
Language-Driven Development of Videogames: The
<e-Game> Experience1

Pablo Moreno-Ger*, Iván Martínez-Ortiz#, José Luis Sierra*, Baltasar
Fernández-Manjón*

* Fac. Informática. Universidad Complutense. 28040, Madrid. Spain.
{pablom,jlsierra,balta}@fdi.ucm.es

Centro de Estudios Superiores Felipe II. 28300, Aranjuez. Spain
imartinez@cesfelipesegundo.com.

Abstract. In this paper we describe a language-driven approach to the
development of videogames. In our approach the development process starts
with the design of a suitable domain-specific language for building games,
along with an abstract syntax for the language and its operational semantics.
Next an engine supporting the language is built. Finally games are built using
the customized language and they are executed using the engine. This approach
is exemplified with the <e-Game> project, which delivers the design of a
language and the construction of an engine for the documental development of
graphical adventure videogames with educational purposes.

1. Introduction

There are fields like edutainment [12], casual gaming [17] or propaganda [26], where
rapid development of simple games is required. This development is usually carried
out using languages and/or tools specifically tailored to the videogame domain. These
languages and tools range from very powerful, but also knowledge-demanding,
special-purpose programming languages (e.g. DIV [8] and DarkBasic [10]) to easy-to-
use, but also more limited, authoring systems to be used by non programmers (e.g.
Game Maker [21]), to scripting solutions based on either general-purpose scripting
languages (e.g. LUA [11] or TCL [20]) or on languages specially tailored to specific
videogames.

This search for a good balance between expressive power and simplicity of use and
maintenance has also been faced with Language-driven approaches [4, 16]. The
specific focus of these approaches is to promote the explicit design and
implementation of domain-specific languages [25] as a key feature of the
development process. For each application domain a suitable language is designed
and an interpreter or compiler for such a language is constructed. Being domain-
specific, the language can be easily understood and used by the experts in the domain

1 The Projects TIN2004-08367-C02-02 and TIN2005-08788-C04-01 and the Regional Government of

Madrid (4155/2005) have partially supported this work. Thanks to the CNICE for the game design
documents and graphics assets provided.

1

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

2 , Moreno-Ger, Martínez-Ortiz, Sierra, Fernández-Manjón

(usually non programmers) in order to specify applications in such a domain.
Therefore the approach inherits the usability of the production processes based on
authoring tools. On the other hand, the approach also provides great flexibility: As
long as the design of the languages is an intrinsic activity of the approach, existing
languages can be modified and extended and new ones can be created to meet the
changing needs of the user community. The main shortcomings of the approach are
the costs associated with initial language design and implementation.

The costs associated with language-driven approaches can be amortized in domains
where a whole application family (i.e. a set of variants of a single application model)
must be produced and maintained [7]. Application families are very frequent in the
domain of videogames, where it is possible to distinguish many genres of games, each
of them including many common traits that can be abstracted in the design of a
domain-specific language or tool. A good example of uniformity is the genre of
graphic adventure videogames [13]. In fact, the <e-Game> project provides language-
driven methods, techniques and tools for facilitating the production and maintenance
of graphical adventure videogames to be applied in education.

In this paper we describe the language-driven approach to the construction of
videogames, and we exemplify the different stages of this approach with the
experiences gathered from the <e-Game> project. In section 2 we describe the
language-driven development approach itself. In section 3 we illustrate this approach
with <e-Game>. Finally, section 4 gives the conclusions and lines of future work.

2. A Language-Driven Approach to the Development of
Videogames

The rationale behind any process aimed at the language-driven construction of
videogames is to provide the advantages of using an authoring approach for each
particular family of games, while preserving the flexibility provided by using a full
featured programming approach. Indeed, the approach must be conceived as
providing an authoring tool (the domain-specific language itself) adapted to the
specific needs of each domain, and even of each situation. Besides, a feasible
approach must keep the costs associated with the design, implementation and
maintenance of domain-specific languages within reasonable limits.

For this purpose, an incremental approach can be adopted, extending and
modifying both the language and its implementation in order to adapt them to
different situations and families of games. The approach that we propose in this paper
encourages such an incremental strategy.

Following our previous experiences with the document-oriented approach to the
production and maintenance of content-intensive applications [23, 24], we propose
the three views shown in Fig 1 for the characterization of this approach. Next
subsections give the details.

2

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

Language-Driven Development of Videogames: The <e-Game> Experience 3

Domain-specific
language

Language Design

Language
Implementation

Language
Customization

Game
engine

Game
loader

Game
Production

Videogame

Language Design

Language
Implementation

Language
Customization

Game
Production

[game
produced]

[more
linguistic
support
required]

[adaptation
required]

[evolution
required]

Language Design

Language
Customization

Language
Implementation

Game
Production

Build the
engine

Produce
the game

Formalize the
language

Describe the
game domain

Build the
loader

Asset and
evaluate

(a) (b)

(c)

Fig 1. Language-driven approach to the construction of videogames: (a) products and activities
view; (b) sequencing view; (c) participants and roles view.

2.1. Products and activities

The most characteristic activity in the language-driven approach is the language
design activity. In this activity a suitable domain-specific language is designed for the
production of the videogames. For this purpose, the activity addresses two different
aspects of the language:
− The language’s abstract syntax. This syntax can be thought of as the information

model representing the data of each sentence in the language that is relevant to the
subsequent processing (i.e. translation and/or interpretation) of such a sentence [9].
The focus on abstract syntax when designing a domain-specific language simplifies
the other design steps and the implementation activity, since the emphasis is put on
processing structured data instead of on raw strings. It also keeps the language and
the engine independent from the format finally used during authoring, and
therefore facilitates reusing the language in different scenarios by defining suitable
concrete (textual or even visual [14]) syntaxes. Finally, for reasonably narrow
genres (e.g. the domain of graphic adventures addressed) the resulting languages
are usually simple and declarative, which induces simpler abstract syntaxes.

− The language’s operational semantics. This is a formal and implementation-
independent characterization of how games described in the language are executed.
Therefore this description sets up the basis for building the game engine. The
formalization of this semantics is very useful in anticipating the more obscure

3

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

4 , Moreno-Ger, Martínez-Ortiz, Sierra, Fernández-Manjón

aspects of the language’s dynamic behaviour without being obfuscated by
technological and/or implementation details, and also in allowing rapid
prototyping.
The Language implementation activity deals in turn with the construction of a

game engine. This engine will be based on the description of the language produced
during language design, and especially on the operational semantics.

Another important activity is language customization. In this activity a suitable
concrete syntax is chosen for the language, and this syntax is actually implemented in
terms of a game loader. This loader performs a translation of games expressed in a
specific syntax into a representation compliant with the abstract syntax, thus allowing
their execution using the engine. The activity is very valuable for increasing the
usability of the language for different communities. Furthermore, the loader can be
turned into a full-featured editing and authoring environment for the domain-specific
language provided.

Finally, once the game engine and loader are made available, these artefacts can be
used for producing specific videogames during the game production activity.

2.2. Sequencing of the activities

We promote an incremental process model for the language-driven construction of
videogames. In this model languages are not conceived as pre-established, static and
unmovable entities, but are dynamic objects that evolve according to the authoring
needs that arise during the development of more and more videogames. This evolutive
nature alleviates the costs associated with language design and implementation, since
these activities can be interleaved with the production of videogames. In addition, it
contributes to more usable and affordable languages, since the complexity of the
languages is also in accordance with the expressive needs manifested during their
application. It avoids the premature inclusion of useless or unnecessarily sophisticated
constructs in the languages.

Sequencing of the activities in our approach is in accordance with this pragmatic
posture. As depicted in Fig 1b, new development iterations start when new games
must be developed or existing ones modified or extended. These production stages
can be interrupted in order to refine the game engine and/or the concrete syntax and
the associated game loader, in order to introduce a completely new concrete syntax
together with the associated loader, or in order to resolve a lack of expressiveness in
the current language. This latter situation supposes undertaking a new language
design activity, followed by the corresponding implementation and customization of
the newly defined features.

2.3. Participants and their roles

Our approach explicitly involves two different communities of participants in the
development process: game experts and developers. Game experts group the experts
in the different aspects involved in the development of a videogame not directly
related to programming (e.g. storyboard writing, graphical design, musical

4

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

Language-Driven Development of Videogames: The <e-Game> Experience 5

composition, design of the game-play, etc.). Developers in turn represent experts in
the different aspects related to programming and software development. This
separation of roles, which is taken from our previous experiences with the
aforementioned document-oriented approach, is mandatory for a successful
application of the approach, although the separation itself is not a novelty in the
videogame industry.

In the Language-driven approach, the main responsibility of domain experts is
during game production, because they will be the main stakeholders who are in
charge of producing the videogames using the language and supporting tools available
(the engine and the loader). In turn, the main responsibility for developers is during
the language implementation activity, where they build the game engine. The other
activities (language design and customization) require active collaboration between
experts and developers. During language design, experts must collaborate in order to
let developers formulate the right language. For this purpose, developers can use well-
known domain analysis methods [2] tailored to the particular domain of videogames.
In addition, narrowing the game genre and using rapid prototyping based on the
language’s operational semantics can help in harmonizing this collaboration. Finally,
during language customization experts help developers to define suitable syntaxes.
Once the syntax is stable, the construction of game loaders is a routine task that can
be tackled by using standard techniques and tools in compiler construction [1] or
standard linguistic frameworks like those alluded to in [25].

3. The <e-Game> Project

<e-Game> is a project oriented to the provision of means for the authoring and the
deployment of graphic adventure videogames with educational purposes [15, 18].
This project was conducted under the language-driven directives described in the
previous section. In this section we detail the consecution of the project in terms of
the products yielded by such a language-driven approach.

3.1. The <e-Game> language: abstract syntax and operational semantics.

During the design of the <e-Game> domain-specific language we chose a
characterization of the domain of graphic adventure videogames guided by the
instructional uses envisioned [13]. As a result of an initial domain analysis we
depicted the main features of the games to be built:
− Adventures occur in a world made of scenes. Typical examples of scenes might be

a bedroom, a tavern or a street. Scenes have exits that lead to other scenes. Besides,
some of these scenes are cutscenes: fixed scenarios that can be used to include
special events in the game flow (e.g. playing a videoclip).

− The player is represented inside the game world by an avatar that plays the leading
role in the adventure and navigates the different scenes as commanded by the
player.

5

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

6 , Moreno-Ger, Martínez-Ortiz, Sierra, Fernández-Manjón

− The world is populated by characters. The player maintains conversations with
such characters. Conversations follow the model of multiple-choice dialog
structures organized as a tree with the player’s possible answers as nodes that open
new sub-conversations.

− The scenes can contain several objects. Good examples of objects might be an axe,
a sword, a key or a chest. The player is allowed to perform several types of actions
with the objects: he/she can grab objects and add them to its personal object
inventory, use objects in his/her inventory with other objects, and give inventoried
objects to some characters.

Information item Intended meaning
<scene,s> s is a scene.
<cutscene,cs> cs is a cutscene.
<start,s> Scene or cutscene s is the game’s starting point.
<next-scene,cs,ns,c,es> If condition c holds, once the cutscene cs is finished, it is possible to enter ns

and get es as effects.
<next-scene,s,i,ns,c,es> If condition c holds, it is possible to go from scene s to ns by traversing the

exit number i and to achieve es as effects.
<object,s,o,c> Object o is visible in the scene s provided that c holds.
<grab,o,c,es> If condition c holds, object o can be grabbed. The effect is the achievement of

es.
<use-with,os, ot ,c,es> Object o can be given to character ch when condition c holds. Then effects es

are achieved.
<give-to,o, ch ,c,es> Object os can be combined with object ot provided that condition c holds.

Then the effects es are achieved.
<character,s,ch,c> Character ch is visible in scene s provided that c holds.
<conversation,ch,conv,c> The conversation conv can be maintained with character ch when condition c

holds.
Fig 2. Main types of information items that constitute the abstract syntax for the <e-Game>

language.

− Games include a declarative notion of state, which is mainly based on boolean
propositional variables called flags. Flags can be used to describe the conditions
that the player must have previously achieved in order to be allowed to carry out an
action in a game, such as to see an object, activate an exit or initiate a conversation
with a character. When a flag holds, it is said to be active. Otherwise, it is said to
be inactive. Conditions will be expressed as conjunctive normal forms on the flags
(i.e. as sequences of alternatives made of elementary activation and deactivation
conditions).

− Finally, the different actions undertaken by the player can produce several effects.
These effects can be of different types: (i) activation of a flag; (ii) consumption of
an object in the inventory as a consequence of combining it with another or giving
it to a character; (iii) speech uttered by a character when he/she receives an object;
and (iv) triggering a cutscene. Notice that in <e-Game> it is not possible to
deactivate flags. Intuitively, a flag represents an achievement, which cannot be
unachieved.
The abstract syntax for an <e-Game> language able to express these features can

be easily characterized as set of tuples, which will be called <e-Game> information
items. In Fig 2 the main types of information items comprised by this abstract syntax
are summarized (for the sake of simplicity we omit information items used for

6

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

Language-Driven Development of Videogames: The <e-Game> Experience 7

presentational purposes, such as for instance the coordinates and the dimensions of an
exit, or the external assets required to render a character). In these items, conditions
are further represented as ordered pairs <f+,f->, where f+ is the set of flags that must
be active, and f- the set of those that must be inactive. In turn, effects are represented
as a list of tuples representing the individual effects (e.g. <activate,f> for activating
the flag f). Lists themselves are represented either by <> (in case of the empty list) or
by <e,l> (in case of a list with head e and with rest l). Finally, conversations are
represented as lists of tuples with the basic conversation steps. Option lists in the
conversation are represented as lists of pairs of the form <o,conv>, where o is the text
of the option and conv is the sub-conversation that follows. In Fig 3 the
representation of a fragment of a conversation using this abstract syntax is depicted.
This conversation concerns a simple educational game about safety regulations at
work.

 <conversation, Foreman,
 <<speak-char, "Well, José, did you measure the
 scaffold?">,
 <<response,
 <<"No sir, not yet",
 <<speak-char, "And what are you waiting for, boy?">,
 <<speak-player, "At once, sir">,
 <end-conversation,<>>>>>,
 <<"Yes sir, it's ready",
 <<speak-char, "And...">,
 <<response,
 ... >,
 {{SecondTaskInitiated, UsedMeasureTapeScaffold},∅}>

Fig 3. A fragment of conversation represented in the abstract syntax of the <e-Game>
language.

This abstract syntax, although reasonably readable, is not intended to be used by
authors directly. It sacrifices clarity for a representation that allows a reasonably
straightforward definition of its formal operational semantics. The operational
semantics for the <e-Game> language is specified using the style of structural
operational semantics, a common method of specifying the operational semantics of
artificial computer languages [19, 22].

In Fig 4 we show some of the semantic rules for the <e-Game> language that
formalize the behaviour associated with conversations. In such rules, expressions of
the form ′Φ are used to introduce both generic set-theoretical statements that must
hold and <e-Game> specific predicates that are readily translated into such kind of
statements (such translation is addressed by other semantic rules). In turn so → s1 is
used for denoting a basic transition between execution states. Such states are
represented as 5-tuples with the form <θ,G,σ,in,out> where: (i) θ is a set of attribute-
values pairs which represent the control state of the execution; (ii) G is the set of
information items that represents the game; (iii) σ is the game state, which contains a
pair for the active flags and another one for the objects in the inventory; (iv) in is an
input stream that contains the commands representing the player’s interactions; and

7

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

8 , Moreno-Ger, Martínez-Ortiz, Sierra, Fernández-Manjón

(v) out is an output stream where the commands for producing the game’s
presentation are written.

is-in(,) ;; is-in-scene(, , ,) ;; conversation, , , ;; holds(,)
, , , talk-to, , , ctrl-talking(, ,), , , , , do-talk-to,

s G s ch ch conv c G c
G ch in out s ch conv G in out ch

θ σ σ
θ σ σ

〈 〉∈
〈 〈〈 〉 〉 〉 → 〈 〈 〈 〉〉〉
¢ ¢ ¢ init-conv

conv

is-talking(, speak-player, ,)
, , , , : , , , , , do-speak-player,

m conv
G in out conv G in out m

θ
θ σ θ σ

〈〈 〉 〉
〈 〉 → 〈 = 〈 〈 〉〉〉

¢ speak-player2

conv char

is-talking(, speak-char, ,)
, , , , : , , , , , do-speak-char, ,

m conv
G in out conv G in out m

θ
θ σ θ σ θ

〈〈 〉 〉
〈 〉 → 〈 = 〈 〈 〉〉〉

¢ speak-char2

is-talking(, options, ,)
, , , , ctrl-goto-choosing(,), , , , , do-choosing,

os
G in out os G in out os

θ
θ σ θ σ

〈〈 〉 〈〉〉
〈 〉 → 〈 〈 〈 〉〉〉

¢ choosing1

is-choosing(,) ;; ,
, , , select, , , ctrl-goto-talking(,), , , , , do-choosen,

os o conv os
G o in out conv G in out o

θ
θ σ θ σ

〈 〉∈
〈 〈〈 〉 〉 〉 → 〈 〈 〈 〉〉〉

¢ ¢ choosing2

ctrl options

is-talking(, go-back,)
, , , , : choosing, , , , , do-going-back,G in out G in out

θ
θ σ θ σ θ

〈 〈〉〉
〈 〉 〈 = 〈 〈 〉〉〉

¢
¢

going-back

scene

is-talking(, end-conversation, ,)
, , , , ctrl-app-effects(,ctrl-in()), , , , ,do-end-conv

es
G in out es G in out

θ
θ σ θ σ

〈〈 〉 〈〉〉
〈 〉 → 〈 〈 〉〉

¢ ending-conv

Fig 4.<e-Game>’s semantics rules associated with conversations.

The notation of both the abstract syntax and the operational semantics is oriented
to allowing a relatively effortless implementation of the <e-Game> engine and
facilitating prototyping processes [5]. As we will see later, the abstract syntax can be
customized to a more usable language with a lower cognitive overload for authors.

3.2. The <e-Game> engine.

The architecture of the <e-Game> engine is depicted in Fig 5. The design of this
architecture was driven by the operational semantics of the <e-Game> language.
According to this architecture, the engine is comprised of the following elements:
− A component repository. This repository contains a set of game components, which

can be adequately selected and assembled to create the final videogame. There are
two kinds of game components: control rules, which roughly correspond to the
semantic rules of the <e-Game> operational semantics, and GUI components,
which implement interaction and presentation services to support the final
presentation layer of the videogame.

− The game controller, which encodes the operational behaviour of the engine. This
controller can be customized with an appropriate set of control rules, and it
includes a control driver that implements the selection and application strategies
for such rules.

− The user interface, which takes care of the basic interactions with the player and of
the presentation of the game. This interface is customized with a suitable collection
of GUI components, and its behaviour is controlled by a pre-established GUI shell.

− Input and output streams that connect the controller and the user interface.
− A game generator. This artifact processes the game’s information items, selects the

appropriate game components, and registers them in the core and user interface of

8

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

Language-Driven Development of Videogames: The <e-Game> Experience 9

the engine. This component is in turn architected with an extensible set of
configuration rules.

Game
information
items

Game
Generator

Component Repository
GUI
Components

Core Rules

Core

Core
driver

Rules

input

output

User
Interface

GUI
Shell

Components

Configuration
Rules

Fig 5. Architecture of the <e-Game> engine.

This architecture is modular enough to accommodate evolutions in the <e-Game>
language, as we realised at earlier design stages of this language.

3.3. The <e-Game> language as a descriptive markup language for game
storyboards.

We have customized the <e-Game> abstract language to yield a XML-based
descriptive markup language [3, 6] that can be used to directly mark up the game
storyboards. This customization facilitates the production and maintenance of the
graphic adventure videogames for game writers. Indeed, being descriptive and
mirroring the structure of the storyboards, the language is easily understandable to
game writers, which can use it to make the structure of their storyboards explicit.
Besides, the markup can also be used to refer to the art assets required to display the
different game components. These assets can be provided by another community of
experts (the artists).

As a consequence of markup-based customization, a collaboration model for the
development of graphical adventure videogames arises, which is based on our
previous work on the document-oriented approach. The development process is ruled
by game writers, although it also involves the other participants (including artists and
developers) in a rational way. According to this model, game writers prepare the
storyboards in plain English and then they mark them up with the <e-Game> markup
language. In this process they can be advised by developers regarding the most
abstract aspects of the language (e.g. specification of conditions), and also by artists
regarding the aspects related to the art assets (e.g. coordinates and other presentational
information). In Fig 6a we depict the concrete syntax for describing conversations
(we use XML DTDs notations for the sake of brevity, although the syntax is actually
formalized using an XML Schema, in order to facilitate its future maintenance and

9

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

10 , Moreno-Ger, Martínez-Ortiz, Sierra, Fernández-Manjón

evolution). In Fig 6b we show a fragment of storyboard for the safety regulations
game that corresponds to the conversation already represented in Fig 3. In Fig 6c we
show the result of marking up this fragment.

The game loader for this concrete syntax has also been provided with a modular
architecture to facilitate its extension and evolution. This architecture is based on the
model for the incremental construction of processors for domain-specific markup
languages described in [24].

F: Well José, have you
 measured the scaffold?
 ->J: No sir, not yet
 F: And what are you
 waiting for,
 boy?
 J: At once, sir
 ->J: Yes sir, it's ready
 F: And...

(a)

(c) <conversation id="CompleteSecondTask">
 <speak-char>Well José, did you measure the scaffold?</speak-char>
 <response>
 <option>
 <speak-player>No sir, not yet</speak-player>
 <speak-char>And what are you waiting for, boy?</speak-char>
 <speak-player>At once, sir</speak-player>
 <end-conversation/>
 </option>
 <option>
 <speak-player>Yes sir, it's ready</speak-player>
 <speak-char>And...</speak-char> (…)

<!ELEMENT conversation (%dialogue;, %continuation;)>
<!ATTLIST conversation id ID #REQUIRED>
<!ENTITY % dialogue "(speak-char|speak-player)*">
<!ENTITY % continuation "(response|end-conversation)*">
<!ELEMENT response (option)+>
<!ELEMENT option (speak-player,%dialogue;,
 (%continuation;|go-back))>
<!ELEMENT go-back EMPTY>
<!ELEMENT end-conversation (effects?)>

(b)

Fig 6. (a) Formalization of the markup for conversations; (b) a fragment of conversation in a
storyboard; (c) markup of the fragment in (b).

3.4. Production of videogames with <e-Game>

Until now we have applied <e-Game> in the development of some educational
videogames about safety regulations and work risks prevention (Fig 7a), and also in
several experiences carried out in collaboration with the CNICE, the Spanish National
Center of Information and Educative Communication, the biggest repository of
educational games in Spain (Fig 7b). These experiences consisted of reusing the
instructional design and art assets of the videogames corresponding to a History of
Music course provided by the CNICE. During these experiences we substantially
improved the different products in <e-Game>, realizing the benefits of the
incremental language-driven approach. We also realized that game writers could
easily learn and dominate the operational and presentational aspects of the language
to the point of maintaining <e-Game> documents on their own. When they reach the
adequate level of proficiency, they can proceed with little support from the other
participants (developers and artists).

10

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

Language-Driven Development of Videogames: The <e-Game> Experience 11

 (a) (b)

Fig 7. (a) Snapshot of the safety regulations videogame; (b) Snapshot for Hall of the Kings, a
little educative game developed by reusing assets provided by CNICE.

4. Conclusions and future work

In this paper, we have presented a language-driven approach to the development of
videogames. This approach promotes the incremental definition of domain-specific
languages in order to deal with the particular features of each family of videogames.
We have successfully experienced the feasibility of the approach with <e-Game>, a
project for the development of graphic adventures with an instructional purpose. On
the negative side we must highlight the costs associated with the design,
implementation and customization of the languages. We must also indicate as a
drawback the highly specialized skills required of developers, who must have rather
specialized skills regarding language design and implementation technologies.

We are currently further improving <e-Game> by exploring alternative (visual)
concrete syntaxes. We also want to extend the language to explore alternative
conversation models. As future work we are planning to apply <e-Game> to
alternative domains other than the educational (e.g. advertising and diffusion of
ideas). We also want to apply the language-driven approach to other game domains
with educational purposes, like interactive fiction or interactive simulation.

References

1. Aho, A., Sethi, R., and Ullman, J.D., Compilers: Principles, Techniques and Tools.
Adisson-Wesley (1986).

2. Arango, G., Domain-Analysis: From Art Form to Engineering Discipline. ACM
SIGSOFT Notes. Vol. 14(3). (1989).

3. Bray, T., Paoli, J., Sperberg-McQueen, C.M., and Maler, E. Extensible Markup Language
(XML) 1.0. W3C Recommendation(2000) Available: www.w3c.org March 27th, 2006.

4. Clark, T.E., Sammut, P., and Willans, J. An eXecutable Metamodelling Facility for
Domain Specific Language Design, in The 4th OOPSLA Workshop on Domain-Specific
Modeling. Vancouver, Canada (2004).

11

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

12 , Moreno-Ger, Martínez-Ortiz, Sierra, Fernández-Manjón

5. Clément, D., Despeyroux, J., Despeyroux, T., Hascoet, L., and Kahn, G., Natural
Semantics on the Computer, in Rapport de Recherche N 416. INRIA Sophia Antipolis:
Valbonne, France (1985).

6. Coombs, J.H., Renear, A.H., and DeRose, S.J., Markup Systems and the Future of
Scholarly Text Processing. Communications of the ACM. Vol. 30(11). (1987) 933-947.

7. Coplien, D., Hoffman, D., and Weiss, D., Commonality and Variability in Software
Engineering. IEEE Software. Vol. 15(6). (1998) 37-45.

8. DIV Community Website. Available from: http://www.divsite.net March 27th, 2006.
9. Friedman, D., Wand, M., and Haynes, C.T., Essentials of Programming Languages

Second Edition. MIT Press (2001).
10. Harbour, J. and Smith, J., Beginner's Guide to DarkBasic Game Programming. Premier

Press (2003).
11. Ierusalimschy, R., Figueirido, L.H., and Celes Filho, W., LUA-An Extensible Extension

Language. Software Practice & Experience. Vol. 26(5). (1996) 635-652.
12. Jenkins, H., Klopfer, E., Squire, K., and Tan, P., Entering the Education Arcade. ACM

Computers in Entertainment. Vol. 1(1). (2003).
13. Ju, E. and Wagner, C., Personal computer adventure games: Their structure, principles

and applicability for training. The Database for Advances in Information Systems. Vol.
28(2). (1997) 78-92.

14. Marriott, K., Meyer, B., and Wittenburg, K.B.A., Survey of Visual Language
Specification and Recognition, in Theory, K. Marriot and B. Meyer (eds), Visual
Language. Springer-Verlag. (1999).

15. Martinez-Ortiz, I., Moreno-Ger, P., Sierra, J.L., and Fernández-Manjón, B. Production
and Maintenance of Content Intensive Videogames: A Document-Oriented Approach, in
International Conference on Information Technology: New Generations (ITNG 2006).
Las Vegas, NV, USA: IEEE Society Press (2006).

16. Mauw, S., Wiersma, W.T., and Willemse, T.A.C., Language-driven System Design. Int. J.
of Software Engineering and Knowledge Engineering. Vol. 14(6). (2004) 625-664.

17. Mills, G. Casual Games. International Game Developers Association White Paper (2005)
Available from: http://www.igda.org/casual/IGDA_CasualGames_Whitepaper_2005.pdf
March 27th, 2006.

18. Moreno-Ger, P., Martinez-Ortiz, I., and Fernández-Manjón, B. The <e-Game> project:
Facilitating the Development of Educational Adventure Games, in Cognition and
Exploratory Learning in the Digital age (CELDA 2005). Porto, Portugal (2005).

19. Mosses, P.D., Modular Structural Operational Semantics. Journal of Logic and Algebraic
Programming. Vol. 60-61. (2004) 195-228.

20. Ousterhout, J.K., Scripting: Higher Level Programming for the 21st Century. IEEE
Computer. Vol. 31(3). (1998) 23-30.

21. Overmars, M., Teaching Computer Science through Game Design. IEEE Computer. Vol.
37(4). (2004) 81-83.

22. Plotkin, G.D., An Structural Approach to Operational Semantics, in Tech. Report DAIMI
FN-19. Computer Science Dept. Aarhus University (1981).

23. Sierra, J.L., Fernández-Manjón, B., Fernández-Valmayor, A., and Navarro, A., Document
Oriented Development of Content-Intensive Applications. International Journal of
Software Engineering and Knowledge Engineering. Vol. 15(6). (2005) 975-993.

24. Sierra, J.L., Navarro, A., Fernández-Manjón, B., and Fernández-Valmayor, A.,
Incremental Definition and Operationalization of Domain-Specific Markup Languages in
ADDS. ACM SIGPLAN Notices. Vol. 40(12). (2005) 28-37.

25. Van Deursen, A., Klint, P., and Visser, J., Domain-Specific Languages: An Annotated
Bibliography. ACM SIGPLAN Notices. Vol. 35(6). (2000) 26-36.

26. Water Cooler Games Web Site. 2006; Available from: http://www.watercoolergames.org
March 27th, 2006.

12

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

