
H. Leung et al. (Eds.): ICWL 2007, LNCS 4823, pp. 520 – 531, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Language-Driven Development of Web-Based Learning
Applications

José-Luis Sierra, Baltasar Fernández-Manjón, and Alfredo Fernández-Valmayor

Dpto. Ingeniería del Software e Inteligencia Artificial. Fac. Informática. Universidad
Complutense de Madrid

C/ Profesor José García Santesmases s/n. 28040 Madrid. Spain
{jlsierra,balta,valmayor}@fdi.ucm.es

Abstract. In this paper we propose a language-driven approach for the high-level
design of web-based learning applications. In our approach we define a domain-
specific language that characterizes the key application aspects. Then we assign a
suitable operational semantics to this language, and we keep it independent of low-
level implementation details such as interaction / presentation or database updating.
The resulting design can be easily implemented using the model-view-controller
pattern that is very well supported by standard implementation technologies. In ad-
dition, these language-driven designs also allow for rapid prototyping, exploration
and early discovery of application features, as well as for rational collaboration
processes between instructors and developers. We exemplify our approach with a
Socratic Tutoring System.

Keywords: Development of web-based learning applications, language-driven
development, domain-specific languages document-oriented approach, Socratic
tutors.

1 Introduction

As a result of our previous experiences in the development of several web-based
E-Learning applications for various purposes [11,18,19,21] we have realized the im-
portance of adopting a well-principled and rigorous approach for modeling the key
application aspects (e.g. structure, behavior, interaction) in the very first stages of
development. For this purpose, we have adopted a language-driven approach [12]. In
this approach, we start by defining the domain specific language (DSL) that charac-
terizes the key application aspects. Then we assign operational semantics suitable to
such a DSL in order to achieve a high-level behavioral characterization of the applica-
tion. Finally we isolate these semantics of the low-level implementation details re-
garding the basic interaction, presentation and updating operations. The resulting
high-level designs can be easily implemented using the well-known model-view-
controller (MVC) pattern [10], which is typically used for organizing almost all mod-
ern web-based applications. In addition, this linguistic approach also facilitates ra-
tional collaboration processes between instructors and developers. The DSL is near
the knowledge and the expertise of the instructors. Therefore they can understand and
use the language (provided that a user-friendly notation be available). In this paper we
present this language-driven approach.

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

 Language-Driven Development of Web-Based Learning Applications 521

35

12

1

What is 5x7?

Another
This is not ok.

2

You have
dificulties with
this problem.

Exactly, Let’s go with
the next problem

1 You’re
adding! Try it again

Try it again

2

5x7 = 35

Let’s work it out
together.
5x7=35

Try another
problem

1

Still confusing
addition and

multiplication.

Try another problem

Fig. 1. Graphic representation of a tutorial fragment for a Socratic tutoring system (example
adapted from [8])

The structure of the paper is as follows. In section 2 we present a simplified exam-
ple of the E-Learning application that we will use to illustrate the different aspects of
our approach. Section 3 deals with the structural aspects of the design. Section 4 ad-
dresses the specification of behavior. Section 5 provides some implementation guide-
lines. Finally, section 6 presents the conclusions and some lines of future work.

2 An Example of Application

In this paper we will use a simple tutoring system to illustrate the main aspects of our
approach. The system is called <e-Tutor>, and it is the web-based version of a previ-
ous desktop system developed to explore some concerns in our document-oriented
approach to the production and maintenance of content-intensive applications [17].

Tutoring systems were popularized during the eighties and nineties of the past cen-
tury [22]. Although their pedagogical adequacy as mechanisms to support sophisti-
cated learning processes has been heavily questioned, today there is a very active
community working in this field, as well as relevant initiatives (see, for instance,
[23]). However, our reason for choosing this kind of systems for exemplifying our
approach is not so much pedagogical as technological, since the goal of our work is
not to criticize or to defend a particular learning approach, but to provide guidelines
that can be effectively used to produce and maintain E-Learning applications. For this
purpose, we need a language simple enough to be fully addressed in this paper, and

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

522 J.-L. Sierra, B. Fernández-Manjón, and A. Fernández-Valmayor

this type of tutoring system will let us do so. Indeed, our <e-Tutor> system is a very
simplified version of a Socratic Tutoring System, which is based on the seminal work
of Prof. Bork’s team during the eighties [2,8].

In our <e-Tutor> system the learner will follow tutorials, facing problems whose
solution will be constructed by means of a master-disciple dialog. The system will ask
questions to the learner and, depending of his/her responses, it will provide him/her
with some feedback and it will determine the next step in the learning process. Al-
though in more realistic systems the feedback could depend on the whole history of
the previous answers, in our simplified version it will depend exclusively on the num-
ber of times that the learner gives a particular answer to a question. In Fig. 1 we show
a simple example of this kind of organization for the tutorials.

3 Designing the Language

The first step in our approach is to design a language for describing the key applica-
tion aspects. It is important to point out that this language does not try to represent the
actual application’s features (e.g. the actual messages and hints provided to the
learner), but only to represent their structure. Therefore, this language will include
mechanisms to refer to the actual information. In this sense, the language is in some
way similar to the languages used for marking documents up [5]. Furthermore, the
design of this language will be addressed from an abstract point of view. Thus, the
language itself will be characterized as an information model, instead of as a grammar
for a concrete textual or visual language. This information model can be provided
using standard data modeling techniques (e.g. entity-relationship diagrams, or UML
class diagrams), and it can be further formalized in terms of a first-order signature
(i.e. a set of function and predicate symbols) with the aim of subsequently enabling
the formal definition of the operational semantics.

In the case of <e-Tutor>, the abstract structure of the Socratic dialog in the previous
section is a weighted directed graph whose nodes contain different types of informa-
tion, and which is oriented to represent the type of dialog between master and disciple
on which this kind of tutorials is based. In Fig. 2a we sketch the information model for
the <e-Tutor> language. In Fig. 2b we further formalize this model in terms of predi-
cate symbols. We also document them with their intended meanings.

Notice that our approach follows the current practice in E-Learning specifications,
where each specification is usually accompanied by its corresponding information
model. Concrete notations can then be subsequently provided as appropriate bindings
(e.g. as XML-based markup languages). Notice that it is also a common practice in
the design of conventional computer (usually programming) languages, where ab-
stract and concrete syntaxes are clearly identified. Abstract syntaxes let language
designers capture the features of the language that are essential for further specifying
the meaning of their constructs, while concrete syntaxes provide notations for the
final language’s users [7]. In our approach concrete syntaxes (bindings, following the
more widely accepted terminology in E-Learning) will be very important in order
to involve instructors in the production and maintenance of the learning contents
and other pedagogical aspects. Indeed, we will promote the provision of bindings as

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

 Language-Driven Development of Web-Based Learning Applications 523

(b)

Predicate Intended meaning
speech(s,n) The speech s is followed by n. In this item, n can be

another speech, a question point, or the end of the
learning process. Besides, s is a unique identifier.

question(q) A question point identified with the unique
identifier q.

feedback(q,a,n,s) A feedback for the answer a (a unique identifier)
collected in a question point q. Besides, n is the
number of times that the answer has been collected.
The feedback itself will start with speech s.

content(i,c) The content of the question / speech i is c.

Sequentiable

Speech Question

feedback

1..*next

1

next

0..1

content

SpeechContent

is for

1

QuestionContent

is for

1

Fig. 2. (a) Information model for the <e-Tutor> language; (b) predicates used to formalize the
model in (a)

domain-specific descriptive markup languages (i.e. we promote DSLs with XML bind-
ings) for the application’s contents and complementary aspects, as proposed in our
work on the aforementioned document-oriented approach.

4 Specifying the Operational Semantics

Once the language for structuring the application is available, developers must model
the runtime behavior of such a language by assigning to it suitable operational seman-
tics, which model such a behavior as transitions between computation states [14].
Therefore, we firstly need to decide on a suitable representation for the computation

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

524 J.-L. Sierra, B. Fernández-Manjón, and A. Fernández-Valmayor

states. Next we must characterize the transition relation that governs how to go from
one state to another by using semantics rules. These aspects are detailed in the next
sections.

4.1 Representing the Computation States

Computation states will characterize the internal state of an abstract machine that
executes the devised language. Therefore, typically such states will include:

(a)

(b)

Term Intended meaning
answered (a) The learner has given the answer a to the last question.

Term Intended meaning
do-start The system execution is starting.
do-speech(s) The system is proffering the speech s
do-ask(s,q) The system, by proffering the speech s, is asking the

question q.
do-end The system execution is ending.

Fig. 3. (a) Terms in the view2controller stream; (b) Terms in the controller2view stream

- The application description, in terms of the language provided. This description
will play the role of the program stored in the machine’s memory. Alternatively,
sometimes it will be possible to drop this description from the computation states
themselves, and to assume that it is globally available.

- A control term, which will usually coincide with the predicate definition in the
application description currently under consideration. This term will be used to
decide the next step to take in the execution.

- A context, which contains additional information used to perform the transitions
and which expresses the dependence of the actions on previous responses or
states.

- Three different streams. The view2controller stream will contain suitable repre-
sentations of the user’s interactions. In the controller2view stream the controller
will write appropriate commands to govern the view’s update. Finally, in the con-
troller2model stream the controller will write appropriate update commands for
the information model (for those applications where the model is not updated, but
only queried, this last stream can be safely omitted). These streams are very use-
ful for isolating the behavioral details from the presentation / interaction / updat-
ing aspects. Also this organization naturally leads to an MVC architecture for the
final implementation, as previously mentioned.

In <e-Tutor>, computation states will be associated with the states of the master-
disciple dialog and the evolution of this dialog. Therefore we will represent these
computation states as 5-tuples of the form <q,T,ρ,in,out>, where:

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

 Language-Driven Development of Web-Based Learning Applications 525

- q is the control term and T is the structure of the tutorial represented as a set of
ground (i.e. variable-free) facts using the signature described in the previous
section.

- ρ is the context, which in this example will be constituted by a set of counters
associated with the answers. With ρC we will denote the value of the c counter in
ρ, while with ρC := v we will denote the new set of counters resulting from updat-
ing the value of c in ρ with v. Also, if a counter is not set, its value will be consid-
ered 1, since it will be the first time that the learner proffers the associated answer.

- in and out are the view2controller and the controller2view streams respectively.
Since in this example the model is not updated, the controller2model stream is not
required, and it can be dropped from the computation state. In Fig. 3a we charac-
terize the possible terms in the view2controller stream, which will simply contain
the learner’s answers. In Fig. 3b we show the possible terms in the controller2view
one, which will contain the commands for presenting the system’s speeches and
questions, as well as for announcing the init and the end of the system’s execution.

Besides this kind of states, we will also introduce a special format for initial and fi-
nal states. Initial states will be represented as <s,T,in,out>, with s the starting speech.
Final states will be represented simply as <ρ,out>.

4.2 Describing the Semantic Rules

Once we agree on the structure of the computation states, we can formalize the lan-
guage’s runtime behavior. For this purpose we propose using the structural style of
operational semantics [14,16]. In this style the semantics will be described by a set of
semantic rules that will resemble the rules of formal calculi in logic. These rules
characterize the transitions between computation states. With σ→σ’ we will denote
the transition from the state σ to the state σ’. In these rules we also can use additional
constraints expressed with logic and set-theoretic notations. For this purpose, we will
use ¢F to denote a logical / set-theoretical formula F that must be true. At the top of
the rules we put the applicability conditions, using such logical notations, while at the
bottom we describe the resulting transitions. In addition, we encourage the use of a
small-step style of specifying the semantics [14]. This style concentrates on character-
izing transitions between consecutive states, and will ease the move to a subsequent
implementation.

In Fig. 4 we show the semantic rules for our example. Thus, these rules formally
state the informal behavior outlined in section 2. In these rules stream manipulation is
abstracted using the in and the out operations, whose behavior is left unspecified. The
rules themselves read as follows:

- The starting rule models the execution’s init. For this purpose, the starting speech
is queried in the tutorial. Besides, the first speech is picked from such a tutorial
and it is set as the control term. Also notice that the context with the answers’
counters is initialized to the empty set (i.e. as indicated above, the counter for
every answer will be 1). Finally, a suitable command announcing the beginning
of the execution is written in the controller2view stream.

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

526 J.-L. Sierra, B. Fernández-Manjón, and A. Fernández-Valmayor

- The speaking rule models how the system proffers a speech which is followed by
another speech: a command to proffer the speech is written in the controller2view
stream, and the next speech is set as the control term.

- The asking rule models the proffering of a speech when it is followed by a ques-
tion point. This time the system announces the question asked with the speech to
be proffered.

- The evaluating rule models what happens at a question point. The learner’s an-
swer is read from the view2controller stream, a suitable feedback is picked from
the tutorial, and its associated speech is retrieved and set as the control term. Be-
sides, the counter associated with the answer is incremented.

- Finally, the ending rule models how the system finishes the execution. It holds
when there is not such a thing as a following question or speech in the learning
flow. Hence the final speech is proffered, and a command announcing the end is
written in the resulting output stream.

speech(,)

, , , speech(,), , , ,out(,do-start)

s ns T

s T In Out s ns T In Out

∈
〈 〉 → 〈 ∅ 〉

 ¢ starting

speech(,)

speech(,), , , ,
 speech(,), , , ,out(,do-speech())

ns nns T

s ns T In Out
ns nns T In Out s

ρ
ρ

∈
〈 〉 →

〈 〉

¢ speaking

question()

speech(,), , , , question(), , , ,out(,do-ask(,))

q T

s q T In Out q T In Out s qρ ρ
∈

〈 〉 → 〈 〉
¢ asking

feedback(, , ,) ;; speech(,) ;; in() answered(), '

question(), , , ,
 speech(,), , : 1, ',

a

a a

q a s T s n T In a In

q T In Out
s n T In Out

ρ
ρ

ρ ρ

∈ ∈ = 〈 〉
〈 〉 →

〈 = + 〉

¢ ¢ ¢ evaluating

speech(, _) ;; question()

speech(,), , , _, ,out(out(,do-speech()),do-end)

n T n T

s n T Out Out sρ ρ
∉ ∉

〈 〉 → 〈 〉
¢ ¢ ending

Fig. 4. Semantic rules for the <e-Tutor> language

 transition([S,In,Out]->[speech(S,Ns),[],In,NOut]) :-
 out(Out,do_start,NOut),
 speech(S,Ns).

transition([speech(S,Ns),Cs,In,Out]->
 [speech(Ns,NNs),Cs,In,NOut]) :-
 speech(Ns,NNs),
 out(Out,do_speech(S),NOut).

transition([speech(S,Q),Cs,In,Out]->
 [question(Q),Cs,In,NOut]) :-
 question(Q),
 out(Out,do_ask(S,Q),NOut).
...

Fig. 5. Encoding of the starting, speaking and asking rules in a Prolog prototype for the
<e-Tutor> language

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

 Language-Driven Development of Web-Based Learning Applications 527

We have realized how the effort employed in this kind of specifications pays out,
since these specifications are very valuable in anticipating the more obscure aspects
of the application’s dynamic behavior without being obfuscated by technological
and/or implementation details. Indeed, based on these specifications it is possible to
perform rapid prototyping of the applications using, for instance, approaches similar
to those described in [6]. As an example, in Fig. 5 we show a fragment of a Prolog
prototype for the semantics of Fig. 4 (see [20] for more details). Finally, the formal
flavor of the specifications provides the opportunity to apply optimizations and re-
finements in very early stages of the development process.

5 Implementation

In this section we examine how to organize the final applications from their designs in
the terms stated in this paper. While the particular implementation strategies depend
on the particular technologies and platforms chosen, we can still abstract some gen-
eral implementation guidelines that can be useful in most of the cases. As indicated
above, the resulting applications are amenable to being architected following the
MVC pattern. Semantic rules in the language’s operational semantics are useful in
order to structure the application’s controller. The language’s structural characteriza-
tion is in turn useful to structure the application’s model. Finally, the structure of the
different streams involved in the semantics is useful to identify the basic presentation
commands, user actions and updating operations.

Controller

Control
rules

Computation
state

user’s
action

update
command

Structure

Contents

 loader

Source
contents

View

View
updater

Model

Fig. 6. A possible organization for the final implementations

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

528 J.-L. Sierra, B. Fernández-Manjón, and A. Fernández-Valmayor

In Fig. 6 we sketch the resulting organization. Notice how the computation state is
configured as a global structure that in turn makes reference to information elements in
the model (the implementation counterparts to the ground facts used to control the lan-
guage’s runtime behavior in the operational semantics). Also notice how the stream-
based communication between the controller and the view is refined using call-back
mechanisms. For this purpose, the controller is activated as response to the user’s
events. As a consequence, the view is updated. This updating is centralized using a view
updater component. Communication itself is carried out using appropriate user’s ac-
tions and update commands, which are transferred between the controller and the view.
Finally, also notice how contents are encapsulated in the model. The updating of these
contents is performed by invoking the appropriate operations on the model’s structure,
which in turn will act on the actual contents. Also notice that this structure can be refer-
enced in the user’s actions and in the update commands, therefore making the relevant
parts of the model accessible for the view. Finally, notice how a loader is explicitly
identified. It lets us load bodies of author-oriented contents in the application’s model.

 starting speaking

asking evaluating

ending

Answers’
counters

Control
applet

<tutorial>
 <teacher>
 <speech>s1.html
 </speech>
 <speech
 transform=
 "s2.xsl">s2.xml ...

Basic
assets

HTML
Pages

XML
Documents

XSLT
Transformations

Fig. 7. High-level organization of the web-based version of <e-Tutor>

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

 Language-Driven Development of Web-Based Learning Applications 529

These contents will be structured according to a suitable binding of the application DSL.
In our experiences we have performed such bindings in terms of appropriate descriptive
markup DSLs, letting authors provide the contents as documents structured according to
such languages [17].

The structure of the web-based version of <e-Tutor> is sketched in Fig. 7. The con-
troller is organized in terms of the semantic rules sketched in the previous section.
Since communication with the view is managed in terms of an observer-observable
base, the streams are dropped from the computation state. This state maintains a refer-
ence to the overall model’s structure, another reference to the current control term,
and a table with the answers’ counters.

Fig. 8. Snapshot for a run of the simple tutorial of Figure 1 in <e-Tutor>

We use a java applet to implement the view updater. Indeed, by inspecting the op-
erational semantics we can discover the proactive nature of the controller in a very
early stage of the development process. It means that once the controller has read a
user’s action, it can communicate to the view several update commands, since the

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

530 J.-L. Sierra, B. Fernández-Manjón, and A. Fernández-Valmayor

tutoring system can proffer several speeches before asking a new question. Since this
behavior is not directly supported in HTTP, we need an active component on the
client side (in this case, the control applet) taking care of it. Indeed, this type of inter-
net-rich applications is very common in web-based learning, where similar solutions
have also been adopted (e.g. the runtime in the SCORM – Shareable Content Object
Reference Model – specification [1]) and the rigorous design of the application can
help to anticipate it. Currently we are re-factoring this implementation in terms of
AJAX technology [15]. Regardless of the migration of the controller aspect to the
client side, the implementation is being substantially facilitated by the earlier effort
made in the formal design, which has been shown to be pretty independent of the
subsequent implementation platform or technology.

Finally, the structure of the model is a direct implementation of the language’s re-
lational structure. Contents themselves are organized as a set of basic multimedia
assets (e.g. images, videos, sounds, etc.) and HTML pages. In order to produce all
these components, we introduce a user-friendly XML-based markup language [3],
which can be used by instructors to structure the tutorials. The resulting XML docu-
ments are then processed to produce the abstract representations of the structure of the
tutorials. Instructors can prepare the actual contents directly as HTML pages, but they
can also use other domain-specific XML-based markup languages. The resulting
XML documents can be transformed into final HTML presentations using suitable
XSLT transformations [4].

In Fig. 8 we show a snapshot of the tutorial corresponding to the example in
Fig. 1.

6 Conclusions and Future Work

In this paper we have presented a language-driven approach to the high-level design
of web-based learning applications. The resulting applications are easily architected
according to the MVC pattern. The approach is focused on characterizing the key
application aspects with a language specifically designed for such a kind of applica-
tion (i.e. a DSL). Then the interactive behavior is described with appropriate opera-
tional semantics for this language. As it has been tested in several developments, this
approach promotes an innovative way of collaboration between instructors and devel-
opers during the design and development of E-Learning applications. It also facilitates
rapid prototyping, as well as the discovering of relevant features of the interactive
behavior of the final applications in very early stages of the development.

Currently we are systematizing the approach and further testing it in many other
scenarios [13]. In particular, we hope to apply the approach to systems driven by
educational modeling languages such as those described in [9].

Acknowledgements

The Spanish Committee of Education and Science (Projects TIN2004-08367-C02-02 and
TIN2005-08788-C04-01) and the Regional Government / Complutense University of
Madrid (research group 910494) have partially supported this work.

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

 Language-Driven Development of Web-Based Learning Applications 531

References

1. Advanced Distributed Learning - Shareable Content Object Reference Model (ADL-
SCORM), Faulkner Information Services (2003)

2. Bork, A.: Personal Computers for Education. Harper & Rows, New York (1985)
3. Bray, T., et al. (eds.): Extensible Markup Language (XML) 1.0 (Second Edition). W3C

Recommendation (2000)
4. Clark, J. (ed.): XSL Transformations (XSLT) Version 1.0. W3C Recommendation (1999)
5. Coombs, J.H., Renear, A.H., DeRose, S.J.: Markup Systems and the Future of Scholarly

Text Processing. Communications of the ACM 30(11), 933–947 (1987)
6. Clément, D., et al.: Natural Semantics on the Computer. Tech. Rep. 416. INRIA (1985)
7. Friedman, D., Wand, M., Hayes, C.T.: Essentials of Programming Languages, 2nd edn.

MIT Press, Cambridge (2001)
8. Ibrahim, B.: Software Engineering Techniques for CAL. Education & Computers 5, 215–

222 (1989)
9. Koper, R., Tatersall, C. (eds.): Learning Design: A Handbook on Modeling and Delivering

Networked Education and Training. Springer, Heidelberg (2005)
10. Krasner, G.E., Pope, T.S.: A Description of the Model-View-Controller User Interface Para-

digm in the Smalltalk 80 System. Journal of Object Oriented Programming 1(3), 26–49 (1988)
11. Martínez-Ortíz, I., Moreno-Ger, P., Sierra, J.L., Fernández-Manjón, B.: <e-QTI>: A Reus-

able Assessment Engine. In: Liu, W., Li, Q., Lau, R.W.H. (eds.) ICWL 2006. LNCS,
vol. 4181, pp. 134–145. Springer, Heidelberg (2006)

12. Mauw, S., Wiersma, W.T., Willemse, T.A.C.: Language-driven System Design. Interna-
tional Journal of Software Engineering and Knowledge Engineering 14(6), 625–664
(2004)

13. Moreno-Ger, P., Sierra, J.L., Martínez-Ortiz, I., Fernández-Manjón, B.: A Documental Ap-
proach to Adventure Game Development. Science of Computer Programming 67(1), 3–31
(2007)

14. Mosses, P.D.: Formal Semantics of Programming Languages: An Overview. Electronic
Notes in Theoretical Computer Science 148(1), 41–73 (2006)

15. Paulson, L.D.: Building Rich Web Applications with AJAX. IEEE Computer 38(10), 14–
17 (2005)

16. Plotkin, G.D.: An Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19. Computer Science Dept. Aarhus University (1981)

17. Sierra, J.L., Fernández-Valmayor, A., Fernández-Manjón, B.: A Document-Oriented Para-
digm for the Construction of Content-Intensive Applications. Computer Journal 49(5),
562–584 (2006)

18. Sierra, J.L., et al.: From Research Resources to Virtual Objects: Process model and Virtualiza-
tion Experiences. Journal of Educational Technology & Society 9(3), 56–68 (2006)

19. Sierra, J.L., et al.: A Highly Modular and Extensible Architecture for an Integrated IMS based
Authoring System: The <e Aula> Experience. Software-Practice & Experience 37(4), 441–
461 (2007)

20. Sierra, J.L., Fernández-Valmayor, A., Fernández-Manjón, B.: How to Prototype an Educa-
tional Modeling Language. In: Proc. of the IX International Simposium on Computers in
Education SIIE 2007, November 14–16, 2007, Porto, Portugal (2007)

21. Sierra, J.L., Moreno Ger, P., Martínez Ortiz, I., López Moratalla, J., Fernández-Manjón,
B.: Building Learning Management Systems Using IMS Standards: Architecture of a
Manifest Driven Approach. In: Lau, R.W.H., Li, Q., Cheung, R., Liu, W. (eds.) ICWL
2005. LNCS, vol. 3583, pp. 144–156. Springer, Heidelberg (2005)

22. Sleeman, D., Brown, J.S. (eds.): Intelligent Tutoring Systems. Academic Press, London (1982)
23. XTutor web site. http://icampus.mit.edu/xtutor (last visited June 8, 2007)

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

	Language-Driven Development of Web-Based Learning Applications
	Introduction
	An Example of Application
	Designing the Language
	Specifying the Operational Semantics
	Representing the Computation States
	Describing the Semantic Rules

	Implementation
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

