
Building Learning Management Systems Using IMS
Standards: Architecture of a Manifest Driven Approach1

José Luis Sierra*, Pablo Moreno-Ger#, Iván Martínez-Ortiz#,
Javier López-Moratalla#, Baltasar Fernández-Manjón*

* Dpto. Sistemas Informáticos y Programación. Fac. Informática. Universidad Complutense.
28040, Madrid. Spain.

{jlsierra,balta}@sip.ucm.es
Centro de Estudios Superiores Felipe II. Aranjuez. Spain

{pmoreno,imartinez, jlmoratalla}@cesfelipesegundo.com

Abstract. Among the existing web-based Learning Management Systems
(LMSs), there is an exponentially increasing need of content interoperability.
This has caused the apparition of different standardization initiatives. In this
paper we describe our approach to the design of <e-Aula>, a new LMS which
adheres closely to IMS standards in an attempt to evaluate the practical viability
of those standards. The architecture of our system, focused on the IMS
manifest, has yielded a powerful and modular system that goes beyond the
initial intention of evaluating the proposed standard and can be used as a robust
production system in a real environment. We describe our IMS driven
approach, as well as an architecture based on this approach that has been
implemented using well-known and robust Java based web technologies.

1 Introduction

The IMS proposals [10] are a comprehensive collection of specifications covering the
needs of e-learning systems that allow a high durability, reusability and portability of
the educational contents. For the last two years, the efforts of our group have been
centered on the experimentation with these standardization proposals suggested by the
IMS Global Consortium. In this way, we have implemented <e-Aula> [1,7,15], an
IMS compliant Learning Management System (LMS) supporting several e-learning
specifications: IMS CP (for packaging contents), LOM (for expressing metadata) [8],
IMS QTI (for tests and assessments) and IMS LIP (for storing information about the
learners). In <e-Aula> we use what we have called a manifest driven approach to the
construction of an IMS based LMS, which is described in this paper.

The structure of the paper is as follows. Section 2 describes the details relative to
IMS needed to understand the rest of the paper. Section 3 describes the manifest
based approach itself. Section 4 describes the software architecture of <e-Aula>,
which is based on this approach. Section 5 compares our approach with other related

1 The Spanish Committee of Science and Technology (projects TIC2001-1462,
TIC2002-04067-C03-02 and TIN2004-08367-C02-02) has partially supported this work.

1

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

works. Finally, section 6 gives some conclusions and outlines some lines of future
work.

2 The IMS Content Packaging and the Concept of Manifest

The IMS Content Packaging specification (IMS CP) defines how to aggregate the
educational contents into packages in order to let different heterogeneous systems
interchange these contents. This specification is available in the IMS web site together
with the rest of IMS specifications [10]. The structure of these packages is depicted in
Fig. 1a. According to this, a package is formed by a set of physical archives with the
contents and a manifest. This manifest is a XML document that reflects global
information about the package, the structure of the contents, their types and their
possible organizations. More precisely, the manifest contains:

<manifest identifier="UML">
 <metadata> (…) </metadata>
 <organizations default="ORG1">
 <organization id="ORG1">
 <title>Organization 1</title> (…)
 <item id="ORG1_3">
 <title>Class Diagrams</title>
 <item id="ORG1_3_0" id-ref="rec3.0">
 <title>Introducion</title>
 </item>
 <item id="ORG1_3_1" id-ref="rec3.1">
 <title>Associations</title>
 </item>
 <item id="ORG1_3_2" id-ref="rec3.2">
 <title>Classes</title>
 </item>
 </item>(…)
 </organization>
 </organizations>
 <resources> (…)
 <resource id="res3.0" type="eaula">
 <file href="3.0.xml"/>
 </resource>
 <resource id="rec3.1" type="eaula">
 <file href="3.1.xml"/>
 <file href="fig3.1.1.gif"/>
 <file href="fig3.1.2.gif"/>
 </resource> (…)
 </resources>
</manifest>

Physical files

Metadata

Organizations

Resources

Submanifests

Manifest

(a) (b)

Fig. 1. (a) Structure of an IMS package, (b) fragment of an IMS manifest extracted from a

course deployed on <e-Aula>. It has been simplified for presentational purposes and for the
sake of clarity.

- A section of metadata summarizing global (meta)information about the package.
This metainformation follows the Learning Object Metadata (LOM) specification
defined by the IEEE LTSC. LOM is also used to convey the metadata associated
with the other elements in the manifest (resources, organizations, and
submanifests).

- The description of the package’s resources. In its simplest form a resource is
associated with a physical archive with learning content. It is also possible to
describe resources associated with a main file and a set of secondary files. This
makes it possible to bundle content sets like a main HTML file and the images

2

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

related with this. Also, the resource can include metadata about itself and, most
importantly, it defines the type of the content within it. Finally, each resource must
have a unique identifier.

- The organizations of the resources. Each organization represents a tree structure
whose nodes can refer to resources. The nodes in this tree are called items and they
contain a reference to their corresponding resources using the unique identifiers of
the resources. Therefore, an organization provides a tree based structuration of the
resources of the package (and thus, of its physical files). It is also to be noted that a
manifest can include several organizations, each one providing an alternative way
to organize the contents, and therefore a different view of the package.

- The submanifests. A manifest can contain other simpler manifests that in turn
exhibit the same structure outlined here.
In Fig. 1b a manifest taken from a course deployed on <e-Aula> is depicted. This

example shows a tree based organization linked to different resources by means of the
usual XML id-idref mechanism. In their turn, the resources contain URLs pointing at
the actual files.

As a final remark, it is important to note that IMS does not impose any restrictions
on the format or type of the content files. Usually LMSs support the most common
formats for contents such as HTML and PDF files. In <e-Aula> we also support
directly XML files created according to descriptive markup languages specific to each
project. This adds all the benefits of the content structuring power of descriptive
markup [5].

3 The Manifest Driven Approach

The previous section has presented the IMS manifest as a mechanism that allows the
structuration of the contents in an IMS package with interoperability purposes. An
IMS compliant LMS can import IMS packages and recover the educational contents
using this manifest and it can export contents by packaging them according with the
IMS CP specification. Nevertheless, IMS specifications do not dictate how this LMS
must behave out of the scope of the aforementioned interoperability processes. As it
has already been mentioned, in <e-Aula> we propose what we have called a manifest
driven approach. In this approach the manifest is used as the key element for driving
the design and architecture of the entire LMS beyond interoperability processes.

The manifest driven approach encourages that the LMS maintains continuously a
representation of the manifest for each course. In this way, the manifest is used to
structure contents not only when interoperating with other systems but also when
these contents are managed inside the LMS. This way, for every operation executed
on a course there will be a corresponding operation executed on its manifest.
Consequently, for each course within the system, its manifest will be the fundamental
reference for performing the different tasks related to the course: presentation,
edition, importation and exportation. Next subsections analyze how the manifest
driven approach facilitates these tasks.

3

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

3.1 Course Presentation

Course presentation can be naturally addressed by providing suitable browsing and
presentation semantics to the organizational information included in its manifest.
Indeed:

Presentation of
the active organization

Presentation of
the selected resource

Fig. 2. Presentation generated in <e-Aula> following the manifest driven approach on the

manifest sketched in Fig. 1b. When the user clicks on an item, the associated resource is loaded

- When the learner needs to access the contents of a course, a tree structure
displaying the active organization can be presented. Since this information is
directly encoded in the manifest file, it will not be necessary to explore the content
in order to work out its structure. The term active is remarked above because the
concept of different organizations in a manifest lets the learner choose the
organization that fits her better.

- When the learner selects in the tree each item she wants to read, its associated
resource and the content type of this resource can be consulted in the manifest. For
each supported resource type there is a specific module capable of processing the
resource that will take care of the tasks needed to visualize it.
In Fig. 2 the presentation of the course whose manifest is outlined in Fig. 1b is

depicted.

3.2 Course Edition

Course edition can be seen conceptually as a similar process to course visualization.
Being the manifest the core of the system, edition actions will be directly reflected in
the manifest. More precisely:
- The instructor will be allowed to add new resources to a specific course as well as

to remove and modify them. This includes stating the content type of the resource.
Such operations will be automatically reflected on the manifest (Fig. 3a).

- For managing the organizations (i.e. for structuring the resources) the instructor is
offered with a tree very similar to that seen by learners when visiting a course. The
instructor can then add or remove nodes in that tree. Those actions are directly
reflected in the manifest by the addition/removal of items within the active
organization. During this process, the instructor can assign to each node/item a

4

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

resource from the previously gathered resource pool, which is also indexed in the
manifest (Fig. 3b).

(a) (b)

(c)

Fig. 3. Edition operations: (a) Inclusion of a new resource, (b) edition of the tree of an

organization, (c) edition of an <e-Aula> Glossary resource.

- For creation and modification of actual contents associated with the resources it is
possible to adopt a similar strategy to the one that was used to display the selected
resources upon learner petition. For every content type there is an associated
edition module. When the instructor selects in the tree a resource to be modified,
its edition module is launched thus allowing her to modify it using the web
interface (Fig. 3c).
In <e-Aula> we have considered that course structure management (i.e. addition,

removal and organization of resources) is more important for our evaluation purposes
than content edition itself. Thus, <e-Aula> currently only includes edition modules
for the content types specific of this system (e.g. <e-Aula> content pages, course
presentations, glossary and F.A.Q.). Other common resource types, although
supported for visualization, are not currently supported for edition (e.g. PDF, HTML,
etc.). Those resources can be uploaded to the system but once there they cannot be
directly edited. Typically, if instructors want to modify such files they will edit them
with their usual edition tool and will upload them into the system. Nevertheless, due
to the modularity of the manifest driven approach, the incorporation of new editors to
<e-Aula> will be straightforward.

3.3 Course Importation

The importation facility allows the incorporation of packages produced in other
LMSs. Importation is always a problematic functionality. Even though the IMS CP
aims at facilitating this kind of processes, it is very broad. In effect:

5

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

- Several content types are permitted and there are no specific restrictions regarding
the formats. Therefore it will be usual to find incoming packages including
resources of types unknown or unsupported by the system.

- The importation facility must also manage situations that are more difficult.
Effectively, the standards are not mature enough and they are subjected to
evolution. Moreover, IMS incorporates an extension mechanism allowing vendors
to add their own extensions to the standards. Consequently, an imported package
can follow an unsupported IMS CP version or include unsupported vendor specific
extensions.

Fig. 4. A snapshot of the <e-Aula> importation system. Help of the user is required to adapt an

incoming package with invalid syntax.

The challenge of a sophisticated importation system, such as the included in
<e-Aula>, is to try to understand and adapt the incoming packages. Due to the
aforementioned factors this adaptation can require the help of a human user (Fig. 4).
The manifest driven approach simplifies this complex process because mostly all the
work can be done over the manifest. The manifest is indeed a clean and powerful
element in which to centralize the efforts when designing an importation system. Any
modification to the standards, any kind of strange resource type and even the version
of the standard are always reflected in the manifest. That means that the steps required
to import a package can be deduced from a deep examination of its manifest. In
addition, many of the changes in the package produced by the execution of these steps
can be limited to modifications of the manifest file. For example, when there is no
possibility of adapting an alien resource and it must be removed, the action actually
performed is to erase from the manifest the references to this resource. The content is
still in the package but it does not cause any problems because the resources are
always accessed using the manifest. The old manifest can be backed up so that the
offending content can be revived when needed (and supported).

Upon completion of all the adaptation procedures during importation, the resulting
manifest file is valid from both the standard’s and the system’s points of view. It can
thus be safely displayed and/or edited.

3.4 Course Exportation

On many systems, the process of exporting content following the proposed standards
can be a complex task, because it might imply scanning the course’s internal
representations in order to recover the IMS structures. However, with the manifest
driven approach exportation is extremely simple, because the courses are internally

6

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

represented by their manifests. Therefore the courses maintain full compatibility with
IMS CP during their whole life in the LMS, being unnecessary to perform any kind of
adaptation or additional processing beyond zipping the content together with the
manifest file and storing it all in the file system

4 An LMS Architecture based on the Manifest Driven Approach

During the inception phase of <e-Aula>, some important requirements were
identified. Keeping in mind that IMS specifications were still young and thus prone
to be changed (perhaps even disregarded by the community) the system should be as
flexible as possible. It should not be a fixed application that once developed goes into
production, but a lively, ever changing environment. For a few years following its
construction, the system should evolve, adapting to the evolution of the standards and
the irruption of new concepts. This means that internally complex monolithic systems
should be avoided promoting instead modular systems in order to assure
maintainability.

Resource
handlers

Resource
handlers
Resource
handlers

Resource
handlers

Resource
processors

Resource
handlers

Resource
handlers
Resource
handlers

Resource
handlers

Resource
processors

Presentation
module

Manifest
editor

Course
Repository

Importation
module

Manifest
Introspector

Resource
handlers Tasks

Agenda

Exportation
module

Edition
module

Manifest
displayer

Manifest
serializer

Fig. 5. Architecture of a manifest driven LMS

The manifest driven approach described in the previous section can be
implemented by means of a modular and powerful architecture meeting the
aforementioned requirements. This architecture has been implemented in the
<e-Aula> system and tested in the development of several courses at Complutense
University of Madrid (Spain). The next subsections describe this architecture.
Subsection 4.1 gives an overview of the architecture. Subsections 4.2, 4.3 and 4.4
detail its different aspects. Finally, subsection 4.5 summarizes how this architecture is
implemented in <e-Aula> using well-known web development standards.

7

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

4.1 Overview of the Architecture

In Fig. 5 the architecture for an LMS based on the manifest driven approach is
depicted. The architecture must support the four main tasks described in section 2.
Therefore a distinct module is included for each one of these tasks.

The architecture is organized around a storage module where the different courses
are stored. This module maintains an explicit representation of the IMS manifest for
each course. According to the manifest driven approach, all the operations performed
on the courses are reflected on these representations.

The architecture of the presentation and the edition modules are similar and based
on a delivery policy with resource processors able to select the most suitable resource
handlers for each type of resource. They are detailed in subsection 4.2 and subsection
4.3. On its turn, the importation module exhibits an agenda based architecture [2],
which is suitable to cope in a modular way with the complexities of this operation
(see subsection 4.4). Finally, as mentioned before the structure of the exportation
module is straightforward due to the explicit representation of the manifests in the
storage module.

4.2 The presentation module

The previous section has already outlined the difficulties faced when building a LMS
supporting the broad range of content types that an IMS based course can contain.
Indeed, a mechanism that can react to the different content types and process them
accordingly is required. In the LMS vocabulary, such a mechanism is called a delivery
system. Following the underlying concepts of the manifest driven approach a three-
step process is suggested which is parallel to the three layers defining the content type
of a resource:
- The first step begins when a course is loaded. The action taken is to consult the

required application profile in the manifest. The concept of Application Profile
(AP) is the IMS term to designate a customization of a standard to meet the needs
of particular communities of implementers with common application requirements.
For each supported AP there is a different resource processor. From the
perspective of the implementation, the presentation module will be equipped with a
table listing the relations between the different APs and their corresponding
resource processor objects. When the course is loaded, the corresponding resource
processor is invoked. That processor will be responsible of handling all the
requests related with the resources until a new course is loaded. After this step is
completed, the system examines the manifest, loads the default organization and
displays a tree reflecting the structure of the items. This is made by a component
called manifest displayer.

- The second step is triggered whenever the learner clicks a node of the tree (which
represents an item). The system queries the manifest about whether that item has
an associated resource. If it does, the content type of the resource is consulted in
the manifest. That information is transmitted to the active resource processor. Just
like in the previous step, the resource processor contains a table relating each

8

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

content type to an appropriate resource handler, which is a module capable of
processing that content type.

- In the third step, the resource handler gets control and performs all the operations
required by the content type. Such operations could include, among other things,
formatting the content, adapting it to the learner’s profile, adapting the content to
the client’s device or storing statistical data about the learner’s visit to the item
before and after the visit itself.
Notice that this organization allows the incorporation of new resource processors

and new resource handlers in a modular and transparent way without interfering with
the behavior of the presentation module.

4.3 The edition module

The edition module must handle two different problems: the edition of the structure of
the course (edition of the manifest) and the edition of the course content (edition of
the associated resources):
- For the edition of the resources it is possible to adopt the same delivery strategy

followed in the edition module. Therefore, the content edition environment can be
architected in a similar way, reusing the ideas used in the presentation module to
trigger the appropriate resource handler.

- The edition of the structure of the course is carried out by a manifest editor
component. This component reuses the ideas employed to visualize the navigation
tree in the presentation module, adding the functionality to add/edit/delete nodes
and link them to the resources edited.
As with the presentation module, the architecture of the edition module allows the

incorporation of new edition facilities in a straightforward manner.

4.4 The importation module

The architecture of the importation module must be flexible enough to cope with the
complexities of the importation process. This must implement a flexible behavior
capable of reacting when confronted with different problems, even with the
possibility of querying the user when more information is needed to perform the
importation. Because of this, we propose an implementation based on an agenda
similar to the proposed in [2] to simulate discrete systems.

According to the agenda based organization, when a package is imported the
system parses the manifest, adding new tasks to the agenda to resolve the troubles
encountered during the scan. These tasks (especially those that involve a query to the
user) can create other tasks and add them to the agenda if it is needed for their
resolution. In this manner, a complex process that requires a heterogeneous set of
actions is dynamically split into simple tasks. More precisely:
- The importation begins with a deep scan of the manifest. This is carried out using a

component called the manifest introspector. This generates a report that profiles,
among other things, whether the manifest is a well-formed XML document, which
version of the standard it follows, which other schemas (if any) are needed to

9

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

understand it and under what AP it has been developed. This report is presented to
the user, who decides how to continue.

- Depending on the user’s response, the system generates a list of initial tasks for the
agenda and starts working on them. Such tasks may include the modification of the
manifest file, modification of the AP, adaptation of some resources or physical
installation of the package.
This agenda based implementation makes it possible to add new types of

adaptation tasks during importation in a transparent way (e.g. to adapt a new content
type). Such an organization dramatically enhances the modularity and maintainability
of this complex subsystem.

4.5 Implementing the Architecture

This architecture has been implemented in <e-Aula> using Java technologies in order
to maximize maintainability, extensibility and robustness of the resulting
implementation. More precisely, we have based our implementation on the Sun
Microsystems’ J2EE platform [11] complemented with the Apache Foundation’s
Struts framework [3]. From J2EE we adopt the multi-tier organization according to
which applications are layered in different tiers (client, web, business and
persistence). From Struts we adopt the organization in terms of the classical Model-
View-Controller (MVC) design pattern. With this, each one of the presentation,
edition, importation and exportation modules has its own view and a controller, which
interact with a common model represented by the course repository and the manifests
within it, as suggested by Struts. In addition they are disposed on a layered
organization, as suggested by J2EE.

5 Related Work

LMSs have been widely adopted by institutions and instructional designers in order to
fulfil certain needs and requirements in a field of ever increasing demands for
effective education and training [4]. In many of these systems considerations like
adherence to standards or content exchange are often secondary goals because,
although being desirable, there are not usually a key point for customer satisfaction
(be it a learner or an institution interested in buying the system to deploy their own
content). On the contrary, we follow a more scholarly approach. Therefore, we focus
on the evaluation of standards and the research in modular architectures, being aspects
like user friendliness or the support for a wide spectrum of high quality content
formats a secondary objective.

Many initiatives have adopted IMS as a basic interoperability mechanism. They
range from commercial product like WebCT [18], which can be purchased by
companies in order to deploy their own content, to initiatives like ADL-SCORM
[16], which provides complementary specifications for obtaining high-quality content
and systems in a variety of fields. While these initiatives pay only attention to IMS
standards when it comes to interoperability issues (e.g. content
exportation/importation), our manifest driven proposal goes a step forward. Indeed,

10

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

we defend the use of the specifications (in particular, the IMS manifest) as central
mechanisms to conceive, architect, design and implement the system.

There are alternative approaches to architect an LMS. One of the most relevant is
proposed by the SAKAI project [14]. SAKAI’s goal is to join different open source
course management systems and related tools in a single open source architecture. To
achieve this goal the SAKAI software is based in the MIT Open Knowledge Initiative
(OKI) [13], which is a service-oriented framework to develop a Course Managment
System. This approach focuses on the general architecture of a LMS, allowing the
addition of the existing tools. The choice of specific standards is delegated on the
different tools that implements local services. Our manifest driven approach, being
more oriented to the development of such local services, can be complementary to
this kind of proposals.

More similar to the <e-Aula> LMS are the large amount of e-learning tools based
on scripting technologies (e.g. systems like ILIAS [9], Moodle [12] or Dokeos [6] are
written in PHP, while WebCT Campus Edition [18] is written in Perl). While these
products prove that it is possible to build large scale LMSs based on the mentioned
technologies, in our opinion it requires a large amount of effort by developers when it
comes to adding new functionalities and it affects their maintainability. Indeed, new
developments, in particular large scale LMSs such as WebCT Vista [18], are being
developed using Java technologies. On its turn, Java technologies are more robust and
they meet better complementary requirements like modularity and maintainability.
These have led us to adopt these technologies in <e-Aula>.

6 Conclusions and Future Work

In this paper we have described our manifest driven approach to architect IMS based
LMSs. This approach is the result of our efforts in the development of <e-Aula>, a
system aimed to evaluate different e-learning standards and e-learning modular
architectures.

The manifest driven approach facilitates the main tasks contemplated in the LMS:
course presentation, edition, importation, and exportation. In addition, this approach
leads to a modular architecture that facilitates extensibility. Adding support for a new
content type is just a matter of writing the code needed to prepare and display content
in that format. This is also true when adding a new content editor to the system, or a
new task for the agenda. The high degree of modularity of the architecture also
enhances maintainability. It is easy to find the points in the source code where any
changes could be needed, and these changes can be done will little impact on the rest
of the system. While the complexity of the architecture is high (in terms of number of
classes and files in the resulting implementation), this is the price to pay for achieving
a very high degree of modularity, and therefore a better extensibility and an easier
maintenance.

Our Java based implementation preserves the benefits of the architecture and also
adds a high degree of robustness. Nevertheless we should point out as a drawback the
need of more computing power on the server when compared with lighter applications
based on scripting solutions (like PHP). While the choice between a large and robust

11

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

system and a lightweight application will depend on the exact needs of each learning
environment, the J2EE / Struts based solution is well suited for our purposes because
it allows a continuous evolution of the system to accommodate our evaluation and
research needs.

Currently the architecture based on the manifest driven approach is fully
implemented in the <e-Aula> system. This LMS is fully functional and adheres
strictly to the IMS CP standard. There is also partial support of the IMS QTI standard,
which is also functioning as a stand-alone application, and some built-in adaptability
features for different client platforms and user levels. As future work we are planning
to incorporate advanced user modeling capabilities. The IMS LIP (Learner
Information Profile) standard may be a supporting aid in this task. In addition, we are
planning to apply further the document oriented approach promoted in [17] for both
the incremental definition of new types of resources and the incremental construction
of their associated handlers. Finally, we are planning to involve to field experts in the
development of high-quality content that fully exploits the functionalities of our
system. The advanced importation features incorporated in <e-Aula> should facilitate
this task.

References

1. <e-Aula>. eaula.sip.ucm.es
2. Abelson, H.; Sussman, J.; Sussman, J. Structure and Interpretation of Computer Programs -

Second Edition. MIT Press. 1996
3. Apache Struts. struts.apache.org
4. Avgeriou, P.; Papasalouros, A.; Retalis, S.; Skordalakis, M. Towards a Pattern Language for

Learning Management Systems. Educational Technology & Society, 6(2), pp. 11-24. 2003
5. Coombs, J. H.; Renear, A. H.; DeRose, S. J. Markup Systems and the Future of Scholarly

Text Processing. Communications of the ACM, 30 (11), pp. 933-947. 1987
6. Dokeos. www.dokeos.com
7. Fernández-Manjón,B.; Sancho, P. Creating cost-effective adaptive educational hypermedia

based on markup technologies and e-learning standards. Interactive Educational Multimedia
4. 2002

8. IEEE Standard for Learning Object Metadata. IEEE Standard 1484.12.1-2002. 2002
9. ILIAS. www.ilias.uni-koeln.de/ios/index-e.html

10. Instructional Management System Global Consortium. www.imsglobal.org
11. Java 2 Enterprise Edition. java.sun.com/j2ee/
12. Moodle. moodle.org
13. OKI Project. www.okiproject.org
14. SAKAI Project. www.sakai.org
15. Sancho, P.; Manero, B.; Fernández-Manjón, B. Learning Objects Definition and Use in

<e-Aula>: Towards a Personalized Learning Experience. Edutech:Computer-Aided Design
Meets Computer Aided Learning, pp177-186. Kluwer Academic Publishers. 2004

16. Shareable Content Object Reference Model SCORM. www.adlnet.org
17. Sierra, J.L.; Fernández-Valmayor, A.; Fernández-Manjón, B.; Navarro, A.. ADDS: A

Document-Oriented Approach for Application Development. Journal of Universal Computer
Science, 10(9), pp 1302-1324. 2004

18. WebCT. www.webct.com

12

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

