
Pragmatic User Model Implementation in an
Intelligent Help System

Baltasar Fernandez-Manjon

Alfredo Fernandez-Valmayor

Carmen Fernandez-Chamizo

The authors are at the Complutense University of Madrid. Their main research interests
are educational software development, user modeling, intelligent help systems and
multimedia applications. Address for correspondence: Escuela Superior de Informatica,
Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain.
e-mail: bfmanjon@dia.ucm.es, valmayor@fis.ucm.es, cfernan@dia.ucm.es

Abstract: We present an intelligent help system for the Unix operating system called
Aran. Aran is a passive, knowledge-based help system whose main goal is to help
users deal with problems related to Unix operation. Aran gives the user access to
different kinds of information, and it is designed to help the user accomplish a given
task, while, at the same time, expanding the user's knowledge of the operating
system. In order to accomplish its job Aran is endowed with an explicit
representation of both domain specific knowledge and a pragmatic user model
(UM) that takes into account the individual´s characteristics. In Aran, user modeling
is dynamic and based on stereotypes. The UM is implemented with the same
representation environment, Loom, used in the rest of knowledge base (KB)
modules. This environment is based on a description logics formalism that
facilitates the construction and maintenance of all the modules.

INTRODUCTION

As the complexity of software applications increases and computers are being used by all
kind of individuals, the provision of on line help in complex software applications is
becoming crucial. Today’s computer users expect to be able to use an application with
minimal or no training at all, and with no specialised computer background (Kearsley,
1988). These increased user expectations can not be fulfilled by improving system’s
interfaces only. In spite of the very positive impact on usability that the focus on friendly
interfaces has already produced, we believe that additional help is required (Duffy et al.,
1992).

Intelligent Help Systems (IHS, also known as Intelligent Assistants) have been proposed as
a way to improve the usability of complex software applications (Wasson and Akselsen,
1992; Winkels, 1992). In our project, we envisage this provision of help as a double goal
process. First, as a short term objective, the IHS must enable the user to carry on with the
task at hand, improving user performance. Second, the help offered by the IHS must
expand the knowledge that the user already has of the application, so that the need for help
will decrease in the long term. We consider this second goal an educational objective at
least as important as the first one. This approach can be used not only to support software
applications but in more general educational settings. We consider that IHS can integrate

1

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

mailto:bfmanjon@dia.ucm.es
mailto:valmayor@fis.ucm.es
mailto:cfernan@dia.ucm.es

smoothly the learning and working processes providing benefits such as a potential increase
in users’ motivation (Buenaga et al. 1995).

In order to provide assistance adapted to user’s needs, a User Model (UM) is required
(Kobsa and Whalster, 1989; Kok, 1991). In our view, techniques to adapt the assistance to
the user’s context must be at the core of an IHS (Jones and Virvou, 1991). That is, the
provision of help appropriate to individual user’s experience must be based on both
knowledge about the domain and knowledge about the user. The pragmatic UM (i.e. simple
but useful) will provide the IHS with all the relevant data necessary to improve its
interaction with the user in complex domains like the Unix environment (Kay, 1994).

The peculiarities of the user assistance task have driven us to focus on stereotypes (Rich,
1989). Initially, stereotypes are automatically assigned to each individual UM. Later these
stereotypes will be dynamically refined, updated and maintained during the session. It is
also important that the UM can predict the user’s knowledge level, based on partial
information about that user (Chin, 1993).

The use of a standard description logics environment like Loom (MacGregor, 1991)
simplifies the construction, integration and maintenance of the UM, because the same
representation environment is used for all the knowledge base (KB) modules.

In this paper we will describe how we have applied these principles to the UM
implementation of the IHS Aran. In the following section, we give an overview of Aran, the
system that exemplifies our approach to user assistance in the Unix domain. In the third
section, we present the UM integrated in Aran. Details of the definition of stereotypes, use
and maintenance of this model and its implementation using Loom are also given. In the
fourth section, we discuss some of the related work. The fifth section of this paper presents
the conclusions of our project.

APPLICATION DOMAIN

Aran is an IHS for the UNIX operating system. When a user comes across a problem while
using Unix, they can activate Aran, express their needs using a multimodal interface, and
obtain the necessary information to overcome their problem. Initially, the main aim of Aran
development was to demonstrate the feasibility of an IHS for a complex software domain.
It was also conceived as a framework for investigating different aspects of user modeling
and the provision of help.

Overview of Aran

Aran integrates different “standard” technologies to provide the help facilities. The aim is
to simplify user access, selection and understanding of the information needed to overcome
the user’s current problem, while, at the same time, offering the user the possibility to
expand his knowledge of the operating system. The integrated technologies are: hypertext,
information retrieval (IR), formal concept analysis (FCA), user modeling, and domain
modeling. Aran uses hypertext techniques as a tool to navigate through the Unix
documentation and to interact with the explicit knowledge representation of Unix. The IR
and FCA techniques simplify indexing and access to Unix standard documents. Adapting
the help to the individual user’s characteristics is done with the information stored in the
UM. A more detailed description of Aran and of our approach to the IHS construction can
be found elsewhere (Buenaga et al., 1995; Fernandez-Manjon and Fernandez-Valmayor,
1997).

2

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

The core of Aran is a KB (made up of the domain model, the UM and the FCA module)
where the different types of knowledge and information are represented, organised and
maintained using the same knowledge representation and reasoning environment (Loom)
(fig 1). The domain knowledge is a conceptual model of the Unix operating system that
tries to reflect its information design. This model allows the organisation and indexing of
different kinds of topics around the key concepts of the domain. We have used a
representation similar to that of the Sinix Consultant (Hecking et al., 1988). In the domain
module of the KB, the world of Unix concepts is divided into entities, which correspond to
Unix objects (e.g. file, process), and actions or operations which involve these objects (e.g.
change , communicate with user). Higher-level concepts in the taxonomy reflect more
general objects or actions. The individual Unix commands and objects are represented as
instances of actions and entities, respectively. The command representation takes into
account different aspects: syntactic (e.g. name, syntax), semantics (e.g. description text)
and pragmatic/tutorial (e.g. related commands, prerequisite concepts, related concepts).

Other help systems present only ad hoc information to the user, but Aran reuses the
complete documentation that is shipped, in electronic format (manual pages), within the
operating system. This documentation is index in three different ways: a) knowledge-based
indexing, where the documents are indexed using the concepts (mainly the actions) of the
domain model; b) statistical free text indexing, where the documents are indexed by terms
automatically extracted from the text; c) FCA indexing, where the documents are indexed
with a set of descriptors (keywords).

Aran provides a hypertext graphical user interface that supports three different, but related,
interaction modes. These three operating modes correspond to the three kinds of textual
information indexing. In the browsing mode, menus and mouse-sensitive representations of
the domain model are employed for accessing the domain information and documentation
(fig 2). This direct interaction with the domain model will help the user to acquire a
complete and accurate model of the Unix system. The free question mode, where the user
makes requests for information using free text and obtains a ranked list of relevant
documents (Araya, 1990). The descriptor selection mode, where the user chooses the
descriptors incrementally from a list (provided by the FCA module) obtaining all the
documents where those descriptors appear. If the user selects a document using the question
mode or the descriptor selection mode and then switches to the browsing mode, the
visualisation of the domain will be centered in the concepts that index this document.

Statistical
Information Retrieval

KNOWLEDGE BASE
(Created and maintained with LOOM)

User

Domain
Browsing

Descriptor
Selection

Free
Question

USER MODEL

DOMAIN MODEL FCA

Figure 1: Structure of Aran

3

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

Adaptation to the individual user

As we have seen in the previous section, the KB contains and organises a variety of
information about the Unix domain and the commands of the system. To meet our double
goal of assistance, the information displayed by Aran should be different depending on the
individual user’s characteristics. The UM stores all the explicit assumptions and
information about the user that may be relevant for helping the user to cope with all this
complex information. Adaptation to user’s needs is done by:
• Improving the free text interaction. Taking into account previous queries complemented

with the feedback information provided by the user about the documents retrieved in
previous searches, Aran is able to filter irrelevant documents (Araya, 1990).

• Ranking the retrieved information. According to this ranking, Aran first presents the
retrieved documents that are new to the user, that is, never presented before and,inferred
from the UM to be unknown documents. Next in the rank are documents assumed to be
already known by the user and, finally, documents that have already been presented
during the current session. This way, the UM serves Aran in deferring the presentation
of repetitive information for a given user.

• Modifying the visualisation of the domain model. When the user accesses an instance
(command), Aran aims at adapting it to their presumed conceptual knowledge. The UM
allows different presentation strategies based upon domain elements known and
unknown by the user. The visualisation of an instance is modified in the two following
ways (fig 3):

a) if the user is familiar with the command, the related examples (if any) are not
shown;

b) the command’s prerequisite concepts and the command’s related concepts that
the user is already familiar with are not displayed.

Figure 2: Aran browsing interface of the domain model providing different
paths to access Unix information.

4

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

As filtering can produce undesirable effects of information hiding, the user always has the
possibility of recovering the filtered information (fig 3). The user can also switch off the
automatic adaptation.

USER MODELING KNOWLEDGE

The peculiarities of the user assistance and adaptation tasks drive us to focus on automatic,
rapid initial UM acquisition that will later be dynamically refined, updated and maintained
during the session with the assistant (Chin, 1993). Also, it is important that the UM allows
Aran to predict the user’s knowledge based on partial information about the user. We have
chosen a dynamic, individual UM based on stereotypes (Rich, 1989) because this approach
permits an initial user classification that evolves individually as the user performs
interactions.

The current version of Aran does not store the UM between sessions. Long-term user
characteristics should be modeled with caution since an error in their acquisition will be
more serious than in short-term characteristics.

Stereotypes

The stereotype UM is based in the identification of groups of users whose members are
very likely to possess certain homogeneous application-relevant characteristics. For each
stereotype, we identify (and formalise in Loom) a small number of key characteristics
which allow the system to identify the user as belonging or not belonging to the
corresponding user subgroup. These key characteristics will permit the creation of an
individual UM as an instance of one or several stereotypes. The stereotypes are of

Figure 3: Example of information adaptation in the domain browser. Here, the examples and
related concepts of the chown command were filtered but the user can recover this information.

5

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

particular importance at the beginning of a session, because at that point they can provide
default knowledge that will be overridden when there is specific information obtained from
the interaction with the user.

The stereotypes are classified hierarchically in a directed acyclic graph using Loom
standard classification features (fig 4). These domain-oriented stereotypes try to represent
users’ experience and users’ interests with respect to different context and subdomains of
Unix. We do not claim this classification to be complete or even accurate, but it is enough
to show the potential and characteristics of the user modeling done (also, it can be further
refined without major modifications in Aran).
The root of the hierarchy is the stereotype user-prototype. This is the general stereotype
which defines the knowledge that will be available for modeling any user in Aran. All other
stereotypes include typical characteristics of users that specialise the contents inherited
from more general stereotypes. In each stereotype, the assumptions that apply to any user of
this subgroup are explicitly represented. In the hierarchy of stereotypes, the restrictions and
relations between the stereotypes are also explicitly represented (and so automatically
maintained by Loom). The stereotypes considered for a given criteria can be mutually
disjoint or not. For example, a user can not be simultaneously classified as networt-expert
and as network-novice, but the user can be classified as c-programmer and as pascal-
programer at the same time.

Content of the individual user model

In the UM we distinguish three main different kinds of knowledge (fig 5):
a) initial information, the data directly acquired from the Unix system;
b) objective facts, the data dynamically acquired from the user interaction;
c) subjective facts, the assumptions drawn from the user interaction.

The UM has four slots for initial information: has-name, has-id, has-group and history-list.
The first three slots store the user’s identification data. The history-list stores the history of
the previous command interaction between the user and Unix. The model has three slots for
objective facts: term-list, accessed-components and accessed-concepts. The term-list stores
the words obtained from previous queries and from the relevance feedback information.
The accessed-concepts and accessed-components store respectively the domain concepts
and documents directly accessed by the user. The model has four slots for assumptions
representing the presupposed-(un)known-concepts and the presupposed-(un)known-

USER-PROTOTYPE

INTERMEDIATE-USER

SYSTEM-MANAGER

NOVICE-USER
EDITOR-USER

PROGRAMMER-USER

C-PROGRAMMER PASCAL-PROGRAMMER

MATH-USER

NETWORK-USER

NETWORK-EXPERT NETWORK-NOVICE

Individual Model
User 0 implies

is-a

instance-of

Figure 4: Stereotype hierarchy in the Unix domain.

6

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

commands of the domain representation. The key-commands slot stores special domain
information used in stereotype assignment. Part of the assumptions and key-commands
included in the individual UM are inherited from the stereotype(s) applied to this user.

Instantiation, acquisition and maintenance of the individual model

The initial UM acquisition is automatic and implicit, based on the information obtained
from the Unix system. From these identification and history data, Aran creates an instance
(i.e. an individual UM) and determines the initial stereotype(s) that apply. There are two
possibilities for the initial stereotype assignment:

a) If the stereotype is fully defined (by the necessary and sufficient conditions) then this
assignment is done automatically by the classification process. For example, in Unix, if
the user has zero as identification number then this user is considered as system
manager or superuser, so Aran creates an instance that is automatically classified by
Loom as system-manager. Using Loom features Aran also implies automatically that
he is a network-expert and a programmer-user (fig 4). The (simplified) Loom code is:

(defconcept System-Manager
 :is
 (:and User-Prototype

 (:filled-by has-id 0))
 :implies
 (:and Network-Expert Programmer-User))

b) If the stereotype is not defined by the necessary and sufficient conditions this
assignment is based on the user’s characteristics matching a given proportion of the
stereotype. So this assignment is done by heuristics rules (programmed in Loom) that
take into account the history list and the slots presupposed-known-commands and
presupposed-unknown-commands. Also, if a user has a command in the history list that
is specified as value of the key-commands slot of a stereotype, then this stereotype is
assigned. For example, if a user has used the “cc” (C compiler) command they could
be classified as c-programmer. At least, it is probable they will be interested in
information about C library functions.

(defconcept User-Prototype
 "concept that groups the user stereotypes"
 :is-primitive
 (:and Unix-Thing

 (:the has-name Identifier)
 (:the has-id Number)
 (:the has-group Number)
 (:exactly 1 history-list)

 (:exactly 1 term-list)
 (:exactly 1 accessed-documents)
 (:all accessed-concepts Unix-Thing)

 (:all presupposed-known-commands Unix-Action)
 (:all presupposed-unknown-commands Unix-Action)
 (:all presupposed-known-concepts Unix-Thing)
 (:all presupposed-unknown-concepts Unix-Thing)))

 (:all key-commands Unix-Action)

Figure 5: Definition of User-Prototype, the root concept of the stereotype hierarchy. This
Loom template is specialised in the actual stereotype definition for each user subgroup.

7

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

Dynamic acquisition of objective and subjective facts

Aran incrementally constructs an individual UM for each session. This is done mostly in an
implicit way. From the interaction with the user, Aran obtains the objective data for the
model. The user only has to indicate explicitly when they are changing the subject of the
search in order to reset the term-list. From the user’s actions, and using domain specific
heuristics, Aran derives assumptions about the commands (and related documents) and
concepts the user presumably does or does not know. Aran draws the two following
primary assumptions about the user, based on his actions at the browsing interface:

a) If the user requests an example for a command, then he is assumed to be unfamiliar
with this command.

b) If the user requests to see the command’s related concepts previously filtered by the
system, and he explicitly selects one of those concepts, then he is assumed to be
unfamiliar with the selected concept.

These assumptions are stored in the individual UM.

Maintenance

Since the acquisition of new facts may produce inconsistencies in the individual UM, along
with Loom classification process, Aran has procedures to check and maintain the coherence
of the model. These procedures are programmed as Loom automatic rules that fire when
there is a modification of the UM slot values.

If the inconsistency comes from the assignment of the user to a stereotype (by the inherited
information), this assignment is retracted. If the inconsistency comes from incoherent
information, the inaccurate data will be corrected. For example, if one concept is supposed
known and unknown at the same time, the concept will be deleted from the known
concepts.

The acquisition of new facts will produce also the re-evaluation of the assignment
conditions of the stereotypes. This assignment is based on the user’s characteristics
matching a given proportion of the stereotype (as previously discussed in the initial model
acquisition). Aran’s dynamic behaviour takes into account changes in the user interests and
knowledge, changing the appropriate stereotypes assignment accordingly.

RELATED WORK

Nowadays, research on adaptive systems is a very active field and it is widely accepted that
this adaptivity requires an explicit UM to be embedded in the system (Kok, 1991). In the
IHS domain, methods for adapting the behaviour of the system have been investigated in a
number of different projects (Wasson and Akselsen, 1992). Several projects are on the Unix
domain (Wilensky et al., 1988; Winkels, 1992; Hecking et al., 1988) but in all of them the
stress is on the adaptation of the natural language interaction. By contrast, in Aran the UM
is used for modifying the visualisation of the domain model and the document retrieval and
presentation. To some extent our approach is similar to the proposed by Hohl et al. (1996)
but using domain-oriented stereotypes.

The formal representation and reasoning used for the UM component of Aran is related to
the work done in user modeling shell systems (Kass and Finin, 1991; Kobsa and Pohl,
1995). Our model offers some of the possibilities offered by these shells (e.g. arbitrary
stereotype hierarchy, UM coherence maintenance) combined with IR techniques. The

8

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

integration of IR techniques is also related to previous approaches on user relevance
feedback for refining the formulation of user queries (Araya, 1990), but we extend them by
integrating the relevance information with a more general UM.

CONCLUSIONS

Until now, only a limited evaluation of our system, in our own university environment, has
been done. So the first positive feedback that we get from users must be tested with more
extensive and systematic experiments. The conclusions we can offer in this phase of the
project are mainly related to the development process of the system based on the formative
evaluation realised in parallel with a small group of colleagues.

One of the strengths of Aran is to take advantage of a standard representation environment
(Loom) to facilitate IHS construction instead of using ad hoc tools. Along with the
taxonomic-based reasoning, Loom features an object-oriented assertional language which is
dynamically truth maintained. Also, Loom integrates the terminological capabilities with
two paradigms for behavioural specification: object oriented programming, and rule based
programming. These characteristics of the Loom environment simplify the integration of
different techniques in the IHS, and the construction and management of the KB (in
particular the dynamic maintenance of the UM).

The pragmatic UM is the other strength of our system. It has been demonstrated that with
limited data and assumptions about user knowledge, Aran can offer appropriate information
for many of the practical problems that the user encounters when using Unix.

ACKNOWLEDGEMENTS

This work has been supported by the Spanish Commitee of Science & Technology (TIC94-
0187 and TIC96-2486-CE)

REFERENCES

Araya J (1990) Interactive Query Formulation and Feedback Experiments in Information
Retrieval Unpublished doctoral dissertation, Cornell University, USA.

Buenaga M et al. (1995) Information Overload At The Information Age in Collis B and
Davies G (eds) Innovating adult learning with innovative technologies Elsevier Science,
Amsterdam.

Chin D N (1993) Acquiring User Models Artificial Intelligence Review 7 (3-4) 185-197.

Duffy T M et al. (1992) On Line Help Design and Evaluation Ablex Publishing
Corporation, Norwood, New Jersey.

Fernandez-Manjon B and Fernandez-Valmayor A (1997) Building Educational Tools based
on Formal Concept Analysis in Proceedings of the IFIP WG 3.3 Working Conference on
Human-Computer Interaction and Educational Tools, Sozopol, Bulgaria (to appear).

Hecking M et al. (1988) The SINIX Consultant - A Progress Report Memo Nr.28, KI-
Labor, Informatik IV, Universitaet des Saarlandes, Saarbruecken, Germany.

9

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

Hohl H et al. (1996) Hypadapter: An Adaptive Hypertext System for Exploratory Learning
and Programming User Modeling and User-Adapted Interaction 6 (2-3) 131-156.

Jones J and Virvou M (1991) User Modelling and Advice Giving in Intelligent Help
Systems for Unix Information and Software Technology 33 (2) 121-133.

Kass R and Finin T (1991) General User Modeling: A Facility to Support Intelligent
Interaction in Sullivan J and Tyler S (eds) Intelligent User Interfaces ACM Press, New
York.

Kay J (1994) Lies, Damned Lies And Stereotypes: Pragmatic Approximations Of Users in
Proceedings of the Fourth International Conference on User Modeling, The MITRE
Corporation, Hyannis, MA.

Kearsley G (1988) Online Help Systems: Design and Implementation Ablex, Norwood,
New Jersey.

Kobsa A and Pohl W (1995) The User Modeling Shell System BGP-MS User Modeling
and User-Adapted Interaction 4 (2) 59-106.

Kobsa A and Whalster W (1989) (eds) User Modelling in Dialog Systems Springer, Berlin.

Kok A J (1991) A Review and Synthesis of User Modelling in Intelligent Systems The
Knowledge Engineering Review 6 (1) 21-47.

MacGregor R (1991) The Evolving Technology of Classification-based Knowledge
Representation Systems in Sowa J F (ed) Principles of Semantic Networks Morgan
Kaufmann, San Mateo, California.

Rich E (1989) Stereotypes and User Modelling in Kobsa A and Wahlster W (eds) User
Models in Dialog Systems Springer, Berlin.

Wasson B and Akselsen S (1992) An Overview of On-line Assistance: from On-line
Documentation to Intelligent Help and Training The Knowledge Engineering Review 7 (4)
289-322.

Wilensky R et al. (1988) The Berkeley UNIX Consultant Project Computational
Linguistics 14 (4) 35-84.

Winkels R (1992) Explorations in Intelligent Tutoring and Help IOS Press, Amsterdam.

10

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

