
Document-Oriented Software Construction based on Domain-Specific
Markup Languages

José Luis Sierra, Baltasar Fernández-Manjón, Alfredo Fernández-Valmayor, Antonio Navarro
Dpto. Sistemas Informáticos y Programación

Fac. Informática. Universidad Complutense de Madrid.
28040,Madrid (Spain)

{jlsierra,balta,alfredo,anavarro}@sip.ucm.es

Abstract

In this paper we present ADDS (Approach to

Document-oriented Development of Software), our
solution to software construction based on Domain-
Specific Languages (DSLs). DSLs in ADDS are
formulated as descriptive Domain-Specific Markup
Languages (DSMLs) that are used for marking up the
documents that describe the relevant aspects of the
applications (e.g. data and some aspects of the
behavior). Final running applications are obtained by
the processing of these documents with suitable
processors. ADDS promotes the incremental
development of DSMLs and their processors, so they
can evolve according to the authoring needs of the
different participants in the development process
(domain experts and developers). The incremental
nature of ADDS is eased by its document orientation.
Thus ADDS palliates the high costs of formulation,
operationalization and maintenance of DSLs exhibited
by other approaches
Keywords: Development Approach, Domain-Specific
Markup Languages, Maintenance, Evolution, XML

1. Introduction

The benefit of using Domain-Specific Languages
(DSLs) for the development of applications in a given
domain has been largely recognized [6][17][18].
According to [18], a DSL is a programming language
or executable specification language that offers,
through appropriated notations and
abstractions ,expressive power focused on, and usually
restricted to, a particular problem domain. Hence,
DSLs improve productivity because they can be
directly used by domain experts. However, the high
costs of the formulation, operationalization (i.e the
development of a suitable interpreter/compiler for the
language) and maintenance of DSLs are identified as

shortcomings of this approach. A DSL formulation
implies an in-depth analysis of the application domain,
and strong usability considerations regarding the
language’s end users (i.e. domain experts).
Furthermore, the complexity of the DSL’s
operationalization process must be addressed. Lastly,
during the development of applications, new aspects,
not initially covered by the DSL, could be discovered.
Therefore the costs of the DSL maintenance must be
also considered.

This paper describes ADDS (Approach to
Document-oriented Development of Software), our
approach to the development of software applications
based on DSLs. ADDS promotes the description of
relevant aspects of an application by means of
documents. These documents are marked up with
appropriate descriptive Domain-Specific Markup
Languages (DSMLs), and the final applications are
built and executed by processing these documents with
suitable processors for these DSMLs. ADDS promotes
an incremental formulation and operationalization of
the DSMLs to solve the previously mentioned
shortcomings. Thus, our approach is driven by the
markup needs discovered during the development of
the applications. The incremental formulation of
DSMLs in ADDS is enabled by the use of standard
markup metalanguages (e.g. SGML [5] or XML [19])
and their associated declarative grammar-based
formalisms (e.g. SGML/XML DTDs or other schema
languages [8]). Likewise, the incremental development
of their processors is eased by the adoption of modular
language processors techniques [3][6][7].

ADDS has been formulated and refined for several
years [11][14][15][16]. The main contribution of this
paper is the description of ADDS using a two-level
approach. In addition, we give a clearer distinction
between the different perspectives of ADDS. Finally,
we introduce a new technique for the incremental

1

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

provision of DSMLs, and formulate a new simpler and
practical operationalization model.

The paper is organized as follows. Section 2 gives a
general technology-independent description of ADDS.
Section 3 outlines a specific implementation of the
approach. Finally, section 4 presents some conclusions
and lines of future work. We will use the domain of the
applications for route searching in subway networks as
a case study throughout the paper to illustrate the
different aspects of the approach.

2. The ADDS Approach

There are some software development areas where
not only the information processed by applications, but
also a substantial part of their behaviors, are usually
described by documents with well established
structures. This claim is based on our previous
experiences in the development of content – intensive
educational and hypermedia applications [4][9] and
knowledge – based systems [13]. In all these domains
we have successfully used documents marked with
DSMLs to improve the development and maintenance
of applications. The ADDS approach systematizes and
generalizes these experiences, laying out the
foundations for a document – oriented paradigm for
application construction. This section describes the
approach in a technological- and implementation-
independent way. This description is subsequently
refined by choosing specific technologies to obtain
different ADDS implementations, such as that
described in the next section. Subsection 2.1 introduces
the activities and products involved in ADDS.
Subsection 2.2 describes the sequencing of these
activities. Lastly, subsection 2.3 presents the main
actors in the development of applications according to
ADDS.

2.1. Activities and Products

Fig. 1 introduces the activities and products that
comprise the ADDS approach. This subsection
discusses all these aspects.

The main aim of the DSML provision activity is to
obtain the application DSML that will be used for
marking up the documents that describe the
application. For instance, in the subway example the
application DSML will allow the markup of the
different aspects of the subway network (i.e. its
structures and dynamics), and also the markup of the
relevant variability of the user interface (e.g. a
reference to an image representing the subway map,
and the coordinates of the stations in this image). This
application DSML will be described declaratively,

using a suitable, implementation – dependent,
grammatical formalism (e.g. the implementation
described in section 3 uses a formalism based on XML
DTDs). Furthermore, the DSMLs formulated during
this activity are stored in a repository of DSMLs, so
they can be used in the incremental definition of
DSMLs and reused in the formulation of new DSMLs.
Thus, in the mid-term this repository will decrease the
cost of the activity.

Application
Documents

Repository of
DSMLs

Application
DSML

Operacionalization

DSML
Provision

Documentation

Application

Processor
Application
Execution

Fig. 1. Activities and products in ADDS.

(b) <Subway>
 <Network>
 <Structure>
 <Stations>
 <Station id="TURINGAVE">Turing Ave.</Station>
 <Station id="KNUTHST">Knuth St.</Station>
 ...
 </Stations>
 <Lines>
 <Line id="BLUE">
 ...
 </Structure>
 <Dynamics>
 <Speeds>
 <Speed line="BLUE" value="50"/>
 ...
 </Dynamics>
 </Network>
<UserInterface>
 <Title>Route searching in subway networks</Title>
 <ExitButton>Exit</ExitButton>
 <ResetButton>Reset Application</ResetButton>
 ...
 <Map loc="toysubwayEN.jpg"/>
 ...
 <Coordinates>
 <Coordinate station="TURINGAVE" x="65" y="157"/>
 ...
 </Coordinates>
 </UserInterface>
</Subway>

Turing Ave.

 Knuth St. Gödel Sq.

Church St

(a)

Fig. 2. (a) A miniature subway network, (b) part of the

document for the route searching application in (a).

Once a suitable DSML is available, the applications
can be described by means of marked application
documents conforming the DSML. This process is
carried out during the Documentation activity. In the
subway case study, applications can be described by a
single document containing the description of the
subway network and the description of the user
interface’s variability. Fig. 2(b) drafts an example of

2

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

application document for the application associated
with the fictitious miniature network in Fig. 2(a). The
markup follows XML conventions, although this is
implementation – dependent.

Processor for the
DSML

<Subway>
 <Network>
 <Structure>
 <Stations>
 <Station id="TURINGAVE">Turing Ave.</Station>
 <Station id="KNUTHST">Knuth St.</Station>
 <Station id="GÖDELSQ">Gödel Sq.</Station>
 <Station id="CHURCHST">Church St.</Station>
 </Stations>
............

Application
Document

Application

Fig. 3. Final running applications are obtained from

application documents using processors for the
application DSML.

The production of running applications from the
application documents is carried out using suitable
processors for the application DSMLs. The
construction of these processors is the aim of the
Operationalization activity. This activity produces a
suitable processor for the DSML that is used to process
the application documents during Application
Execution activity (Fig. 3). Notice that the
implementations of the Operationalization activity
must cope with the incremental formulation of
DSMLs, thus introducing mechanisms to appropriately
extend the processors as the DSMLs evolve. These
mechanisms can be based on standard techniques for
the development of modular language processors
[3][6][7].

2.2. Sequencing of the Activities

The diagram in Fig. 4 shows the sequencing of
ADDS activities. This diagram reveals the iterative –
incremental nature of the approach. ADDS indeed
introduces two distinguished loops in the development
process: the production loop, related to application
development and maintenance, and the evolution loop,
related to the DSML evolution and its appropriateness
for marking up the documents of the application.

During the production loop the application
document is processed to build and execute the
application. Then this application is evaluated, and
consequently, some modifications and/or
improvements in the application could appear. Usually,
these changes will only affect the application
documents1. So this loop can be characterized by the
production and modification of application documents,
and by the construction and testing of the documented
applications. For instance, in the subway example, a
preliminary subset of the subway network can be
initially documented, in order to provide a first

1 Eventually the processor might also need to be adapted to correct

some bug and/or misunderstanding of the operational meaning
required for the DSML, although these cases will be typically less
frequent than changes in the document.

working prototype of the final application. Next, this
documentation can be completed to tackle the overall
network, and, then, in a third iteration the variability of
the user interface can be fine-tuned. New maintenance
iterations can arise during application exploitation
when the network changes (for instance, due to the
addition of a new station or a new line).

DSML
Provision

[needs for changes
in the DSML]

Documentation Operationalization

[document ready to
be processed]

[application
acepted]

[needs for
application
modification]

Application
Execution

Production
loop

Evolution
loop

Fig. 4. Sequencing of activities in ADDS.

The evolution loop arises during the Documentation
activity, when new markup needs are identified. Such
needs can be due to a refinement of the structure of
some application document, or the incorporation of
new aspects into these documents to address new
requirements. In this case, the usual production loop is
abandoned, and the DSML provision activity is
performed again with the aim of extending the DSML
to contemplate the new markup needs. Hence it can be
said that the DSML evolves. The evolution of the
DSML is indeed mirrored at the operational level by
the evolution of the corresponding processor. Finally,
the usual production loop is entered again. In the
subway example, the DSML can evolve to include new
structural elements in the networks (e.g. corridors)
together with their associated dynamics. Another
example of evolution is the inclusion of different user
interface styles (e.g. evolution from a simple console-
based user interface to a graphic one).

2.3. Actors

ADDS distinguishes between two main actors in the

development of applications: domain experts and
developers (Fig. 5). The domain experts are the experts
on the different aspects of the application’s problem
domain (domain aspects). For example, in our case
study, these domain aspects will correspond to the
subway network structure and dynamics, so domain
experts could be the network organizers of the subway
companies. In turn, the developers are experts in
computer science whose main responsibilities are the

3

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

formal definition of the application DSML, using
appropriate grammar formalisms and the construction
of the processor for this DSML.

document
domain
aspects

DSML
Provision

Domain experts

provide the
DSML

Documentation Operationalization

Developers

help

- document operational
 aspects
- help domain experts
- identify new markup
 needs

help

provide the
processor

Application
Execute

evaluate

evaluate

Fig. 5. Actors in ADDS and their roles in the different

activities.

During the Documentation activity, domain experts
and developers collaborate in the application
description by creating and marking up the application
documents. In addition, these documents can contain
other operational aspects not derivable from those
domain aspects. For instance, in our subway example,
these aspects are the variability of the user interface.
These operational aspects can be initially documented
and marked up by the developers, but due to the
readability of descriptive markup languages, these can
be subsequently understood and modified by the
domain experts. We have successfully used this
document-mediated communication between domain
experts and developers to enhance the development
and maintenance of educational applications [4], and
also rapid prototyping in the hypermedia domain [9].

3. Implementing ADDS

The effective use of ADDS supposes the definition

of the different activities and products in terms of
specific protocols, procedures and technologies, thus
leading to implementations of the approach. This
section describes briefly ADDSLM,OADDS, an ADDS
implementation focused on DSML provision and
Operationalization activities.

3.1. DSML Provision

In ADDSLM,OADDS the incremental provision of

DSMLs is accomplished as an appropriate combination
of linguistic modules, each one characterizing a part of
the final DSML (hence the LM superscript). These
modules are declarative, grammar-based
characterizations of parts of the final DSML. The
resulting DSML is also declaratively described by a
document grammar. This grammar is obtained by

following a grammar production specification. The
aim of this specification is to resolve conflicts between
linguistic modules (e.g. name conflicts) and to adapt
the concrete markup vocabulary to different contexts
(e.g. a specification can set up the names of the tags in
English, whilst another can do the same in Spanish).
Notice that, by providing alternative production
specifications, it is possible to get different profiles of
the same DSML. In our subway example, the DSML
will indeed include linguistic modules for marking up
the subway networks, as well as modules for marking
up the relevant aspects of the user interface. All these
modules will be combined to produce a suitable
grammar for this DSML following an appropriate
production specification.
 (a) Module: Lines

Grammar:
<!ELEMENT Lines (Header?,LinesTitle?,LinksTitle?,(Line)+)>
<!ELEMENT Header (#PCDATA)>
<!ELEMENT LinesTitle (#PCDATA)>
<!ELEMENT LinksTitle (#PCDATA)>
<!ELEMENT Line (Name,Link+)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Link EMPTY>
<!ATTLIST Link origin IDREF #REQUIRED destination
 IDREF #REQUIRED
 length NMTOKEN #REQUIRED> ...
Module: Lines

 Map: Lines → Líneas

 Header → Encabezado
 LinesTitle → TítuloLíneas
 LinksTitle → TítuloTramos
...

(b)

Fig. 6. (a) An example of a linguistic module, (b) part of a

grammar production specification.

In this implementation, we have completely based
the definition of our DSMLs on the XML markup
metalanguage [19], and we have used XML DTDs for
describing both the grammatical aspects of the
linguistic modules and the final document grammars.
Although XML DTDs are simpler than other schema
languages [8] we have found several advantages in
their use. On one hand, they are an integral part of the
XML standard, and on the other hand, and more
importantly, they are simple-to-use and more
understandable mechanisms for domain experts [9].
The grammar production specifications in
ADDSLM,OADDS are sets of renaming rules for the
markup vocabularies of the linguistic modules, thus
allowing for the resolution of the different name
conflicts between modules‘ DTDs. Because name
conflicts are solved at the grammatical level, the use of
namespaces [19] is not necessary in this
implementation. In our opinion, this facilitates the
Documentation activity for domain experts, which is
one of the main objectives of ADDS. Fig. 6(a) shows
an example of a linguistic module which governs the
markup of the lines of a subway network. Fig. 6(b), in
turn, depicts part of a grammar production
specification for the DSML in the subway example.

4

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

According to this specification, the markup vocabulary
of the final grammar will be in Spanish.

3.2. Operationalization

Operationalization in ADDSLM,OADDS conforms the
OADDS (Operationalization in ADDS) model for the
incremental development of DSMLs‘ processors
(hence the OADDS superscript). OADDS is based on the
well-known techniques of syntax-directed translation,
widely used in the compiler construction domain [1],
although the model also takes advantage of the
descriptive nature of markup languages to promote the
incremental development of processors. Early versions
of the model can be found in [12][14][15]. In this
paper, we briefly outline the current version, such as
that expressed in [16].

Element
Node

atr1 val1

atrk valk

Semantics
attributes

Evaluator

Computing proc: proc(e) {…}
Invocation proc: proc(eo,e1) {…}

Network

Semantics
attributes

digraph

Computing proc: CNetwork
Invocation proc: IDef

Evaluator

Structure Dynamics

CNetwork ≡ proc(e) {
 Invoke the computing procedures for the evaluators
 in the child nodes of e.
 Let s be the description of the network’s structure
 (value of the semantics attribute structure in the
 first child of e) and d be the description of the
 network dynamics (value of dynamics in the e’s
 second child)
 then
 d ← create a weighted directed graph with s and d
 assign d as a value of the semantics attribute
 digraph in e
}
IDef ≡ proc(eo,e1) {
 Let c be the computing procedure of the evaluator in e1
 then c(e1)
}

(a) (b)

(c)

Fig. 7. (a) Operationalization of element nodes, (b)

operationalization for elements of Network type, (b)
pseudo-code for the components named in (b).

Processors in OADDS are built using appropriate,
domain-dependent combinations of operationalization
modules. These modules are used to attach suitable
operational meanings with the linguistic modules for
the DSMLs. Thus processors are incrementally
provided as long as the DSML evolves.

The operationalization modules are used to
operationalize document trees by assigning a set of
semantic attributes and an evaluator to each tree node-
element (Fig. 7-a-). The evaluator is used to calculate
the values of the semantic attributes. Evaluators have
two different procedures: a computing procedure, with
the code required to compute the values of the
semantic attributes, and an invocation procedure, used
by this computing procedure to invoke the computing
procedures owned by other evaluators in the node-
element’s vicinity. This structure facilitates the
incremental provision of evaluators because each

constituent procedure can be independently extended
(e.g. the invocation procedure can be extended to
propagate the value for a new attribute without
changing the corresponding computing procedure).
Fig. 7-b- and Fig. 7-c- outline the operationalization of
the elements of Network type, used for marking up
the documentation of the subway networks in our
example application domain.

Once a suitable set of operationalization modules
for a given DSML is available, the processor for this
DSML is constructed providing a little, domain –
dependent, program that uses these modules to execute
the applications from the DSML-conforming
documents. Typically this program is based on three
types of basic processes: the construction of document
trees from marked documents, the operationalization
of document trees using suitable operationalization
modules, and the evaluation of operationalized trees.
These processes are provided by predefined
components, so operationalization in OADDS is
reduced to the incremental provision of
operationalization modules and to the construction of
processors by providing minimal glue programs.

Being a conceptual model, OADDS is independent
of any specific implementation technology.
Nevertheless, OADDS can be easily implemented as
an object-oriented framework. The main advantage of
this implementation is that it promotes its integration
with widely used object-oriented frameworks for
document processing [2]. The details of this OADDS
implementation can be found in [16].

4. Conclusions and Future Work

This paper describes ADDS, our document-oriented
approach to software development based on DSLs.
ADDS conceives DSLs as descriptive domain-specific
markup languages (i.e. as DSMLs) that enable a
document – oriented paradigm to application
construction. Documents are a natural way to achieve
communication between human beings. Consequently,
the documental nature of the approach increases its
acceptance in information-intensive areas of software
development, where ADDS provides the feasibility of
describing applications as human readable documents,
understandable and editable for both domain experts
and developers. The use of common markup standards
(e.g. XML) also contributes to its acceptance, because
the common syntax shared by DSMLs contributes to
minimizing the tower of Babel syndrome. The use of
documents marked according to standards also
improves application portability. In addition, the
incremental nature of the approach contributes to
decreasing effort during the formulation,

5

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

operationalization and maintenance of the DSMLs,
because this can be amortized through the development
of applications. This incremental formulation also
provides the flexibility required by the development of
complex applications. DSMLs can be indeed extended
when new markup needs are discovered. This also
facilitates the use of the resulting DSMLs, because it
avoids the inclusion of very general or sophisticated
descriptive artifacts. This evolution can be managed at
the operational level by adopting suitable mechanisms
to ensure semantics modularity for the components
used in the development of the processors, like the
OADDS operationalization model.

Current work is oriented to improving ADDS and
ADDSLM,OADDS pragmatic applicability by using them
in several projects in the domain of distributed e-
learning systems. With this work we hope to achieve
further refinements and improvements in our approach
and in the cited implementation. In addition, we are
interested in a better characterization of the authoring
problems in ADDS, not only in the Documentation
activity, but also in all the other activities of the
approach. Finally, as a future work, we are considering
the formulation of alternative implementations of the
approach based on the use of object-oriented attributed
grammars [10] both for the incremental provision and
for the incremental operationalization of DSMLs.

5. Acknowledgements

The Spanish Committee of Science and Technology

(TIC2001-1462 and TIC2002-04067-C03-02) has
supported this work.

6. References

[1] Aho, A., Sethi, R., Ullman, J. D. Compilers:

Principles, Tech. and Tools. Adisson-Wesley. 1986
[2] Birbeck,M et al. Professional XML 2nd Edition.

WROX Press. 2001
[3] Duggan,D. A Mixin-based, Semantics-based

Approach to Reusing Domain-specific Programming
Languages. ECOOP 2000. 2000

[4] Fernández-Valmayor, A., López Alonso, C., Sèrè A.
Fernández-Manjón,B. Integrating an Interactive
Learning Paradigm for Foreign Language Text
Comprehension into a Flexible Hypermedia system.
IFIP WG3.2-WG3.6 Conf. Building University
Electronic Educational Environments.1999

[5] Goldfarb, C. F. The SGML Handbook. Oxford
University Press. 1990

[6] Hudak,P. Domain-Specific Languages. In Handbook
of Programming Languages V. III: Little Languages.
And Tools. Macmillan Tech. Publishing. 1998

[7] Kastens,U., Waite,W.M. Modularity and Reusability
in Attribute Grammars. Tech. Report CU-CS-613-92.

University of Colorado. 1992
[8] Lee,D., Chu,W.W. Comparative Analysis of Six

XML Schema Languages. ACM SIGMOD Record.
29(3). 2000

[9] Navarro, A., Fernández-Valmayor, A., Fernández-
Manjón, B., Sierra, J.L. Conceptualization
prototyping and process of hypermedia applications.
Int. Journal of Software Engineering and Knowledge
Engineering. In press

[10] Pakki,J. Attribute Grammar Paradigms – A High-
Level Methodology in Language Implementation.
ACM Computing Surveys 27(2). 1995

[11] Sierra, J. L., Fernández-Manjón, B., Fernández-
Valmayor, A., Navarro, A. Integration of Markup
Languages, Document Transformations and Software
Components in the Development of Applications: the
DTC Approach. Int. Conf. on Software ICS 2000.
16th IFIP World Comp. Congress. 2000

[12] Sierra, J. L., Fernández-Manjón, B., Fernández-
Valmayor, A., Navarro, A. An Extensible and
Modular Processing Model for Document Trees.
Extreme Markup Languages 2002. 2002

[13] Sierra, J. L., Fernández-Manjón, B., Fernández-
Valmayor, A., Navarro, A. A Document-Oriented
Approach to the Development of Knowledge-Based
Systems. LNAI 2040. Springer-Verlag. 2004

[14] Sierra, J. L., Fernández-Valmayor, A., Fernández-
Manjón, B., Navarro, A. Building Applications with
Domain-Specific Markup Languages: A Systematic
Approach to the Development of XML-based
Software. ICWE 2003. 2003

[15] Sierra, J. L., Fernández-Valmayor, A., Fernández-
Manjón, B., Navarro, A. Operationalizing Application
Descriptions with DTC: Building Applications with
Generalized Markup Technologies. SEKE'01. 2001

[16] Sierra, J.L. Towards a Document-Oriented Paradigm
to Application Development). Ph.D. Thesis (in
Spanish). Univ. Complutense de Madrid. Madrid.
Spain. 2004

[17] Thibault,S.A., Marlet,R.,Consel,C. Domain-Specific
Languages: From Design to Implementation.
Application to Video Device Drivers Generation.
IEEE Transactions on Software Engineering, 25(3).
1999

[18] Van Deursen, A., Klint, P.,Visser, J. Domain-Specific
Languages: An Annotated Bibliography. ACM
SIGPLAN Notices 35(6). 2000

[19] www.w3.org/TR

6

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

