
A Content-Centric
Development
Process Model

Pablo Moreno-Ger,
Iván Martínez-Ortiz,
José Luis Sierra, and
Baltasar Fernández-Manjón
Complutense University of Madrid

Working from the belief that when content is king,

content experts should lead, a storyboard-driven

approach provides a sound methodology for

developing educational games that helps ensure

that no good storyboard becomes a bad game.

C
omputer and videogames have a huge potential to facilitate
learning because they easily capture students’ attention. The
popular notion that children have a limited attention span falls
apart when we see that they can spend hours playing a game
without losing their concentration. The time spent gaming also

can be an educational investment if applied carefully—and that is where
game-based learning becomes relevant.

However, it’s not easy to educate while entertaining. We can’t just throw
some math into a game and call it educational, nor can we call it entertain-
ment when a talking animal gives the lesson while the student solves silly
puzzles. In the words of literature professor Henry Jenkins, we need to
“move beyond the current state of edutainment products which combine
the entertainment value of a bad lecture with the educational value of a bad
game” (http://icampus.mit.edu/projects/GamesToTeach.shtml).

In our view, point-and-click adventure games like the Monkey Island or
King’s Quest sagas have all the ingredients needed to achieve this balance
between content delivery and entertainment. In this genre, we measure
games in terms of their storyboards’ quality and their rhythm as opposed
to the typical features of other videogame genres, such as challenges that
make players’ adrenaline flow or demand lightning reflexes.

A narrative game in which the content is pervasively woven into the sto-
ryboard has the potential to achieve this elusive balance. However, the
participation of nontechnical professional scriptwriters in the videogame
industry has always raised issues in terms of their integration in technical
development teams. In our case, the outlook is even worse because the
writing teams include experts in the subject matter that the game aims to
teach, and they would likely feel uncomfortable surrounded by developers.
As developers and computer science instructors, we see how technological
constraints often guide our design choices regarding the user experience.1
When applied to adventure game development, this can cause conflicts and

C O M P U T I N G P R A C T I C E S

 24 Computer Published by the IEEE Computer Society 0018-9162/08/$25.00 © 2008 IEEE

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

 March 2008 25

prompt the technical team to make statements such as
“look, this part of the storyboard is great, but it can’t
be done with our game engine/programming language”
usually due to some obscure reasons the writers don’t
understand. These situations generate friction and
can hinder the development process if the participants
understand it as a confrontation between programmers
and writers.

Thus, in our educational scenario, there is a direct
need for a well-defined development process model
that seamlessly includes game writers and instructors
in a traditional game development organization while
maintaining their work independent of any technologi-
cal requirements. As the “Approaches to Game Devel-
opment” sidebar describes, developers can take any
of several approaches to designing a game, but none
of them places the writers in the center of the process.
We advocate a development process model in which
the game writers know precisely what can and can’t be
done with the current language because they are the
language’s final users. With this approach, even if the
development language is essential, the storyboard still
drives the development. This process embraces change
by having the language evolve along with the game. For
this purpose we conceived the <e-Adventure> develop-
ment model: The game’s writers lead the process, and
the documents they create provide the keystone for the
entire project.

DOCUMENTAL APPROACH
The cultural clash between instructors, game writers,

and developers is common to the development of other
content-intensive applications such as hypermedia and
educational programs. Developing a content-intensive
application requires collaboration between experts in
the content domain and the programmers who will build
the basic functionality to display and process that con-
tent. Since field experts usually have no technical back-
ground, we must facilitate their task as much as possible.
Otherwise, their attention shifts away from what really
matters: their knowledge of the field.

Our documental approach to software development pro-
poses a collaboration model in which domain experts and
developers work together using documents that describe
the application’s contents and other relevant features.
Developers equip domain experts with a suitable markup
language and an application generator. Domain experts
mark up the documents with the language and process
them automatically with the generator, yielding the final
executable application.2

In a basic sense, the application of this approach to
educational game development can be understood as an
educational game engine that uses an XML notation to
describe the games. In this simplified conception, the
game writers act as clients of the engine, adjusting ideas
to the tool’s characteristics. Even though this approach

is useful for amateur developments or fast prototyping,
the functionality of these environments becomes a fac-
tor that limits creativity because the language constrains
what can and can’t be done.

As long as a direct relationship exists between the
environment’s complexity and its expressive power,
easier languages can impose severe limitations. Thus,
defining the documental approach to software develop-
ment as a language-engine game-development pattern
grossly simplifies the concept.

The documental approach manages the roles and
responsibilities of domain experts and developers
without turning the former into clients and the lat-
ter into providers. On the contrary, it envisions the
development process as a collaborative effort led by
the writers, where the language is constantly evolv-
ing to fit the storyboard’s needs and the final versions
of the application, language, and engine are obtained
simultaneously.

Approaches to Game
Development

Videogame development poses a complex task
that requires highly specialized skills in areas such as
graphics processing, animation, sound, and buffer-
ing. Game developers must take different approaches
to dealing with the additional complexities that are
present compared to traditional programming:

Use of a general-purpose programming lan-
guage such as C++ in combination with tools
that facilitate low-level graphics processing such
as DirectX or OpenGL.
Use of a domain-specific game-oriented pro-
gramming language such as Dark Basic or an
authoring tool that lets nonprogrammers de-
velop their own games in specific genres, such as
Game Maker.1

Use of a game engine that manages all low-level
tasks, such as graphics, animation, collision
detection, sound, and AI. The game’s writers and
designers configure the engine using a scripting
language that is simpler than a general-purpose
programming language. Developers use this ap-
proach most frequently because the set of skills
required to design interesting gameplay is not
the same as that required to implement a highly
optimized graphical pipeline.

Reference
 1. M. Overmars, “Teaching Computer Science through

Game Design,” Computer, Apr. 2004, pp.81-83.

•

•

•

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

 26 Computer

<E-ADVENTURE> PROCESS MODEL
We developed <e-Adventure> in collaboration with

the Spanish National Center of Information and Edu-
cative Communication (CNICE). This office of the
Spanish Ministry of Science and Education contains
Spain’s largest repository of educational computer-
assisted material written in Spanish, including inter-
active videogames to support K-12 education. <e-
Adventure> (formerly known as <e-Game>) applies
the documental approach to developing educational
adventure games.3 In its basic conception as a game
development language, it would be the educational
equivalent of products such as Adventure Game Stu-
dio (www.adventuregamestudio.co.uk), although still
in a prototype stage. It includes several pedagogical
enhancements such as built-in assessment, standard-
ized educational metadata, and integration with virtual
learning environments.

However, <e-Adventure>’s most interesting feature is its
underlying process model. We base this model on spiral
or iterative process models such as the Rational Unified
Process (RUP),4 dividing the process into several stages
that can be iterated as often as necessary. Each iteration
involves both technical and nontechnical stakeholders,
who deliver products closer to the desired final result.

Products
Products in the <eAdven-

ture> process include the
language, document with
the marked-up storyboard,
art assets, engine, and final
game. These products play
the following roles:

• Following our docu-
 mental approach, we
 envision the <e-Adven-
 ture> language as a
 descriptive domain-
 specific markup lan-
 guage defined as an
 XML application. This
 language will closely
 mirror the structure of
 typical storyboards for
 adventure videogames.
 Thus, it will include ele-
 ment types for scenes
 (such as a living room,
 pub, or square), cut
 scenes (fixed places that
 include special events
 in the game flow, such
 as playing a video),
 characters, objects, and
 conversations.

The <e-Adventure> document provides an XML
description of the game’s storyboard. This docu-
ment conforms to the <e-Adventure> language.
The art assets supply all the multimedia materials
required to render the final game, such as back-
ground images and character and object sprites.
The <e-Adventure> engine interprets the <e-Adven-
ture> language. When fed the game’s storyboard
and art assets, it generates the final graphical adven-
ture videogame.

In <e-Adventure>, the supporting tools—the language
and associated processor—are organic entities that con-
stantly evolve along with the game in a process of pro-
ducing and maintaining the XML documents with the
storyboards and corresponding art assets. Thus, each
iteration provides a new version of the game, a refined
version of the language, and its corresponding imple-
mentation. While modifying the supporting tools at each
step might be considered bad practice from a software
engineering perspective, this is not true in every case.
Borrowing from a growing trend in corporate environ-
ments, we consider the supporting tools as probably
flawed and embrace change by explicitly introducing the
concept of change management into the process.

•

•

•

<eAdventure>
<title> Workplace safety</title>

 <story>
 The game starts at the main
 access to the construction ...
 </story>
 <scene>

<scene id="SiteAccess">
<documentation>

 Just after crossing the
 gate, José finds...

</documentation>
<exits>

<exit x="0" y="0"
 width="5" height="10">
 <documentation>
 Barn door: The barn has
 a door that leads ...

<!ELEMENT eAdventure (title ?, story?,
 (scene | cutscene)+,

 object *, player ,
 character *, conversation*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT story ANY>
<!ELEMENT scene (documentation?,
 resources*,
 exits , objects ?,
 characters ?)>
<!ATTLIST scene id ID #REQUIRED
 start (yes|no) "no">
 ...

<e-Adventure>
document

Art assets

<e-Adventure>
language

Final game
<e-Adventure>

engine

Used for marking up

Figure 1. <e-Adventure> products. Each development iteration delivers products closer to the
desired final result, including the language, document, art assets, engine, and final videogame.

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

 March 2008 27

When the language can’t express a particular con-
cept, we try to learn from this instead of developing
a workaround. This kind of planning results in the
additional task’s cost being relatively low. On the other
hand, the extended practice of considering the support-
ing tools as immutable can be quite costly should there
be a need to change them in the middle of a process that
doesn’t anticipate or readily allow for change.

Thus, even if we have artifacts such as the <e-Adven-
ture> language and engine, when our development
process goes active, both the language and engine
grow and evolve during the process, responding to
new script requirements because
one process stage explicitly
addresses this objective. Develop-
ers evaluate the modifications and
additions at the end of the process
to decide which should remain for
future development and which
are specific and thus should be
discarded.

Participants and their roles
Even though instructors might

use a specific version of the lan-
guage and engine to develop small educational games,
we can target the process model toward larger develop-
ment teams with mixed roles and skills. In particular,
we foresee four main stakeholders in the <e-Adventure>
process: scriptwriters, programmers, artists, and project
supervisors.

Scriptwriters draft the games’ scripts and, depending
on the project’s goals, this group might be formed by
professional writers, instructors, or both. In any case,
we think this group is key to the final product’s success
in terms of both entertainment and educational value—
and for that reason it receives most of the attention dur-
ing the production process. Since these stakeholders are
the <e-Adventure> language’s final users, their input is
crucial to its evolution and ability to frame their require-
ments in functionality and usability terms.

Programmers oversee the creation, fine-tuning, and
specialization of the game engine to accommodate the
particular needs of each production by, for example,
providing a specific component to render a complex
scene, to play a particular media type in a cut scene,
or to add a new characteristic to the engine. In addi-
tion, their background generally includes skills related
to language processing, thus they too have a stake in the
language’s evolution.

Artists produce the art assets. While in simple pro-
ductions the instructors or game writers can take the
art assets from repositories, or even create them on
their own, in <e-Adventure> we explicitly include art-
ists—graphic designers, musicians, and so on—as dis-
tinguished stakeholders in the development process.

Project supervisors manage the project’s evolution. In
particular, they have the final word on approving or reject-
ing both the initial game storyboard and resulting game.
They must also keep track of the process and assess the
results of each iteration. Depending on the project’s scale,
this group might or might not be explicitly present.

Production process
Figure 2 shows the production process itself, which

begins with the conception of the storyboard’s first draft
(Conception of the Storyboard activity). This activity
is the storywriters’ main responsibility. Once supervi-

sors approve the storyboard’s draft
(Revision checkpoint), they hold a
meeting between writers and pro-
grammers to decide whether the
<e-Adventure> language has enough
expressive power to implement the
storyboard (Evaluation checkpoint)
in its current state. If they detect
flaws in the language, they can cus-
tomize it by extending and adapt-
ing the existing markup structures
or adding new structures to the lan-
guage (Language Customization

activity). This step is crucial in our change-management
routine, as it puts the spotlight on the script and not on
the underlying technology.

Equipped with the initial storyboard and the
<e-Adventure> language, scriptwriters, programmers,
and artists undertake the main step in the process—the
actual production of the artifacts that come out of this
iteration. Scriptwriters use the new version of the lan-
guage to encode the storyboard or refine the existing
marked storyboard, possibly with the help of the pro-
grammers to clarify the language’s most complex con-
structs. Additionally, programmers modify the engine
to improve or fine-tune it or to process the new syntacti-
cal constructs. The artists use the storyboard to identify
which assets are required for its implementation, then
provide those assets.

Finally, developers combine all these artifacts to yield
an executable version of the game (Game Production).
Producing the running game provides the milestone that
marks the iteration’s end. The project supervisors evaluate
the products and establish the guidelines for the next itera-
tions, including changes in the script, rejection of changes,
reevaluation of the project’s schedule, and so on. In the final
iterations, this evaluation might include tests with users or
the intervention of a quality assurance department.

After this evaluation, a new iteration begins. However,
before producing more assets or writing more lines of
code for the engine, the developers reevaluate the lan-
guage and storyboard. During the implementation phase
it is normal to find that parts of the storyboard lack
polish, to discover new ideas that can’t be implemented

Equipped with the initial
storyboard and the

<e-Adventure> language,
scriptwriters, programmers,

and artists undertake
the actual production

of the artifacts.

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

 28 Computer

with the current version of the language, and even to
identify things that seemed like a great idea before but,
when implemented, don’t seem to work. After this step,
there will be a new specification for the language and the
engine, a new version of the storyboard, and the need for
more art assets. At this point, the new implementation
phase can start.

As with the RUP, completing all stages of each iteration
does not imply that each iteration ends with a potentially
deliverable product. The first iterations essentially focus
on creating a solid storyboard and establishing the lan-
guage’s major features. The implementation stage of these
early iterations creates prototypes of the engine, explores
whether the language can be used in practice to imple-

ment the storyboard, and creates
several predesigns of the art assets
to start exploring what the general
aesthetic of the game will be.

PROCESS INTO PRACTICE:
SCHOOLWORKS

The Schoolworks educational
game shown in Figure 3 exemplifies
the kind of project that can benefit
from the <e-Adventure> approach.
Written as an initiation module
for a course on safety regulations
in construction, in this game the
player assumes the role of a novice
construction worker recently hired
to help build a new school, as Fig-
ure 3a shows. Over five work days,
the player receives several assign-
ments that must be performed at
the construction site, each of which
requires following several safety
regulations. The tasks include deal-
ing with hazards related to falls,
misuse of toxic materials, electrical
shocks, and physical injuries while
handling heavy objects.

The game’s point-and-click
adventure structure doesn’t lead
the player step by step into memo-
rizing all the regulations. Instead,
the player is assigned different tasks
that require following those regula-
tions. Every time the player violates
a regulation, a mishap occurs, and
the player’s avatar is either injured
or fired.

As previously mentioned, a rich
story that attracts the player is key
to the game’s success. Ideally, the
project succeeds by weaving this
content into the story. Thus, along

with the construction tasks, in Schoolworks the player
experiences a compelling narrative, with several colorful
characters such as the patronizing foreman or the crazy
retired construction worker who roams the site. During
the game, a secondary story unfolds when the player
discovers that the construction company plans to cancel
building at the school and have the land rezoned for a
mall. Discovering this, the player eventually joins the
group opposing this plan.

This project employed a sizable development team
compared to other educational developments, although
still smaller than the teams for top-notch commercial
videogames. Three people formed the writing team, two
of whom possessed a background in writing noneduca-

Revision

Conception of the
storyboard

Evaluation

Language
customization

End?

[Storyboard
rejected]

[Language is
inadequate]

[Language is
adequate]

[New iteration
required]

[Production
finished]

Game production

[Storyboard
accepted]

Engine
customization

Storyboard
markup

Production of the
art assets

Storyboard
writing/

modification

Preparation of
sketches and designs

Artists

Programmers

Scriptwriters

Supervisors

Figure 2. <e-Adventure> production. The process begins with the scriptwriters’ main
responsibility, the conception of the storyboard’s first draft. Once supervisors approve this
draft, the writers and programmers meet to decide whether the <e-Adventure> language
has enough expressive power to implement the storyboard in its current state.

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

 March 2008 29

tional adventure games,
while the third had been
an instructor on the sub-
ject.

Even if they were not
trained programmers,
all three writers could be
considered computer lit-
erate. The programmers
were computer science
students who possessed
broad experience with
both XML technolo-
gies and game engine
programming, while
the artists were formal
art students enrolled in
a computer animation
course.

The team approached
the game as an evolu-
tion of a previous proof-
of-concept develop-
ment. Their first step
consisted of reusing the
ideas included in the
first game and adding
the necessary narrative
spice to make the story
more appealing. This
resulted in a storyboard that required approval by the
supervisors who were the corresponding leaders of the
three teams involved. After initial approval, the iterative
development process began.

First iteration
First, the team determined if the language had the

power to express the storyboard’s contents. After
reviewing the requirements, we noticed that some of the
planned in-game conversations would pose problems
when fitting into the treelike structure of the conver-
sations that the language supported. The programmers
suggested a new mechanism to define graphlike conver-
sations, which the team accepted.

At the implementation stage, scriptwriters added
descriptive markup to the most critical portions of the
game, producing the storyboard’s first XML version,
which the rest of the work would focus on. In turn,
the programmers modified the engine by adding sup-
port for the new conversation format, while at the same
time helping the scriptwriters with the most complex
parts of the markup process. Meanwhile, the artists
used the original draft to prepare some paper-based
sketches that defined the game’s aesthetics—as shown
in Figure 3b—by proposing a cartoonlike style that the
team accepted.

Second iteration
After the first iteration, the supervising committee

met again to review the process and start assessing
the language’s limitations. Scriptwriters reported that
the syntax for graphlike conversations had proven far
too complex and hindered the markup process. Since
nobody wanted to go back to treelike structures, the
programmers suggested developing a graphical tool to
create these conversations and then generate the corre-
sponding XML automatically, as Figure 3c shows.

During the corresponding implementation phase, pro-
grammers implemented the graphical tool to edit con-
versations, scriptwriters marked up most of the game,
and artists created the most important art assets and
placeholder graphics so that a preliminary version could
be executed and tested. This iteration ended with the
first game play tests and evaluations.

Third iteration
During testing, we quickly identified that players

would spend most of their time dividing their attention
between the screen and the books containing the regula-
tions. To improve this, the scriptwriters proposed using
in-game books, as Figure 3d shows. These books con-
tained summaries of the regulations that the player could
bring up at any moment during game play. The develop-

Figure 3. Schoolworks project. Three people formed the writing team, two of whom possessed a
background in writing noneducational adventure games, while the third had been an instructor on
the subject. (a) Educational game; (b) early sketches; (c) graphical tool for creating graph-shaped
conversations; (d) in-game book.

(a) (c)

(d)(b)

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

 30 Computer

ers enhanced the language with syntax to define in-game
books, supporting text, headers, and images.

In the final implementation phase, the scriptwriters
added the books and completed the entire descriptive
markup. Programmers implemented support for the
books and introduced several performance enhance-
ments in the engine’s implementation without affecting
the language. In turn, the artists provided the final art
assets, including animations, backgrounds, cut-scene
videos, and background music.

Maintenance and tweaking
After completing the previous stages, the team

upgraded the final products: Enhanced versions of the
<e-Adventure> language, <e-Adventure> engine, art
assets, and marked-up storyboard. As usual in the devel-
opment process, they automatically realized the game
by feeding the engine the storyboard and art assets. At
this point, the other main advantage of the documental
approach became evident: Going forward, artists and
programmers are no longer needed. So long as writers
don’t require new linguistic constructs, they can modify
the game, correct errors, improve conversations, trans-
late the content into another language, or even adapt it to
fit different regulations in different countries—all with-
out requiring the programmers’ assistance. The marked
documents maintain their original storyboard structure
and are human-readable. Thus, anyone with basic com-
puter skills can tweak the game and improve it.

T he storyboard-driven approach provides a sound
methodology for developing games that have as
their keystone the final product’s content. Adven-

ture games focus on content. When we add the educa-
tional goal into the mix, this becomes even more rel-
evant. From this notion, instead of adapting the content
to fit the technology, we adapt the technology to fit the
content. In other words, when content is king, content
experts should lead.

Even though the resulting process might seem bur-
densome compared to more streamlined processes, this
approach has a specific focus that ensures that no good
storyboard becomes a bad game.

Acknowledgments
The Spanish Committees of Education and Science/

Industry supported this work (TIN2007-68125-C02-01,
TIN2005-08788-C04-01, FIT-350100-2007-163). The
Complutense University of Madrid, the regional govern-
ment of Madrid, and Santander Bank also supported this
work (FPI 4155/2005, UCM 921340, and Santander/
UCM 2007/1725). Thanks to the Spanish National Cen-
ter of Information and Educative Communication for pro-
viding game design documents and art assets.

References
 1. A.R. Cooper, The Inmates Are Running the Asylum: Why

High-Tech Products Drive Us Crazy and How to Restore the
Sanity, Macmillan Computer Publishing, 1999.

 2. J.L. Sierra, A. Fernández-Valmayor, and B. Fernández-Man-
jón, “A Document-Oriented Paradigm for the Construction
of Content-Intensive Applications,” The Computer J., vol. 49,
no. 5, 2006, pp. 562-584.

 3. P. Moreno-Ger et al., “A Documental Approach to Adventure
Game Development,” Science of Computer Programming,
vol. 67, no. 1, 2007, pp. 3-31.

 4. P. Krutchen, The Rational Unified Process: An Introduction,
3rd ed., Addison-Wesley, 2003.

Pablo Moreno-Ger is a member of e-UCM (www.e-ucm.es),
the e-learning research group at the Complutense University
of Madrid (UCM). His research interests include e-learning
technologies and the integration of videogames and simu-
lations in learning environments. Moreno-Ger received a
PhD in software engineering and artificial intelligence from
UCM and is leading development of the <e-Adventure> ini-
tiative. Contact him at pablom@fdi.ucm.es.

Iván Martínez-Ortiz is a lecturer in the Department of
Software Engineering and Artificial Intelligence at UCM.
He is a member of the e-UCM group. His research inter-
ests include e-learning technologies and the integration
of educational modeling languages and workflow tech-
nologies. Martínez-Ortiz is a PhD candidate in software
engineering and artificial intelligence. Contact him at
imartinez@fdi.ucm.es.

José Luis Sierra is an associate professor in the Depart-
ment of Software Engineering and Artificial Intelligence
at UCM and a member of e-UCM. His research interests
include e-learning technologies, domain-specific lan-
guages, and markup languages. Sierra received a PhD in
computer science from UCM. Contact him at jlsierra@
fdi.ucm.es.

Baltasar Fernández-Manjón is an associate professor in
the Department of Software Engineering and Artificial
Intelligence at UCM. He is also the vice dean of Research
and Foreign Relationships at the university’s Computer
Science School and codirector of the e-UCM group. His
main research interests are e-learning technologies, educa-
tional uses of markup technologies, application of educa-
tional standards, and user modeling. Fernández-Manjón
received a PhD in physics from UCM. Contact him at
balta@fdi.ucm.es.

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

