cor-
responding grab action); in order to do so, the player needs to
speak with the patient before (i.e. flag PlayerSpokeWithPatient that
becomes active after keeping the conversation CalmPatient). Thus,
in the usual execution of the game, this constraint holds, and the
model output is positive as seen in Fig. 11a.

However, adaptations of the game allow some of the flags in-
volved to be changed without performing the triggering actions.
This is the case for the flag ReadyToExaminePatient, which is acti-
vated in the adaptation rule described in Fig. 6. When checking
the corresponding encoding in NuSMV (see Fig. 10), it turns out
that the player is able to begin the examination without a previous
conversation with the patient. Fig. 11b shows this situation. From
the initial state (i.e. State: 1.1 of the model checker), the user can
traverse the door (i.e. Act = T_RoomEntrance_1_1) to go the
scene corresponding to the bed header (i.e. State: 1.2 of the mod-
el checker). After reaching State: 1.2, the player just needs to tra-
verse the last door (i.e. Act = T_BedHeader_1_1) to begin the
examination. Given the adapted values of the flags, all the travers-
ing actions are allowed. Thus, the specified constraint can be vio-
lated due to the adaptation of the game.

In the trace of Fig. 11b, it must be noted that states of the model
checker are characterized for the whole set of variables in the mod-
el and their specific values. For instance, State: 1.1 is not just
Please cite this article in press as: P. Moreno-Ger et al., Model-chec
doi:10.1016/j.infsof.2008.08.003
characterized by the scene RoomEntrance, but also by the values
of the flags and the objects in the inventory.

As the traces in Fig. 11 illustrate, the outcome of a model check-
er like NuSMV is not well-suited to analyze the game for at least
two reasons. First, the explanation is given in terms of the transi-
tion system for the game and CTL primitives. This output is likely
going to be useless for game writers in order to verify and fix the
game. The second reason is the verbosity of the textual output.
The model checker describes the violations of properties as se-
quences of states (characterized by their variables and the other
expressions in the encodings) and the values that the input vari-
able Act takes in the transitions. Given that the steps in the trace
where the player makes the unexpected actions that break the
property are not known, the writers may need to examine every
single step and variable in the counterexample trace. For these rea-
sons, the he-Adventurei framework for verification needs further
processing of these outputs to facilitate their interpretation.

5.6. Generating the animation

In this case, explanations about problems with the properties
should also follow the principles of the domain-specific language
approach. That is, they must be provided in a language close to
the language that is common in game writing, regardless of the
underlying use of a model checker. Hence, the counterexamples
provided by the model checker are not directly shown to game
writers. Instead, the framework for the verification of properties
in he-Adventurei plays an animation where writers can see a se-
quence of the player’s interactions with other components of the
game. This animation shows the trace as it can be played in the en-
king for adventure videogames, Inform. Softw. Technol. (2008),

Fig. 11. Sample outputs from the model checker: (a) a trace where the property holds; (b) a trace with a counter-example.

12 P. Moreno-Ger et al. / Information and Software Technology xxx (2008) xxx–xxx

ARTICLE IN PRESS
gine. In this way, the writers do not see the evolution of the tran-
sition system and the CTL formulae, but how the player acts to vio-
late their design. As mentioned in Section 5.1, the functionality
alluded is obtained by means of the Animation Generator, which
transforms a trace of the model checker in an animation description,
and the he-Adventurei Robot, which plays that description.

Turning back to the case-study, the property focuses on the fact
that the player cannot examine the patient without previously
speaking with him/her. The results for this property, both for the
adapted and non-adapted game, have already been shown in
Fig. 11. The sequence of actions appearing in the counterexample
of Fig. 11b (i.e. T_RoomEntrance_1_1 and T_BedHeader_1_1)
corresponding to the violation of the property can be parsed to
generate a sequence of actions suitable for the he-Adventurei ro-
bot. The XML sequence of actions appears in Fig. 12. The he-Adven-
turei robot can take this as an input and generate an animation
displaying the sequence as seen in Fig. 13.

6. Related work

Model-checking has a long tradition in verifying software sys-
tems with respect to their specifications, leading to the so-called
Fig. 12. Sequence of actions for the he-Adventurei robot corresponding to the
violation of property ‘‘before(SExamination, FPlayerSpokeWithPatient)”.

Please cite this article in press as: P. Moreno-Ger et al., Model-che
doi:10.1016/j.infsof.2008.08.003
software model-checking approach. This approach has paid atten-
tion to both general and domain-specific contexts. In this section
we briefly examine some of these efforts both at the specification
and programming level. We also examine some efforts oriented
to facilitate the specification of the properties to check, since it is
a key aspect to ensure the adoption of these technologies.

6.1. Model-checking at the design level

Model-checking has been used to check properties of the soft-
ware systems at the design and the specification levels. Since at
these levels systems can be described omitting low-level details,
many times the resulting descriptions are amenable to supporting
automatic extraction of verification models. In [9] model-checking
is used to check the properties of high-level system specifications
written in RSML, the requirement state machine language, a state
machine language based on the statechart formalism [27]. This lan-
guage can be fully translated into SMV [34] in order to verify the
properties expressed in CTL. An alternative translation of state-
charts into SMV is reported in [14], where the emphasis is put on
preserving the hierarchical structure of the formalism in the result-
ing SMV models, using the SMV modularization facilities. In [36],
SPIN [30] is used as the model-checking framework, as well as in
[32], where the focus is put on UML statecharts. The work in [25]
proposes two different translations of UML activity diagrams.
These translations map activity diagrams in finite-state machines,
which are subsequently mapped into the NuSMV language.

While these approaches are based on some kind of domain-spe-
cific language, those languages are oriented to specify high-level
(design, analysis, etc.) views of a system that subsequently must
be mapped into a final implementation. In this way, they do not
prevent properties from being violated in those implementations,
since additional bugs can be introduced during the detailed design
cking for adventure videogames, Inform. Softw. Technol. (2008),

1. Initial scene
 RoomEntrance

2. Changing position
to BedHeader to

perform examination

3. Completing the
examination

Fig. 13. Animation in the he-Adventurei robot of the violation of property ‘‘before(SExamination,FPlayerSpokeWithPatient)”.

P. Moreno-Ger et al. / Information and Software Technology xxx (2008) xxx–xxx 13

ARTICLE IN PRESS
and the implementation processes. This is avoided in he-Adven-
turei by adopting a domain-specific generative approach where
the final running videogames are automatically generated from
the high-level specification, that is, the he-Adventurei document
that describes the game.

6.2. Model-checking for general-purpose programming languages

There are also several efforts in software model-checking deal-
ing with general-purpose programming languages that directly
operate on the state space of the programs. In order to deal with
the undecidability issues, some approaches are focused on subsets
of the source language. For instance, the system described in [5]
deals with C boolean programs (i.e. programs including only bool-
ean variables) and can solve the reachability problem for any sen-
tence of the program using symbolic model-checking techniques.

Other systems sacrifice completeness in order to deal with the
whole language. An example is the system proposed in [42], which
works with the whole C/C++ language. Properties to verify are in-
cluded as asserts in those code points where they must hold. The
states of the transition system related with the program are stored
in a hash table optimized with suitable compression techniques.
The checking process can finish with all the properties verified,
by finding some violation, or by running out of memory. Other
more sophisticated proposals are focused on extracting models
from the programs and expressing these models in a suitable lan-
guage for a model checker. Some approaches rely on predefined
translation schemas. The cost to pay is to deal only with a subset
of the source languages. An example is JPF, the Java PathFinder de-
scribed in [29,54], which automatically translates a non-trivial
subset of the Java language into PROMELA, the specification lan-
guage of SPIN.

Other approaches introduce auxiliary specifications to guide the
extraction process for each particular program. In [31] a verifica-
tion model’s skeleton is automatically extracted by considering
only the source program’s control structures. Next, this skeleton
is populated with relevant actions, defined in a lookup table that
specifies how constructs in the source program are translated into
the verification model. Finally, the populated skeleton is used to fill
a model template, which declares the required variables, and
which must also be manually provided. The result is a working ver-
ification model written in PROMELA. In [33] a similar solution is
proposed, but model extraction is firstly articulated by slicing the
source program, written in C, into those parts relevant for checking
the properties. The slicing process uses a simple enumeration of
Please cite this article in press as: P. Moreno-Ger et al., Model-chec
doi:10.1016/j.infsof.2008.08.003
relevant state variables and subroutines. A set of translation pat-
terns are then used to translate the sliced program into a suitable
verification model, expressed in the formalism of the Muru model
checker [19]. Bandera [17], a sophisticated framework for extract-
ing verification models from Java programs, uses the properties to
be proven in order to automatically slice the program. The sliced
programs are then abstracted by using an abstraction specification
written in BASL, the Bandera abstraction specification language.
Specifications in BASL consist of abstract domains, functions map-
ping concrete Java values in abstract domains, and abstract opera-
tions for each concrete method in the Java classes. The resulting
models can be further translated into the specification languages
of different model checkers (e.g. SMV, SPIN, etc.).

While all these approaches focus on general-purpose program-
ming languages, our work is organized around a domain-specific
solution. This allows us to provide a complete method for the auto-
matic extraction of verification models from the game descriptions.
More important, it also allows the active participation of game
writers as well as developers during the verification process, since
properties can be stated in domain-specific terms (that is, flags, ob-
jects and scenes, instead of sentences and variables in general-pur-
pose programming languages).

6.3. Model-checking in specific domains

The use of model-checking to verify software in specific do-
mains is closer in spirit to the work described in the present paper.
In [50] model-checking is proposed to verify properties of hyper-
text systems. For this purpose hypertexts are interpreted as a kind
of finite transition system called links automata. These automata
are used to check properties expressed in HTL*, a language based
on the branching-time temporal logic CTL* [23]. The work in
[46,47] is intended to model check web applications. They propose
the automatic extraction of a finite-state model of a web applica-
tion as the result of the automatic analysis of web sites. This model
is then implemented using NuSMV. The approach presents some
difficulties with server-side and client-side dynamic facilities (i.e.
the presence of scripting code). In [21] the focus is shifted to
UML-based models of web applications using the domain-specific
UML profile proposed in [15]. In [3,4] an experience in the e-learn-
ing domain is reported, where SPIN is used to ensure the preserva-
tion of properties formulated on automatically devised curricula
when they are adapted by the learners.

Regarding the use of model-checking in combination with do-
main-specific languages, the methods used are similar to those de-
king for adventure videogames, Inform. Softw. Technol. (2008),

14 P. Moreno-Ger et al. / Information and Software Technology xxx (2008) xxx–xxx

ARTICLE IN PRESS
scribed in the present paper: to define a translation which allows
for the interpretation of each description in the language as a finite
transition system. In [28] SPIN is used to check properties of spec-
ifications in the Executive Support Language (ESL), a domain-spe-
cific language for the construction of control systems for
autonomous robots and space crafts. The work in [10] presents
the domain-specific language Teapot for developing cache coher-
ence protocols, and a verification approach based on its translation
to the Muru checker. In [43] SPIN is used together with the web-
services flow language (WSFL), a domain-specific language to
orchestrate web-services. Similar approaches are used in [55]
(work which involves the MAP dialogue protocol language for
multi-agent systems supported by web-services), in [56] (work
centered on the web-service choreography description language
WS-CDL), and in [44] (work which uses the BPEL4WS language
and verification models based on timed automata checked using
the UPPAL model checker).

6.4. Facilitating the specification of properties

An important aspect of our work is to promote the active
involvement of game writers and developers, who are not neces-
sarily experts in model-checking technologies, in the whole verifi-
cation process. For this purpose, it is necessary to provide some
means of making model-checking techniques more usable and
accessible for those non-experts. This subject has also been ad-
dressed by several works centered on providing easier-to-use for-
malisms to express properties. In LUSTRE [26], a programming
language oriented to the development of reactive systems, it is
possible to express safety properties in a lineal temporal logic
(LTL; see [23]) and to use the procedural abstraction mechanisms
of the language to define new derived operators. This resembles
the macro facility included in the he-Adventurei property language.
The works in [6,20] propose graphical notations for LTL formulae.
Other approaches, based on controlled English-like grammars,
are proposed in [18,22]. In [16] the specification language of the
Bandera system is described. This language supports the use of
the common patterns used in temporal logics-based specifications
identified in [22]. The Bandera system also supports the inclusion
of new user-defined patterns, although the extension mechanisms
are not described in the cited works.

In our proposal, the use of a simple macro-definition mecha-
nism in the specification language, together with the he-Adven-
turei robot, allows experts in temporal logics, developers, and
game writers to effectively collaborate for model-checking conver-
sational videogames.
7. Conclusions and future work

In all software development projects, the verification of the
validity of the product is a key aspect. Much work has been done
on studying good practices that prevent software bugs, including
verification of execution properties. However, when dealing with
point and click adventure videogames, a completely bug-free game
is not enough to produce a flawless game. These games execute
interactive narratives in which certain actions unlock other ac-
tions, with all the interactions being interconnected and some-
times solvable in different ways. This introduces a new
complexity in which the description of the game (as opposed to
its implementation) can spoil the product by allowing the player
to drive the game into an undesired narrative state. In general
terms, game development projects tackle this problem by devoting
vast amounts of resources to a very thorough testing and quality
assurance process, in which several testers play the game trying
out every possible action to make sure the game is correctly struc-
Please cite this article in press as: P. Moreno-Ger et al., Model-che
doi:10.1016/j.infsof.2008.08.003
tured. However, the process is far from perfect: subtle interactions
may run through the assessment process undetected; when an er-
ror is detected, it is sometimes difficult to ascertain which of the
steps actually caused the problem; finally, even if the problem is
detected, its correction supposes new requirements stated by the
writers and implemented by developers, which can lead to the
introduction of new errors.

In this paper, we have introduced a framework for the semi-
automatic verification of point and click adventure games described
with domain-specific languages, using model-checking techniques.
Although this process does not fully eliminate the need for beta-
testing and quality assurance in this family of videogames (it does
not cover aspects such as programming errors, quality of the art as-
sets, or fine-tuning errors in the content), the automatic verifica-
tion of key runtime properties can significantly reduce the
quality assurance effort required by these initiatives.

The framework was implemented around the previously exist-
ing he-Adventurei development platform, where game writers de-
scribe the games using the he-Adventurei language and the he-
Adventurei editor. With this extension, they can also informally
state the desirable properties to be checked in the games. Experts
in model-checking and temporal logics are able to analyze these
properties and to provide suitable operators for them using the
macro-definition facility of the he-Adventurei assertion language.
These experts or other developers can use these operators to for-
malize the intended properties. This can contribute to managing
the complexity of the narratives and reducing the additional bur-
den introduced by the adaptation mechanisms supported by he-
Adventurei.

In order to develop the verification framework, the he-Adven-
turei execution semantics have been abstracted to automatically
yield labeled transition systems for each game, which are verified
with a model checker. The verification models are automatically
derived from the games without further human intervention, and
properties are automatically translated from the specifications by
expanding the macros and by translating the resulting formulae
to the specific formats supported by the model checker. Neverthe-
less, the process itself is not dependent on specific tools as it can be
accommodated by tuning the corresponding transformations. As
explained in Section 5.1, if the model checker is changed, only
the Verification Model Generator and the Animation Generator must
be modified to consider the new checker. These are the only tools
in the he-Adventurei framework for verification that produce/gen-
erate information dependent on the checker. Currently, we are
using NuSMV as the model-checking tool of choice. It allows us
to deal with state spaces of around 1020 states. Despite this huge
size, this checker may not be the proper solution for some prob-
lems. It may be advisable to use model checkers based on alterna-
tive approaches such as the unbounded or partial order reduction
model-checking for certain games or properties.

It must be noted that the application of the process described
requires a first stage characterized by an intense effort by both
developers and experts in model-checking, which is also costly.
However, this effort is restricted to the formalization stage, which
is related to the game language, not to the individual games. After
the initial formalization investment, applying the approach to each
individual game has a much lower cost. The writers, even though
they may need some help to define properties using the assertion
language, can run the model-checking apparatus on each adapta-
tion of the game, analyze the potential violations in game-specific
terms using the he-Adventurei robot, and modify the games to
solve these violations. This allows them to gain a great deal of con-
trol of the overall verification process.

This paper also explains how the approach was employed in a
scenario oriented to train medical doctors in some specific proce-
dures as part of a project jointly developed by the Complutense
cking for adventure videogames, Inform. Softw. Technol. (2008),

Table 5
Game description information elements

Information element for
description

Intended meaning

hnext-scene,s, i,ns,c,e, ji ns is a scene or ‘‘cutscene” that can be reached from
the scene or ‘‘cutscene” s by traversing exit number i
of the scene. c is the condition that must hold in the
current state of the game in order to be able to go
through this exit and e is the set of flags activated by
this action. This tuple denotes the jth form of making
this traversal

hobject,s,o,ci When condition c holds, object o is visible in scene s
hcharacter,s,ch,ci When condition c holds, character ch is visible in

scene s
hgrab,o,c,e, ji The player can grab object o when condition c holds

and object o is visible. The result of this action is that
the object is included in the inventory and flags in e
are activated. This is the jth way to perform this
action

hgrab,o,c,e,s, ji Its meaning is the same as hgrab,o,c,e, ji proposition
but it also changes the current scene to s

huse,o,c,e, ji The player can use object o when condition c holds
and object o is visible. The result of this action is that
flags in e are activated. This is the jth way to perform
this action

huse,o,c,e,s, ji Its meaning is the same as huse,o,c,e, ji proposition
but it also changes the current scene to s

huse-with,o,o0 ,c,e,cons, ji Object o can be combined with object o0 when
condition c holds, o is in the player’s inventory, and o0

is visible. This action activates the flags in e and
removes from the inventory the objects in the set
cons. The set cons can be only one of two values, the

P. Moreno-Ger et al. / Information and Software Technology xxx (2008) xxx–xxx 15

ARTICLE IN PRESS
University of Madrid, the Harvard Medical School and the Massa-
chusetts General Hospital. The simplified case-study has shown
the ability of the verification framework to deal with complex tem-
poral properties about the potential ways of playing a game. The
semi-automated process facilitates finding errors about these
properties and shows examples that may help the author to correct
the game.

It should also be noted that the presentation of the entire pro-
cess in this paper is closely tied to the current implementation of
the he-Adventurei platform. However, the possibility of reducing
the quality assurance costs by employing semi-automated prop-
erty-verification processes should be applicable to other adventure
game development platforms, given that the problem tackled is
present in all adventure game developments and many of the fea-
tures of he-Adventurei on which the solution relies are also present
in other frameworks.

As future work, we are planning to provide additional support
for the specification of properties, which should contribute to min-
imizing the need for the collaboration of experts in temporal logics
and developers in the customization of the property specification
language. Right now, it might be argued that for small projects,
the cost involved in the formalization of the properties informally
stated by the game writers may not be compensated by savings in
quality controls. Ideally, game writers should be able to formalize
many of these properties as well as define their own abstractions
without external (and costly) assistance. For this purpose, it is nec-
essary to analyze suitable authoring metaphors for temporal prop-
erties, which could be further supported by graphical and/or
natural language based notations. With the simplification of the
verification process and the augmentation of the expressive power
of the macro system, it should be possible to adopt this kind of ap-
proach to verify arbitrarily complex adventure games with little ef-
fort and cost. Regarding performance and flexibility, we are also
planning to incorporate other model-checking tools into our
framework and enable the automatic selection of the most suitable
tool, depending on the nature of the properties to be checked.
empty set or the set that contains just the object o.
This is the jth way to perform this action

huse-with,o,o0 ,c,e,s,cons, ji Its meaning is the same as the huse-
with,o,o0 ,c,e,cons, ji proposition but it also implies
going to scene s

hgive-to,o,ch,c,e,cons, ji Object o can be given to character ch when condition
c holds, o is in the player’s inventory, and ch is visible.
This action activates the flags in e and removes from
the inventory the objects in set cons. Set cons can be
the empty set or the set that just contains object o.
This is the jth way to perform this action

hgive-to,o,ch,c,e,s,cons, ji Its meaning is the same as the hgive-
to,o,ch,c,e,cons, ji proposition but it also changes the
current scene to s

hconversation,ch,p,c,e, ji Conversation p can be held with the character ch
when condition c holds and character ch is visible.
The result of this action is the activation of the flags
in e. This is the jth way to perform this action. Here p
is in fact the codification in decimal format of a path
in a conversation of the original game (see Section
3.1), like c23.1.2.1.3.5

Table 6
Adaptation description propositions

Information element for
adaptation

Intended meaning

hstart,si Set scene s as the initial one for this instance of the game
hin-inventory,oi Include object o among those that are initially in the

inventory. By default, objects are not initially in the
inventory

hactive, fi Set flag f as initially active. The default initial value for
flags is false
Acknowledgements

The Spanish Committees of Science and Innovation and of
Industry, Tourism and Commerce (Project Nos. TIN2005-08501-
C03-01, TIN2005-08788-C04-01, TSI-020301-2008-19 and
TIN2007-68125-C02-01) has partially supported this work, as well
as the Regional Government of Madrid (Grant No. 4155/2005), the
Complutense University of Madrid (research group 921340, Sant-
ander/UCM Project PR24/07 – 15865) and the EU Alfa project CID
(II-0511-A). Thanks to Dr. Carl Blesius and Dr. Paul Curier from
Harvard Medical School and the Massachusetts General Hospital
for their permission to use the CVC-Insertion Protocol game for
the case-study.

Appendix. Characterization of the transition relations of he-
Adventurei verification models

In this Appendix we provide a formalization of the transition
relations associated with he-Adventurei verification models. We
start by introducing a verification-oriented abstract syntax for he-
Adventurei games. This representation will include the relevant
behavioral details for model-checking the games mentioned in
Section 5.3, while excluding the irrelevant ones (e.g, presentation,
actual conversations, etc.). According to this syntax, a game
description will be a set of information elements. We distinguish be-
tween game description and adaptation description information ele-
ments. Table 5 summarizes the possible game description
information elements, and Table 6 the adaptation of description
Please cite this article in press as: P. Moreno-Ger et al., Model-chec
doi:10.1016/j.infsof.2008.08.003
ones. Notice that several of these elements involve some aspects
that deserve additional remarks for their understanding:

� Preconditions, which determine when a situation (e.g. perform-
ing an action) is possible in the game, are given in the form hF+,
F-i, where F+ is a set of flags that must be active (i.e. with value
true) and F- a set of flags that must be inactive (i.e. with a false
value).
king for adventure videogames, Inform. Softw. Technol. (2008),

Table 7
Rules formalizing the transition relation for he-Adventurei verification models

Rule Informal name and intended meaning

hnext-scene;s0; i; s; c; e; i 2 RG^
Hðc; ½q�Þ ^ Ss0 ¼ Sð½q�Þ

� �
½q� !Ts0 iG½ðq� fSs0gÞ [fSsg [PFðeÞ�

Traversing an exit. The user wants to traverse exit i, the current scene contains such an exit, and it is practicable in the
current state of the game. The current scene is changed to the next-scene and the flags activated by the action are
added to the state

hobject;s0; o; cvi 2 RG ^Hðcv; ½q�Þ^
ðhgrab;o; ca; e; i 2 RG ^ NS ¼ Ss0Þ_
ðhgrab;o; ca; e; s; i 2 RG ^ NS ¼ SsÞ

� �
^

Hðca; ½q�Þ ^ Ss0 ¼ Sð½q�Þ

0
BB@

1
CCA

½q�!GoG½ðq� fSs0gÞ [fNS;Oog [PFðeÞ�

Grabbing an object. The user wants to grab an object, which is visible in the current scene. The action is also
practicable in the current state. If a scene change is specified, the new scene is set as the current one. Otherwise, the
current scene stays unchanged. The object is then included in the player’s inventory and the activated flags are also
recorded

hobject;s0; o; cvi 2 RG ^Hðcv; ½q�Þ^
ðhuse;o; ca; e; i 2 RG ^ NS ¼ Ss0Þ_
ðhuse;o; ca; e; s; i 2 RG ^ NS ¼ SsÞ

� �
^

Hðca; ½q�Þ ^ Ss0 ¼ Sð½q�Þ

0
BB@

1
CCA

½q�!UoG½ðq� fSs0gÞ [fNSg [PFðeÞ�

Using an object. The user wants to use an object, which is visible in the current scene. The action is also practicable in
the current state. If a scene change is specified, the new scene is set as the current one. Otherwise, the current scene
stays unchanged. The activated flags are recorded

Oo 2 q ^ hobject;s0; o0; cvi 2 RG ^ Hðcv; ½q�Þ^
ðhuse-with;o; o0; ca; e; oc ; i 2 RG ^ NS ¼ Ss0Þ_
ðhuse-with;o; o0; ca; e; s; oc ; i 2 RG ^ NS ¼ SsÞ

� �
^

Hðca; ½q�Þ ^ Ss0 ¼ Sð½q�Þ

0
BB@

1
CCA

½q� !UWo o0G½ðq� ðfSs0g [POðocÞÞÞ [fNSg [PFðeÞ�

Using an object with another one. The first object is in the inventory, the other one is visible in the current scene and
the action is practicable. The inventory is modified as indicated, maybe erasing the used object. Also, should it be
indicated, the scene is changed in accordance. Finally, the flags activated by the action are recorded

Oo 2 q ^ hcharacter;s0; ch; cvi 2 RG ^Hðcv; ½q�Þ^
ðhgive-to;o; ch; ca; e; oc ; i 2 RG ^ NS ¼ Ss0Þ_
ðhgive-to;o; ch; ca; e; s; oc ; i 2 RG ^ NS ¼ SsÞ

� �
^

Hðca; ½q�Þ ^ Ss0 ¼ Sð½q�Þ

0
BB@

1
CCA

½q� !GTo chG½ðq� ðfSs0g [POðocÞÞÞ [fNSg [PFðeÞ�

Giving an object to a character. The object is in the inventory, the character is visible in the current scene and the
action is practicable. The inventory is modified as indicated, and the scene is changed if indicated. The new activated
flags are recorded

hcharacter;s0; ch; cvi 2 RG ^ Hðcv; ½q�Þ^
hconversation;ch;p; ca; e; i 2 RG^
Hðca; ½q�Þ ^ Ss0 ¼ Sð½q�Þ

0
@

1
A

½q�!Cp G½q [PFðeÞ�

Talking. The user wants to follow a conversation path. The character, who is able to talk and hold such a conversation,
is visible in the current scene, and the conversation is practicable. The flags activated by the conversation are
recorded in the new state

16 P. Moreno-Ger et al. / Information and Software Technology xxx (2008) xxx–xxx

ARTICLE IN PRESS
� Another aspect to consider here is how each action changes the
state of the game. Different types of actions have particular
effects that are achieved only through them, like adding an
object to the inventory or holding a conversation. In addition,
all the actions can activate an arbitrary set of flags associated
to them. Pay attention to the fact that no action can deactivate
flags, although an initial or adapted value of these may be false.

� Finally, some elements include an index j, which when appear-
ing is in the last position. It is used to distinguish between alter-
natives of an action easily, since the he-Adventurei language
does not preclude several declarations of the same action with
different preconditions or effects (e.g. traversing a given exit in
a scene or combining an object with another one).

Once a suitable verification-oriented abstract syntax for he-
Adventurei games has been established, it is possible to formalize
the rules which characterize these games as state-based systems.
These rules are shown in Table 7. Notice that to denote states,
two notations are used: q indicates that state as a whole while
[q] denotes the state whose associated set of propositions is q
(i.e. PG([q]) = q for each state [q]). In these rules, H(c, q) states that
condition c holds provided the state q (i.e. H(hF+,F�i,
[q]),(F+ � q ^ F� \ q = ;)). In its turn, if U is a set, PW(U) denotes
the set resulting from prefixing each element in U with the modi-
fier W (e.g. if e is a set of flags, PF(e) is the set of associated flag
propositions). With S(q) we denote the scene proposition included
in state q. Finally, with RG we denote the abstract representation of
game G. Notice also that, according to the rules, if qi!

l Gqj, then the
flags in qi will be contained in the flags in qj. This formally estab-
lishes a monotonic notion of logical truth for flags in he-Adven-
turei: Actions can activate flags but never deactivate them.
Please cite this article in press as: P. Moreno-Ger et al., Model-che
doi:10.1016/j.infsof.2008.08.003
References

[1] S.B. Akers, Binary decision diagrams, IEEE Transactions on Computers C-27 (6)
(1978) 516–590.

[2] A. Amory, Building an educational adventure game: theory, design and lessons,
Journal of Interactive Learning Research 12 (2–3) (2001) 249–263.

[3] M. Baldoni, C. Baroglio, I. Brunkhorst, E. Marengo, V. Patti, Reasoning-based
curriculum sequencing and validation: integration in a service-oriented
architecture, in: Second European Conference on Technology Enhanced
Learning, Lecture Notes in Computer Science, 4753, Springer, 2007, pp. 426–
431.

[4] M. Baldoni, E. Marengo, Curriculum model-checking: declarative
representation and verification of properties, in: Second European
Conference on Technology Enhanced Learning, Lecture Notes in Computer
Science, 4753, Springer, 2007, pp. 432–437.

[5] T. Ball, S.K. Rajamani, Bebop: a symbolic model checker for Boolean programs,
in: Proceedings of the 7th International SPIN Workshop, Lecture Notes in
Computer Science, 1885, Springer, 2000, pp. 113–130.

[6] A. Browne, Z. Manna, H.B. Sipma, Generalized temporal verification diagrams,
in: Proceedings of the 15th Conference on the Foundations of Software
Technology and Theoretical Computer Science, Lecture Notes in Computer
Science, 1026, Springer, 1995, pp. 484–498.

[7] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang, Symbolic model-
checking: 1020 states and beyond, Informatics Computing 98 (2) (1992) 142–
170.

[8] S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, N. Sinha, Concurrent software
verification with states, events, and deadlocks, Formal Aspects of Computing
17 (4) (2005) 461–483.

[9] W. Chan, R.J. Anderson, P. Beams, S. Burns, F. Modugno, D. Notkin, J.D. Reese,
Model-checking large software specifications, IEEE Transactions on Software
Engineering 24 (7) (1998) 498–520.

[10] S. Chandra, B. Richards, J.R. Larus, Teapot: a domain-specific language for
writing cache coherence protocols, IEEE Transactions on Software Engineering
25 (3) (1999) 317–333.

[11] A. Cimatti, E. Clarker, F. Giunchiglia, M. Roveri, NUSMV: a new symbolic model
checker, International Journal on Software Tools for Technology Transfer 2 (4)
(2000) 410–425.

[12] E.M. Clarke, E.A. Emerson, A.P. Sistla, Automatic verification of finite-state
concurrent systems using temporal logic specifications, ACM Transactions on
Programming Languages and Systems 8 (2) (1986) 244–263.
cking for adventure videogames, Inform. Softw. Technol. (2008),

P. Moreno-Ger et al. / Information and Software Technology xxx (2008) xxx–xxx 17

ARTICLE IN PRESS
[13] E.M. Clarke, O. Grumberg, D.A. Peled, Model-Checking, The MIT Press,
Cambridge, MA, USA, 2000.

[14] E.M. Clarke, W. Heinle, Modular translation of statecharts to SMV, Technical
Report CMU-CS-00-XXX, Carnegie-Mellon University School of Computer
Science, 2000.

[15] J. Conallen, Modeling web application architectures with UML,
Communications of the ACM 42 (10) (1999) 63–70.

[16] J.C. Corbett, M.B. Dwyer, J. Hatcliff, Expressing checkable properties of dynamic
systems: the Bandera specification language, International Journal on Software
Tools for Technology Transfer 4 (1) (2002) 34–56.

[17] J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S. Pasareanu, Robby, H. Zheng,
Bandera: extracting finite-state models from java source code, in: Proceedings
of the 22nd International Conference on Software Engineering, Limerick,
Ireland, June 4–11th, 2000.

[18] R. Darimont, A. Lamsweerde, Formal refinement patterns for goal-driven
requirements elaboration, in: Proceedings of the 4th ACM SIGSOFT
Symposium on Foundations of Software Engineering, ACM SIGSOFT Software
Engineering Notes, vol. 21 (6), 1996, pp. 179–190.

[19] D.L. Dill, The Muru verification system, in: Proceedings of the 8th International
Conference on Computer Aided Verification, Lecture Notes in Computer
Science, 1102, Springer, 1996, pp. 390–393.

[20] L.K. Dillon, G. Kutty, L.E. Moser, P.M. Melliar-Smith, Y.S. Ramakrishma, A
graphical interval logic for specifying concurrent systems, ACM Transactions
on Software Engineering and Methodology 3 (2) (1994) 131–165.

[21] F.M. Donini, M. Mongiello, M. Ruta, R. Totaro, A model-checking-based method
for verifying web application design, in: Proceedings of the 12th Symposium
on the Integration of Symbolic Computation and Mechanized Reasoning
(Calculemus 2005), Electronic Notes in Theoretical Computer Science, vol. 151,
2006, pp. 19–32.

[22] M.B. Dwyer, G.S. Avrunin, J.C. Corbett, Patterns in property specifications for
finite-state verification, in: Proceedings of the 21st International Conference
on Software Engineering. Los Angeles, CA, May 16–22th, 1999.

[23] E.A. Emerson, Temporal and modal logic, in: J.V. Leeuwen (Ed.), Handbook of
Theoretical Computer Science, vol. B: Formal Models and Semantics, 1990, pp.
995–1072.

[24] L. Ercegovac, Digital Systems and Hardware/Firmware Algorithms, John Wiley
& Sons, USA, 1985.

[25] R. Eshuis, Symbolic model-checking of UML activity diagrams, ACM
Transactions on Software Engineering and Methodology 15 (1) (2006) 1–38.

[26] N. Hallbwachs, P. Caspi, P. Raymond, D. Pilaud, The synchronous data flow
programming language LUSTRE, Proceedings of the IEEE 79 (9) (1991) 1305–
1320.

[27] D. Harel, Statechars: a visual formalism for complex systems, Science of
Computer Programming 8 (1987) 231–274.

[28] K. Havelund, M. Lowry, J. Penix, Formal analysis of a space craft controller
using SPIN, IEEE Transactions on Software Engineering 27 (8) (1997) 749–765.

[29] K. Havelund, J.U. Skakkebaek, Applying model-checking in java verification, in:
Proceedings of the 6th Workshop of the SPIN Verification System, Lecture
Notes in Computer Science, 1680, Springer, 1999, pp. 216–231.

[30] G.J. Holzmann, The SPIN Model Checker – Primer and Reference Manual,
Addison-Wesley, 2004.

[31] G.J. Holzmann, M.H. Smith, Software model-checking: extracting verification
models from source code, Software Testing, Verification and Reliability 11 (2)
(2001) 65–79.

[32] D. Latella, I. Majzik, M. Massink, Automatic verification of a behavioural subset
of UML statechart diagrams using the SPIN model checker, Formal Aspects of
Computing 11 (6) (1999) 637–664.

[33] D. Lie, A. Chou, D. Engler, D.L. Dill, A simple method for extracting models from
protocol code, in: Proceedings of the 28th Annual International Symposium on
Computer architecture (ISCA’01), ACM SIGARCH Computer Architecture News,
vol. 29 (2), 2001, pp. 192–203.

[34] K.L. McMillan, Symbolic Model-Checking, Kluwer Academic, 1993.
[35] M. Mernik, J. Heering, A.M. Sloane, When and how to develop domain-specific

languages, ACM Computing Surveys 37 (4) (2005) 316–344.
[36] E. Mikk, Y. Lakhnech, M. Siegel, G.J. Holzmann, Implementing statecharts in

PROMELA/SPIN, in: Proceedings of the 2nd IEEE Workshop on Industrial-
Please cite this article in press as: P. Moreno-Ger et al., Model-chec
doi:10.1016/j.infsof.2008.08.003
Strength Formal Specification Techniques, Boca Raton, Florida, October, 21–
23th, 1998.

[37] P. Moreno-Ger, C. Blesius, P. Currier, J.L. Sierra, B. Fernández-Manjón,
Online learning and clinical procedures: rapid development and effective
deployment of game-like interactive simulations, Lecture Notes in
Computer Science, Transactions on Edutainment I, vol. 5080, 2008, 288–
304.

[38] P. Moreno-Ger, D. Burgos, I. Martı́nez-Ortiz, J.L. Sierra, B. Fernández-Manjón,
Educational game design for on-line education, Computers in Human
Behaviour (in press). doi:10.1016/j.chb.2008.03.012.

[39] P. Moreno-Ger, I. Martínez-Ortiz, J.L. Sierra, B. Fernández-Manjón, A content-
centric development process model, IEEE Computer 41 (3) (2008) 24–30.

[40] P. Moreno-Ger, P. Sancho, I. Martínez-Ortiz, J.L. Sierra, B. Fernández-Manjón,
Adaptive units of learning and educational videogames, Journal of Interactive
Media in Education 2007/05, 2007a.

[41] P. Moreno-Ger, J.L. Sierra, I. Martínez-Ortiz, B. Fernández-Manjón, A
documental approach to adventure game development, Science of Computer
Programming 67 (1) (2007) 3–31.

[42] M. Musavathi, D.Y.W. Park, A. Chou, CMC: a pragmatic approach to model-
checking real code, in: 5th Symposium on Operating Systems Design and
Implementation, USENIX, Boston, MA, December 9–11th, 2002.

[43] S. Nakajima, Model-checking verification for reliable web service, in:
Proceedings of the OOPSLA 2002 Workshop on Object-Oriented Web-
Services OOWS 2002, Seattle, Washington, USA, November 5th, 2002.

[44] G. Pu, X. Zaho, S. Wang, Z. Qiu, Towards the semantics and verification of
BPEL4WS, in: Proceedings of the International Workshop on Formal Aspects of
Component Software. Electronics Notes in Theoretical Computer Science, vol.
160, 2005, pp. 33–52.

[45] P. Schnoebelen, The complexity of temporal logic model-checking. Advances in
modal logic, in: Papers From 4th International Workshop on Advances in
Modal Logic (AiML’2002), September–October 2002, Toulouse, France, vol. 4,
2003, pp. 393–436.

[46] E.D. Sciascio, F.M. Donini, M. Mongiello, G. Piscitelli, Web applications design
and maintenance using symbolic model-checking, in: Proceedings of the 7th
European Conference on Software Maintenance and Reengineering,
Benevento, Italy, March 26–28th, 2003.

[47] E.D. Sciascio, F.M. Donini, M. Mongiello, R. Totaro, D. Castelluccia, Design
verification of web applications using symbolic model-checking, in: 5th
International Conference on Web Engineering, Lecture Notes in Computer
Science, 3579, Springer, 2005, pp. 69–74.

[48] J.L. Sierra, A. Fernández-Valmayor, B. Fernández-Manjón, A document-oriented
paradigm for the construction of content-intensive applications, Computer
Journal 49 (5) (2006) 562–584.

[49] J.L. Sierra, A. Fernández-Valmayor, B. Fernández-Manjón, From documents to
applications using markup languages, IEEE Software 25 (2) (2008) 68–76.

[50] D.P. Stotts, R. Furuta, C.R. Cabarrus, Hyperdocuments as automata: verification
of trace-based Browsing properties by model-checking, ACM Transactions on
Information Systems 16 (1) (1998) 1–30.

[51] S. Thibault, R. Marlet, C. Consel, Domain-specific languages: from design to
implementation application to video device drivers generation, IEEE
Transactions on Software Engineering 25 (3) (1999) 363–377.

[52] A. van Deursen, P. Klint, J. Visser, Domain-specific languages: an annotated
bibliography, ACM SIGPLAN Notices 35 (6) (2000) 26–36.

[53] R. van Eck, Building artificially intelligent learning games, in: D. Gibson, C.
Aldrich, M. Prensky (Eds.), Games and Simulations in Online Learning:
Research and Development Frameworks, Information Science Publishing,
Hershey, PA, 2007.

[54] W. Visser, K. Havelund, S. Park, Model-checking programs, Automated
Software Engineering 10 (2003) 203–232.

[55] C.D. Walton, Model-checking multi-agent web-services, in: First
International Semantic Web-Services Symposium, Palo Alto, CA, March
22–24th, 2004.

[56] X. Zaho, H. Yang, Z. Qiu, Towards the formal model and verification of web
service choreography description language, in: Proceedings of the 3rd
International Workshop on Web-Services and Formal Methods, Lecture
Notes in Computer Science, 4184, Springer, 2006, pp. 273–287.
king for adventure videogames, Inform. Softw. Technol. (2008),

	Model-checking for adventure videogames
	Introduction
	Preliminaries
	The lang e-Adventure rang framework
	The lang e-Adventure rang language
	The lang e-Adventure rang environment
	Adaptation of lang e-Adventure rang games

	Case-study
	Verification of game properties in lang e-Adventure rang games
	The approach
	Describing properties
	Labeled transition systems for verification
	Generating the verification model for the model checker
	Verifying properties and generating counterexamples
	Generating the animation

	Related work
	Model-checking at the design level
	Model-checking for general-purpose programming languages
	Model-checking in specific domains
	Facilitating the specification of properties

	Conclusions and future work
	Acknowledgements
	Characterization of the transition relations of lang e-Adventure rang verification models
	References

