
Developing Content-Intensive Applications with XML Documents, Document
Transformations and Software Components

José Luis Sierra, Alfredo Fernández-Valmayor, Baltasar Fernández-Manjón, Antonio Navarro
Dpto. Sistemas Informáticos y Programación

Fac. Informática. Universidad Complutense de Madrid.
28040,Madrid (Spain)

{jlsierra,alfredo,balta,anavarro}@sip.ucm.es

Abstract

This paper describes DTC (Documents,
Transformations and Components), our approach to
the XML-based development of content-intensive
applications. According to this approach, the contents
of an application and other customizable features (e.g.
the properties of its user interface) are represented in
terms of XML documents. In DTC, the software of the
application is organized in terms of reusable
components capable of processing specific markup
languages. In addition, we use document
transformations to fit components and documents
together, because they can be reused from pre-existing
repositories. In this paper, we describe the DTC
approach, illustrating its application in a case study.
Because DTC encourages the explicit separation
between the description of the application’s variability
(contents and other customizable features) and the
application’s operational support, the approach
improves maintainability and reuse at both the
information and software levels.
Keywords: Development Approach, Content-Intensive
Applications, Descriptive Markup Languages,
Software Components, XML

1. Introduction

There are applications (e.g. e-learning systems) that
integrate collections of highly structured documents
regarding a given domain. Usually these documents are
authored by experts in this domain, and for an
application of this kind, the processes involved in
updating, maintaining and fine-tuning can be more
costly and critical than those involved in its initial
development. We shall call this kind of application
content – intensive. The development of these
applications can be facilitated with mechanisms
capable of making the structure of the documents with

contents explicit for people and machines. Generalized
markup languages, such as SGML (Standard
Generalized Markup Language) [9] or XML
(eXtensible Markup Language) [23] provide these
mechanisms. We have successfully used these
technologies in the document-oriented development of
content-intensive applications in several domains
[5][13][14][16]. In all these domains we have
described the contents and other customizable features
of the applications by means of documents, we have
marked up these documents with application-
dependent, SGML or XML-based markup languages,
and we have produced the applications by processing
these documents.

Generalized markup languages allow the definition
of a markup vocabulary and a set of grammatical rules
to properly combine such vocabulary. Because it is
possible to select the most suitable document grammar
and vocabulary for each domain, the use of generalized
markup languages avoids the rigidity that a single data
model or encoding formalism imposes on the domain
modeller. However, the markup languages defined
only make it possible to describe how the information
is structured. The use of a marked document for
performing a particular task requires, in the end, the
existence of an external program giving operational
meaning to the markup language used to structure it.
Building such a program can be a complex software
development activity. Although the use of general
purpose software and APIs, such as markup parsers
and editors, can be helpful at lowering overall
development complexity, it does not solve the most
critical part of the problem: the construction of domain
dependent semantics.

We think that an intelligent use of componentware
technology can help to fill the existing gap between the
syntax specification of a structured document and the
desired operational semantics for the intended use of
this document in the development of content-intensive

1

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

applications. We consider that the key idea is to devise
components specialized in the interpretation of
particular markup languages. In addition, such
languages would not be committed to any specific
problem domain. This practice would make
components supporting such languages reusable for
different purposes. In this way, we need mechanisms to
bring different reusable software components together.
In addition, if we reuse existing documents, we also
need to integrate them in the overall application.
Document transformations provide us with these
mechanisms. We have put together these key ideas in
our approach for developing XML-based content-
intensive applications. We have called this approach
DTC, from Documents, Transformations and
Components. In this paper we describe our experiences
with DTC: Section 2 outlines the DTC approach itself.
Section 3 describes how DTC is applied in a case
study. Section 4 describes some related work. Finally,
section 5 outlines some conclusions and future work.

2. The DTC approach

Building an XML-based content-intensive
application requires the provision of software for
processing one or several classes of XML documents.
Fig. 1a outlines a typical full custom structure for such
applications [12][19]. The applications rely on the use
of general-purpose parsing/generation frameworks [2]
connected with application specific software. The main
drawback of this organization is the coupling between
this application-specific software and document
structure, which hardly enables this software to be
reused in different applications. In addition, the costs
associated with its development from scratch are
another important factor.

A different approach, which works for specialized
uses such as XML-based web publication, enables pre-
existing software to be reused, such as web servers and
web browsers. The publication task is subsequently
intended as a transformation step from the source
XML documentation to a presentation format (in the
case of web publication, HTML –HyperText Markup
Language- [23]) for which processing software is
already available (Fig. 1b). Consequently, development
costs dramatically decrease. Unfortunately the
feasibility of this approach strongly depends on being
able to reformulate the task at hand as a publishing
one. Of course it will be argued that the target
presentation environment can always be extended with
the loose processing capabilities (for instance, by
means of scripting). But this again leads to the need to
provide an important part of the domain-specific
software from scratch.

 Application-specific software

XML parsing framework

XML documentation

Browser

HTML

Stylesheets

Transformation

XML documentation (a) (b)

Fig. 1. (a) Typical full-custom structure for a XML-based
content-intensive application. (b) Typical strategy

followed in XML-based web publication.

Software
description
documents

Component-based
software

Application language

 Transformation

Transformation
specifications

Content
documents

 Fig. 2. Structure of a DTC application.

The DTC approach proposes an intermediate

solution for developing XML-based content-intensive
applications. Instead of recurrently building software
from scratch, or, on the other side, trying to look for
the universal language and browser, DTC suggests the
use of software components specialized in processing
specific classes of XML documents. In this way, each
component is tightly associated with a markup
language and can be understood as giving operational
support for such a language. From this viewpoint,
building a DTC application requires, on one hand,
providing the content to be managed by the application
in XML terms, and, on the other hand, properly
combining a set of components for giving
computational support to the final application. Such a
process of combination leads to a component-based
computational artifact able to process documents
conforming to the languages associated with some of
their components. In this way, having the application
ready to be executed could also imply a

2

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

transformational step from the original XML
documentation to the documents required by the
components. Such transformations can, in turn, be
described using suitable transformation specification
documents (for instance, in terms of XSLT, eXtensible
Stylesheets Language Transformations [23]). Finally,
combination itself can make use of higher-level
software components oriented to mastering other
components. Such combinator components can also be
parameterized in terms of suitable markup descriptions.
Fig. 2 summarizes the general structure of a DTC
application. The following subsections detail the most
relevant features of the approach.

2.1. Content documents

In a DTC application the contents are structured in
terms of marked documents that are jointly named
content documents. Attending to their purpose, it is
possible to distinguish between two different kinds of
content documents. Domain content documents contain
domain-specific information that can be reused across
different applications (for instance, a dictionary, a
botanical glossary, etc). On the other hand, there are
application-dependent content documents with a clear
meaning only inside a specific application (for
instance, a document enclosing metrical information of
a roadmap to be used in a graphical presentation).
Application-dependent content documents are mainly
oriented to completing the information provided by
reusable domain content documents.

2.2. Application software, the application

language and software description
documents

The applications built according to DTC are

component-based: they are built by means of the
selection/construction, configuration and assembling of
software components [20]. There are three main kinds
of components in a DTC application: markup
interpreters, primitive facilities and combinators.

Markup interpreters have a great relevance inside
the DTC approach. They are oriented to processing a
specific markup language. A good example of these
interpreters is a component for processing weighted
directed graphs described in terms of the XML DTD
(Document Type Definition) of Fig. 3. This component
can give several uses to the graphs represented in terms
of the language defined by that DTD (e.g. searching
the minimun-cost path, computing the minimun
spanning tree, etc). Content processing mainly relies on
the set of markup interpreters included in a DTC
application. In this way, the markup languages

associated with these components jointly define the
application language: the language in which all the
content processed by the application must be finally
translated.

 <!ELEMENT Graph (Arc|Node)*>
<!ELEMENT Arc EMPTY>
<!ATTLIST Arc
 Origin
 IDREF #REQUIRED
 Destination
 IDREF #REQUIRED
 Weight CDATA "1.0">
<!ELEMENT Node EMPTY>
<!ATTLIST Node
 id ID #REQUIRED>

Fig. 3. A markup language for representing weighted
directed graphs. This DTD can be associated with a

software component for processing DTD-conforming
documents.

Primitive facilities are components that carry on

basic functionality in the final application. For
instance, basic GUI components (buttons, labels,
menus, etc.) fit inside this category. Another class of
primitive facilities is given by general XML processing
components such as query or transformation engines
that can help to assemble together different
independently deployed, reusable components when
they interchange information in XML terms. Finally
notice that primitive facilities can have an associated
markup language for enabling their configuration.
Documentation required by such components has
nothing to do with content processing. These
documents, together with the other documents used for
describing the structure or behaviour of the application
software, are named software description documents.

Combinators make it possible to set up the way in
which other components behave and interact. So, DTC
does not commit itself to a pre-established combination
strategy. Specific strategies are explicitly introduced by
appropriate combinators. Some examples of
combinators are typical GUI containers, such as those
included in the AWT or Swing Java APIs. These
combinators can come up with a markup language for
configuring things such as look and feel, layout
politics, etc. Another kind of combinators will be
devoted to controlling the behaviour of simpler
components. Good examples of these controllers are
components supporting tailored scripting languages,
control formalisms such as state machines or Petri nets,
or event-driven component interconnection languages.
Like primitive facilities, many of these components
come with their associated configuration markup
languages. In this way, their use in an application

3

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

requires the provision of the appropriate software
description documents conforming these languages.

2.3. Putting it all together

Document transformations are specifications for
deriving result documents from source documents (or,
more precisely, from parse trees of source documents
to parse trees of result documents [11]). Tree filter
programming languages, such as XSLT or, in the
SGML world, DSSSL (Document Style Semantics and
Specification Language) [8] are normally used to
specify such transformations. Because information
produced and consumed by DTC software components
is XML-structured, transformations enable the
adaptation of these information flows between reusable
components. In addition, transformations are used in
DTC for mapping content documents into the
application language.

When the software of a DTC application is built as
described in the previous subsection, an application
language is automatically induced. Such a language
can be understood as the composition of all the
languages for markup interpreters included in the
application. Of course it could be possible to directly
provide the application with documents written in this
language. But doing so has several disadvantages: (i) it
prevents reusing pre-existing domain documentation;
(ii) application languages derived from those supported
by reusable components could be difficult to
understand for domain experts providing the contents;
(iii) because each component can require different
views of the same information, direct provision of
contents in application language terms can lead to
providing similar information multiple times; and (iv),
application languages usually are task oriented; that is,
information provided in terms of these languages will
hardly be usable for any other purpose (it is the same
reason why information is encouraged to be
represented in tailored XML languages instead of
being directly encoded in a task–oriented one, such as
HTML). For all the reasons above, DTC encourages
the separation of content and application languages,
and to use document transformations for mapping the
content of the application into the application
language. Therefore, transformations can be thought of
as translations from contents to application languages,
such as the term is intended in the classical literature
on language processors [1].

3. A case study: the subway application

In this section we present a case study for applying
DTC in the development of a non–trivial application.

The application provides an interactive graphic
interface to find the best route between any two given
stations in a subway network. We have instantiated the
application in the subway network of Madrid (Spain).

<!ELEMENT SubwayNetwork
 (Stations,Corridors?,Lines)>
<!ELEMENT Lines (Line)+>
<!ELEMENT Line (Schedulers,Links)+>
<!ATTLIST Line id ID #REQUIRED>
<!ELEMENT Schedulers (Scheduler)+>
<!ELEMENT Scheduler EMPTY>
<!ATTLIST Scheduler
 StartTime CDATA #REQUIRED
 EndTime CDATA #REQUIRED
 Frequency CDATA #REQUIRED>
<!ELEMENT Links (Link)+>
<!ELEMENT Link EMPTY>
<!ATTLIST Link
 OriginStation IDREF #REQUIRED
 DestinationStation IDREF #REQUIRED
 Distance CDATA #REQUIRED
 Speed CDATA #REQUIRED>
<!ELEMENT Corridors (Corridor)+>
<!ELEMENT Corridor EMPTY>
<!ATTLIST Corridor
 id ID #REQUIRED
 OriginStation IDREF #REQUIRED
 DestinationStation
 IDREF #REQUIRED
 TraversingTime CDATA #REQUIRED>
<!ELEMENT Stations (Station)+>
<!ELEMENT Station (Accesses,Tracks,Times) >
<!ATTLIST Station id ID #REQUIRED>
<!ELEMENT Accesses (Access)+ >
<!ELEMENT Access (#PCDATA) >
<!ATTLIST Access id ID #REQUIRED>
<!ELEMENT Tracks (Track)+ >
<!ELEMENT Track EMPTY >
<!ATTLIST Track
 id ID #REQUIRED
 Line IDREF #REQUIRED
 Direction IDREF #REQUIRED >
<!ELEMENT Times (AscentTime |
 DescentTime|
 TransferTime)+ >
<!ELEMENT AscentTime EMPTY>
<!ATTLIST AscentTime
 Track IDREF #REQUIRED
 Access IDREF #REQUIRED
 Time CDATA #REQUIRED>

<!ELEMENT DescentTime EMPTY>
<!ATTLIST DescentTime
 Access IDREF #REQUIRED
 Track IDREF #REQUIRED
 Time CDATA #REQUIRED>
<!ELEMENT TransferTime EMPTY>
<!ATTLIST TransferTime
 OriginTrack IDREF #REQUIRED
 DestinationTrack IDREF #REQUIRED
 Time CDATA #REQUIRED>

Fig. 4. DTD for representing information about a subway
network.

4

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

3.1. The application contents

The subway application includes: (i) a domain
content document, marked according to the DTD of
Fig. 4, with information about the subway structure
(stations, corridors, accesses, subway lines, etc.) and
timing (schedulers, trajectory times between different
points of a station, average speed of each line, etc.),
and (ii) an application- dependent content document
with geometrical information for rendering the subway
map. Notice that the direct provision of all this
information can be a tedious work. This work can be
avoided by building and using special–purpose editing
tools for the required information. Section 4 will
suggest how DTC can be extended for coping with
these authoring activities.

3.2. Application software, the application

language and software description
documents

Application software is built using components for

each one of the three categories introduced in
subsection 2.2. In the first category, two markup
interpreters are used. Firstly Diagram, giving support
for a simple language that enables the description of
2D diagrams made of circles, straight line connections
and text labels. Secondly Graph, giving operational
support for a weighted directed graph description
language, similar to that of Fig. 3. In the second
category, primitive facilities, we use basic GUI
facilities such as buttons and labels. In addition, we use
a simple Map transformation engine for translating list
of nodes (given in the language of the Graph
component) into lists of stations. For managing these
lists (in order to visualize them in the diagram
representation of the subway map) we use a generic
XML processor component, allowing the manipulation
of documents in terms of their DOM (Document
Object Model) trees [2]. Finally for the third category,
combinators, we have used typical GUI containers,
and for describing control, an Automata controller that
gives support for a state–transition oriented formalism.
Notice that our application language is mainly given by
the languages associated with the two markup
interpreters. They support two different views of the
subway network: a view as a graph, and a view as a
diagram. Because a relation between these two views is
required (for visualizing routes expressed as lists of
nodes, in terms of the graph language), the map used
for the Map transformation engine is also included in
this language.

Finally, the software description documentation for
the other components must be provided. To improve

maintainability we group all this information in a
single document (Fig. 5). From this document,
individual software descriptions for each component
are derived using simple query and transformation
steps.

<subwayApplication>
 <mainWindow scalable="no"
 title=
 "subway route finder"/>
 <mainPanel background="pink">
 <row>
 <component>map</component>
 <component>lateralPanel
 </component>
 </row>
 <row>
 <component>controlLabel
 </component>
 </row>
 </mainPanel>
 ...
 <automata>
 <init state="init"/>
 <state id="init">
 <action>
 mainWindow>visualize();
 originLabel>changeText
 (text = "");
 destinationLabel>changeText
 (text = "");
 controlLabel>changeText
 (text =
 "Select origin station");
 </action>
 <transition state="selectingOrigen"/>
 </state>
 …
 </automata>
</subwayApplication>

Fig. 5. Part of the software description document for the
subway application.

3.3. Putting it all together

Having the content documents and the
computational support for the application, it only
remains to put it all together. Thus we need to give the
transformations from the content languages to the
application one. A transformation enables the diagram
view of the subway network to be generated. Such a
transformation takes both the domain and the
presentational documents as sources. A second
transformation is used for generating the graph view.
Fig. 6 shows a fragment of an XSLT filter for this
transformation. Finally, another transformation is used
to generate the document that encloses the relation
between the two views.

5

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

<xsl:template
 match="SubwayNetwork">
 <graph>
 <xsl:apply-templates/>
 </graph>
</xsl:template>
<xsl:template match=
 "Station | Track">
 <node id="{@id[1]}"/>
 <xsl:apply-templates/>
</xsl:template>
<xsl:template match="Access">
 <node id="{@id[1]}"/>
 <arc origin="{@id[1]}"
 destination="{../../@id[1]}"
 cost="0"/>
 <arc origin="{../../@id[1]}"
 destination="{@id[1]}"
 cost="0"/>
</xsl:template>
<xsl:template match="AscentTime">
 <arc origin="{@Track[1]}"
 destination="{@Access[1]}"
 cost="{@Time[1]}" />
</xsl:template>
<xsl:template match="DescentTime">
 <arc origin="{@Access[1]}"
 destination="{@Track[1]}"
 cost="{@Time[1]}" />
</xsl:template>
...

Fig. 6 Part of the XSLT specification document for
transforming the subway description in a weighted graph

Fig. 7 sketches the structure of the final application.
Fig. 8 shows a figure of the application itself.

4. Related work

DTC shares some features with the seminal work of
Knuth on literate programming [10]. Literate
programming enhances the comprehensibility of
programs by identifying them with their
documentation. In literate programming, a hypertext
representation of the program code is promoted which
is interleaved with its documentation. The result (a
web) is a narration of the program, in the same way
that the program would be presented in a programming
textbook. These documents are marked up for enabling
both the assembling of working programs (tangling)
and the production of documentation printouts
(webbing). The ideas described in this paper differ
from those of literate programming because in our
approach only the high level aspects of the
applications’ variability, but not the code of the
programs implementing these applications, are
documented and marked up. Because of this, in our
work, suitable markup languages are provided for each
family of applications instead of using a fixed markup
language, as in literate programming.

GUI
components
and other
primitive
facilities

 Diagram

Automata

Software
description
documentation

LD

Subway2
Diagram

Subway2
Mapping

Subway2
Graph

Geometry
description

Subway
description

Graph

LM LG

LD ≡ Diagram
Language

LM ≡ Mapping
Language

LG ≡ Graph
Language

Fig. 7. DTC structure of the subway application.

Fig. 8. Screenshot of the subway’s route finder
application built using the DTC approach.

HyTime [7], an SGML extension for the description

of hypermedia applications, demonstrated that in some

6

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

domains, descriptive markup languages could be used
for describing applications in terms of documents, and
the applications described could be generated by
processing these documents. XML and its related
technologies have generalized the use of descriptive
markup languages as a standard way of information
interchange between applications and for many other
uses. Nevertheless, the new application domains do not
change the initial linguistic conception of generalized
markup languages: in order to develop an SGML/XML
application, the focus must be put on devising a
markup language for describing the informational
structure of the application domain. Once this language
is available, one (or several) processor(s) must be
provided, depending on the task to be solved using the
marked up documents. This leads to the document-
oriented spirit promoted by DTC.

Our work also shares many features with the
approach to software development based on Domain-
Specific Languages (DSLs [21]). Indeed, languages
supported by the software components in a DTC
application jointly define a DSL that can be further
specialized in different types of contents using
document transformations. A pioneering work in the
application of SGML/XML for the definition of DSLs
is [6]. In [22] relationships between markup languages
and the DSL approach are highlighted. Although these
works recognize the potential of markup
metalanguages as a vehicle for defining DSLs, the
stress is put on their use in formalizing abstract syntax,
instead of their use as descriptive markup (meta)
languages.

The document-oriented development of content-
intensive applications promoted in this paper was
formerly suggested in [3][4] as a vehicle to improve
the production and maintenance of educational
applications, and was consolidated after several
experiences in the development of applications in
different domains. The work in [5] provides
information about the use of generalized markup
technologies in the development of educational
applications for the comprehension of texts written in a
foreign language similar to that of the student’s parent
tongue. In [13][14] these ideas are used in the broader
field of hypermedia domains. In [16] they are proposed
for the development of knowledge-based systems.
DTC was formerly proposed in [15]. In [17] a markup
driven strategy to automatically assembly the
components in the application software is described. In
[18] a systematic approach to the formulation and the
operationalization of the application languages is
detailed. The main contributions of the present paper
with respect to the previous works is to provide with a
more complete characterization of the structure of the
applications and a better taxonomy of the components

used in the assembly of the application software. In
addition a new and more precise characterization of the
scope and the limits of the approach is given: the
production and maintenance of content-intensive
applications.

5. Conclusions and future work

The DTC approach improves the maintainability of
content-intensive applications because of the explicit
separation between content and computational
machinery and because of the representation of
information as human-readable and editable
documents. This claim is based in our previous
experiences in the document-oriented development of
educational and hypermedia applications, as well as of
knowledge-based systems. Indeed, many of the
changes and updates in the application are at the
document level with no programming effort. In
addition, the DTC approach also takes advantage of
component–based software construction modularity for
easing update and maintenance. The DTC approach
also encourages reusability at different levels. Domain
content documents and DTDs can be reused for
multiple purposes. Software components can also be
reused in the construction of different applications.
Finally, application software can be reused for building
new applications in similar domains. Document
transformations are used as the basic glue for enabling
both reusable documentation and reusable software
components to work together.

The most relevant shortcomings of the DTC
approach, in its current state, are the complexity of
efficiently managing the different sorts of information
(domain, application and transformation specification
documents, application software description, etc.) and
the authoring of the application content documents.
The complexity of the DTC process can be lowered
with a suitable supporting tool. Currently we have
developed a batch environment for doing all this work,
but we plan to develop a graphic tool for supporting
the DTC process. In order to improve DTC with
authoring facilities, the same component-oriented and
information and software separation ideas underlying
the approach could be applied. Currently we are
working on an extension of DTC oriented to the
generation of domain-dependent document editors. The
idea is to derive specialized editors from reusable DTC
components (extended to support editing capabilities).
Because such components must generate structured
documents according to their supported languages,
inverse transformations are needed for generating
domain content documents from documents in the

7

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

application language. We refer to this approach as
inverse DTC.

Acknowledgements

The Spanish Committee of Science and Technology
(TIC2001-1462, TIN2004-08367-C02-02 and
TIC2002-04067-C03-02) has supported this work.

References

[1] A. Aho, R. Sethi, and J.D. Ullman. Compilers:
Principles, Techniques and Tools. Addison-Wesley. 1986.

[2] M. Birbeck et al. Professional XML 2nd Edition. WROX
Press. 2001.

[3] B. Fernández-Manjón, A. Fernández-Valmayor, and A.
Navarro. “Extending Web Educational Applications via
SGML Structuring and Content-based Capabilities”. IFIP Int.
Conf. the Virtual Campus: Trends for Higher Education and
Training, Madrid, Spain, November 27-29, 1997.

[4] B. Fernández-Manjón and A. Fernández-Valmayor.
“Improving World Wide Web Educational Uses Promoting
Hypertext and Standard General Markup Languages”.
Education and Information Technologies 2(3), 1997, pp. 193-
206.

[5] A. Fernández-Valmayor, C. López Alonso, A. Sèrè, and
B. Fernández-Manjón. “Integrating an Interactive Learning
Paradigm for Foreign Language Text Comprehension into a
Flexible Hypermedia system”. IFIP WG3.2-WG3.6 Conf.
Building University Electronic Educational Environments,
Univ. California Irvine, California, USA, August 4-6, 1999.

[6] M. Fuchs. “Domain Specific Languages for ad hoc
Distributed Applications”. First USENIX Conf. on Domain
Specific Languages, Sta. Barbara, CA, October 15, 1997.

[7] International Standards Organization. Hypermedia/Time-
based Structuring Language (HyTime) – 2d Edition. ISO/IEC
10744. 1997.

[8] International Standards Organization. Document Style
Semantics and Specification Language (DSSSL). ISO/IEC
10179. 1996.

[9] International Standards Organization. Standard
Generalized Markup Language (SGML). ISO/IEC IS 8879.
1986.

[10] D.E. Knuth. “Literate Programming”. The Computer
Journal 27(2), 1984, pp. 97-111.

[11] E. Kuikka and M. Pentonnen. “Transformation of
Structured Documents”. Tech. Report CS-95-46, University
of Waterloo,1995.

[12] H. Maruyama, K. Tamura, and N. Uramoto. XML and
Java - Developing Web Applications. Addison Wesley. 1999.

[13] A. Navarro, B. Fernández-Manjón, A.
Fernández-Valmayor, and J. L. Sierra. “The PlumbingXJ
Approach for Fast Prototyping of Web Applications”.
Journal of Digital Information (JoDI) 5 (2), 2004.

[14] A. Navarro, A. Fernández-Valmayor, B.
Fernández-Manjón, and J. L. Sierra. “Conceptualization
prototyping and process of hypermedia applications”. Int.
Journal of Software Engineering and Knowledge
Engineering 14(6), 2004, pp. 565-602.

[15] J. L. Sierra, B. Fernández-Manjón, A. Fernández-
Valmayor, and A. Navarro. “Integration of Markup
Languages, Document Transformations and Software
Components in the Development of Applications: the DTC
Approach”. Int. Conf. on Software ICS 2000, 16th IFIP
World Computer Congress, Beijing – China, August 21-25,
2000.

[16] J. L. Sierra, B. Fernández-Manjón, A. Fernández-
Valmayor, and A. Navarro. “A Document-Oriented
Approach to the Development of Knowledge-Based
Systems”. Current Topics in Artificial Intelligence, LNAI
2040, Springer-Verlag, 2004.

[17] J. L. Sierra, A. Fernández-Valmayor, B.
Fernández-Manjón, and A Navarro. “Operationalizing
Application Descriptions with DTC: Building Applications
with Generalized Markup Technologies”. SEKE'01, Buenos
Aires, Argentina, June 13-15, 2001.

[18] J. L. Sierra, A. Fernández-Valmayor, B.
Fernández-Manjón, and A. Navarro. “ADDS: A Document-
Oriented Approach for Application Development”. Journal
of Universal Computer Science 10(9), 2004, pp. 1302-1324.

[19] S. St.Laurent and E. Cerami. Building XML
Applications. Osborne Mc Graw-Hill. 1999.

[20] C. Szyperski. Component Software - Beyond Object-
Oriented Programming. Adisson Wesley. 1998.

[21] A. van Deursen, P. Klint, and J.Visser. “Domain-
Specific Languages: An Annotated Bibliography”. ACM
SIGPLAN Notices 35(6), 2000, pp. 26-36.

[22] P. Wadler. “The next 700 markup languages”. 2º
USENIX Conf. on Domain Specific Languages (Invited
Talk), Austin Texas, October 3-5, 1999.

[23] www.w3.org/ TR

8

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

