
Extreme Markup Languages 2002 Montréal, Québec
August 6-9, 2002

An extensible and modular processing
model for document trees

José Luis Sierra Baltasar Fernández-Manjón
Dpto. Sistemas Informáticos y

Programación
Dpto. Sistemas Informáticos y
Programación

Alfredo Fernández-Valmayor Antonio Navarro
Dpto. Sistemas Informáticos y

Programación
Dpto. Sistemas Informáticos y
Programación

Abstract
This paper describes a processing model for XML document trees that combines
syntax-directed translation ideas with the construction of modular semantic-based
interpreters. This model has two key features: extensibility (i.e., new functionalities
can be incrementally added) and modularity (i.e., processing can be done from
auto-contained modules). This model introduces four stages in tree processing.
In the first stage, a set of operational links are established between the element
nodes of the document tree. In the second stage, each element node is decorated
with a set of parameters and a composition function. In the third stage, an
evaluation order is decided from the link relationships, and the composition
functions are applied according to this order, thus obtaining the semantic value
associated with the tree. This semantic value can be another function that will
be evaluated in the fourth stage to yield the final result. We describe this
conceptual model, present several examples of its use, and outline an
object-oriented framework used to implement our approach.

Rendered by www.RenderX.com

http://www.renderx.com

An extensible and modular processing model for
document trees
Table of Contents

1 Introduction... 1
2 Extensibility, modularity and the processing of document trees.. 2
3 The processing model..5

3.1 The dependency hypergraph construction stage.. 6
3.2 The dependency hypergraph decoration stage... 7
3.3 The semantic composition stage.. 8
3.4 The evaluation stage...9
3.5 Extensibility and modularity.. 9

4 Implementing the processing framework..11
4.1 Using XML in the framework instantiation... 12

5 Related work... 14
6 Conclusions and future work...16
Acknowledgements.. 16
Bibliography...16
The Authors..18

Rendered by www.RenderX.com

http://www.renderx.com

An extensible and modular processing
model for document trees
José Luis Sierra, Baltasar Fernández-Manjón, Alfredo Fernández-Valmayor,
and Antonio Navarro

§ 1 Introduction
The concept of application that underlies generalized markup languages such as SGML [ISO 1986]
[Goldfard 1990] and XML [W3C 2000b] [Bradley 2000] is basically linguistic. We consider that
the development of an SGML/XML application is equivalent to using SGML/XML to devise a
special purpose markup language. As the development of conventional language processors is a
well-understood activity (once the language has been adequately established), the development of
an interpreter or a compiler for this language is a systematic task that can be engineered with standard
techniques in the area [Aho 1986] [Friedman 2001]. This paper tries to address whether the
development of processors for XML applications could take advantage of these techniques. In
particular, the approach described in this paper is to consider these processors as interpreters.

Our interpreters operate on document trees. To some extent, a program that operates on a document
using a tree-based API (such as DOM core [W3C 2000a]) has strong similarities with an interpreter
that operates on an abstract syntax tree [Friedman 2001]. Awareness of this fact makes it possible
to apply some common techniques in the development of interpreters when we develop programs
to process XML documents (for instance, to hide representations’ details using abstraction levels,
or, more important, to use underlying grammatical structure to direct processing). Anyway, and
according to D. A. Espinosa [Espinosa 1995], this kind of syntax-based interpreter has several
shortcomings. The reason is that the analysis of the parsing tree is interleaved with the semantics
actions. So, it leads to interpreters that are longer and more difficult to understand than had the aspects
been separated. It also leads to inefficiency when the same sub-tree must be re-analyzed (e.g., in the
interpretation of a loop). Finally, it leads to monolithic interpreters, because the addition of a new
feature on the interpreted language can involve global changes in the overall structure of the interpreter.

A more powerful semantic-based approach is an alternative to syntax-based interpreters. This approach
is based on the denotational definition of the interpreted language [Stoy 1977]. In this way, the
interpreter firstly analyzes the abstract syntax tree to produce a semantic representation of this tree
(a function). This function can be subsequently executed. This approach, called analyze eval, is
described with more detail by Abelson and Sussman [Abelson 1996], and is applied thoroughout
this paper. Interpreters organized in this way are more understandable, because syntax and semantics
aspects are clearly separated. In addition, because representations of the semantics are explicitly
built, this approach is suitable to support modularity (i.e., the possibility to develop auto-contained
interpretation modules that can be reused without the need to change them). By doing so, more
complex interpreters can be built by assembling pre-existing simpler interpreters, with each one
adding a given feature to the final language.

In this paper, we propose a processing model for XML document trees that leads to extensible and
modular markup interpreters. We think that these two features are essential for the processing of
XML-based markup languages. On one hand, because we are dealing with an extensible markup
language, the processing model must lead to the construction of extensible interpreters (in the sense
discussed by J. K. Ousterhout [Ousterhout 1990]). In this way, the resulting interpreter must be
amenable to being enlarged with new commands to deal with new markup structures. On the other
hand, and more important, the model must lead to modular interpreters. Accordingly, new markup
language processors must be obtained from the integration of existing ones without modifying them.
We think that modularity in the interpretation framework is a needed counterpart to modularity in

Extreme Markup Languages 2002 page 1

An extensible and modular processing model for document trees

Rendered by www.RenderX.com

http://www.renderx.com

the definition of markup languages, that is present in one of the core XML technologies (XML
namespaces [W3C 1999b]).

The paper is structured as follows. Section 2 motivates our approach. Section 3 gives a conceptual
description of the processing model proposed in this paper. Section 4 outlines an object-oriented
framework that supports this model. Section 5 discusses related work. Finally, section 6 summarizes
the conclusions and outlines future work.

§ 2 Extensibility, modularity and the processing of document trees
Consider the following markup structures:

<!ENTITY % shape "(Rectangle | Union)">
<!ELEMENT Rectangle EMPTY>
<!ATTLIST Rectangle xo NMTOKEN #REQUIRED
 yo NMTOKEN #REQUIRED
 w NMTOKEN #REQUIRED
 h NMTOKEN #REQUIRED>
<!ELEMENT Union (%shape;)+>

These structures allow the description of shapes, made with the union of simpler rectangular shapes.
The simplest shape is a rectangle that, in turn, is characterized by the coordinates of its left upper
square, and by its width and height. Suppose we want to write a DOM-based program to bind these
representations into domain-specific ones, in terms of object-oriented classes like those outlined in
the class diagram of Figure 1.

Figure 1 Classes and interfaces for representing shapes

A simple organization for this processor is a functional one. Here we associate a function with each
element type. In addition, we associate dispatching functions with the different content models. The
result is outlined in Figure 2. This kind of organization is common both for DOM-based tree processors
[Maruyama 1999] and for syntax-based interpreters [Abelson 1996] [Friedman 2001]. Here, the
processing of each relevant markup structure is carried out by a function. The contextual information
needed for doing the processing is passed as input parameters, while the result of the processing is
returned as the function result.

This functional, monolithic, organization presents several shortcomings. One is that the processors
obtained are not extensible. To illustrate this, consider an extension to the language with a new
operation (e.g., Intersection) to produce the final shape:

<!ENTITY % shape "(Rectangle | Union | Intersection)">
<!ELEMENT Rectangle EMPTY>
...
<!ELEMENT Intersection (%shape;)+>

An extensible and modular processing model for document trees

page 2 Extreme Markup Languages 2002

Rendered by www.RenderX.com

http://www.renderx.com

Here, the processor must be explicitly modified to include a new function associated with the new
structure (see Figure 3). That way, the functional organization leads to non-extensible processors.

Figure 2 Functional organization for an XML processor

Rounded rectangles represent functions.

Figure 3 Addition of a new markup structure

The inclusion of a new markup structure implies the explicit modification of the functionally-organized processor.

To achieve extensibility, we can use the advantages provided by object-oriented programming. We
can encapsulate the functionally-organized processor into a class. Then we can use the implementation
inheritance and the dynamic binding to extend the processor for supporting new structures. With
each extension, we subclass the processor, override methods it is necessary to change, and add
methods to support the new structures. Figure 4 shows application of this strategy to our example.

The problem is that this solution lacks of modularity. For example, consider the language is extended
to allow the scaling of the shapes by a factor:

<!ENTITY % shape "(Rectangle | Union | Intersection | Scale)">
<!ELEMENT Rectangle EMPTY>
...
<!ELEMENT Scale (%shape;)>
<!ATTLIST Scale f NMTOKEN #REQUIRED>

and suppose we do not want to explicitly represent a scaled shape, but we can directly apply the scale
factor to the resulting representation. In this way, the representation of:

<Scale f="2">
 <Union>
 <Rectangle xo="5" yo="5" w="5" h="4"/>
 <Rectangle xo="10" yo="10" w="1" h="1"/>
 </Union>
</Scale>

should be equivalent to the representation of:

Extreme Markup Languages 2002 page 3

An extensible and modular processing model for document trees

Rendered by www.RenderX.com

http://www.renderx.com

<Union>
 <Rectangle xo="10" yo="10" w="10" h="8"/>
 <Rectangle xo="20" yo="20" w="2" h="2"/>
</Union>

Figure 4 Object-oriented organization

An object-oriented organization enables extensibility.

To implement this extension, we need to explicitly pass a scale parameter to the processing methods.
This leads us to overload all the existing methods — with exception of the root one — (Figure 5),
i.e., we need to rebuild the entire interpreter. Hence, supporting such new structures requires many
changes in the processor (i.e., to carry out a global change). Since adding a new feature in the
supported language can imply this sort of global change, this organization is not modular.

The reason for this lack of modularity is the inclusion of a new input argument in the processing
functions, together with the need to propagate this new argument. In the construction of language
processors, this kind of contextual information is commonly referred to as inherited attributes
[Friedman 2001]. A way to avoid breaking the modularity of the processor by the addition of new
inherited attributes is to explicitly devise the processor to support this feature (i.e., the addition of
new contextual information as required). For instance, this can be done by incorporating an
environment model in the processor. The problem with this approach is that it compromises the
processor with a particular organization (that of the so-called environment-passing interpreters
[Friedman 2001]), which will be invalid when a different environment model is required.

How can these shortcomings be solved? Previous work realized in the programming language
implementation arena suggest possible solutions.

First, syntax-based processors interleave two different aspects that can be easily separated. On one
hand, there is the analysis of the document tree to extract the relevant information. On the other
hand, there is the semantics given to the markup structures (i.e., to the element types). By applying
an analyze eval-like approach, these aspects can be done separately.

Second, the semantic of each element type must be given independently. In addition, we must be
able to manage these semantics as first-class objects (e.g., by using closures in a functional language
or objects in an object-oriented one). In doing so, a semantic approach to the construction of processors
is used. Because semantics can be manipulated, it is possible to apply uniform adaptations to them.
So, modularity problems can be aborted in a systematic way.

The next section formulates a processing model that systematically contemplates extensibility and
modularity in the processing of document trees.

An extensible and modular processing model for document trees

page 4 Extreme Markup Languages 2002

Rendered by www.RenderX.com

http://www.renderx.com

Figure 5 Consequences of adding a new markup structure

Introducing a new markup structure can lead, in the object-oriented organization, to the redefinition of the overall interpreter.

§ 3 The processing model

This section describes a processing model for document trees that enables the construction of
extensible and modular tree processors. The processing model combines the analyze eval approach
for the construction of interpreters with some concepts taken from the syntax-directed translation
processes used in the implementation of programming languages [Aho 1986].

From a conceptual point of view, the model introduces the following stages in a tree’s processing:

The dependency
hypergraph construction

stage

In this stage, a set of operational links is established between the element
nodes of the document tree. These links can be one-to-one or one-to-many,
and they are explicitly labeled with a role name. Indeed, they are
represented as labeled-ordered (hyper)arcs in a (hyper)graph made with
the element nodes of the document tree. The resulting hypergraph is
named a dependency hypergraph.

The dependency
hypergraph decoration

stage

In this stage, a composition function and a set of parameters are assigned
with each node in the dependency hypergraph. The composition function
is used to obtain the semantic value associated with a node from the
parameters and the semantic values of those nodes linked to it.

The semantic
composition stage

In this stage, an order suitable for the application of the composition
functions is calculated. Then, these composition functions are applied to
compose the semantic values associated with each node. The semantic
value associated with the document element represents the tree semantic
value, and, so, the overall tree semantics.

The evaluation stage The tree semantic value can be, in turn, another function that must be
evaluated on the appropriate parameters to obtain the final result.

Extreme Markup Languages 2002 page 5

An extensible and modular processing model for document trees

Rendered by www.RenderX.com

http://www.renderx.com

Figure 6 Sketch of the processing model

Figure 6 graphically sketches the process. Note that the first three stages correspond with a particular
organization of the tree analysis phase in an analyze eval approach. This organization explicitly
enables us to separate those tasks related to tree manipulation (i.e., linking, parameter extraction)
from the semantic-oriented ones (i.e., composition of the semantic assigned to each element type).
Note also that the three first stages can be related with a syntax-directed translation process.

3.1 The dependency hypergraph construction stage
The processing of a document tree begins by making the operational links between the element nodes
of the tree explicit. An operational link has an element node as source and an ordered sequence of
element nodes as target. In addition, the link has an associated role name. The processing of element
nodes will be specified in terms of the target nodes linked to them. Note that the operational links
do not prescribe how the linked nodes must be actually processed. This processing will be added in
later stages. Links only make explicit the relevant nodes for the processing of a given one.

Operational links require neither maintaining the structure of the document tree, nor any locality
bound. Operational links can be established between remote nodes, separated with arbitrarily large
distances in the document tree. In effect, structural relationships (such as those established by the
standard XML ID-IDREF mechanisms) can be used to establish appropriated operational links.

The operational linking induces a graph structure on the element nodes of the document tree. The
nodes of this graph are the element nodes. The arcs are the operational links established between
these nodes. Because arcs are, in turn, structured, they actually can be considered as hyperarcs (in
the sense of the AND/OR graphs described, for instance, by Nilsson [Nilsson 1980]). Consequently,
the resulting graph is a hypergraph, which we will call dependency hypergraph.

Note that there are some similarities between a dependency hypergraph and a dependency graph in
a syntax-directed translation framework. Indeed, both structures constrain the order of computations
over the tree. But there are also some differences. The most relevant is that dependency hypergraphs

An extensible and modular processing model for document trees

page 6 Extreme Markup Languages 2002

Rendered by www.RenderX.com

http://www.renderx.com

Figure 7 A document tree (a) and a dependency hypergraph associated with it (b)

are given prior to the establishment of the computations, using the structural information of the
document tree. In the case of dependency graphs defined on “attributed” syntax trees, dependencies
between attributes are automatically induced from a computation schema given a priori (the
syntax-directed translation schema). This is consistent with the formulation of a descriptive markup
language, where the main goal is to describe the structure of some contents independently of their
processing. So, in a markup language, structure is given a priori, and operational readings are added
a posteriori.

To illustrate these ideas, suppose the previous section’s language for shape descriptions is augmented
with the following declarations:

<!ENTITY % shape "(Rectangle | Union | Intersection | Scale |Ref)">
<!ELEMENT Shapes (Shape)+>
<!ELEMENT Shape (%shape;)>
<!ATTLIST Shape id IDREF #REQUIRED>
<!ELEMENT Ref EMPTY>
<!ATTLIST Ref to IDREF #REQUIRED>

In this case, by using elements of type Shape we can uniquely identify a shape. In addition, shape
definitions can be referenced using elements of type Ref. Consequently, it seems reasonable to
establish operational links between these elements and the referenced shapes. The other operational
links are given by the parent/child relationships in the tree. Figure 7 illustrates a document tree
conforming this language and the associated dependency hypergraph. Note that elements of type
Shape are excluded from this graph.

3.2 The dependency hypergraph decoration stage
Once the dependency hypergraph is available, a set of parameters and a composition function are
assigned to each node in this hypergraph. This leads to a so-called decoration of the dependency
hypergraph. This decoration is a structurally isomorphic hypergraph, where each node has been
replaced with its assignment. From here, the document tree is no longer available, so all the relevant
information must have been represented in terms of values assigned to the parameters. However, the

Extreme Markup Languages 2002 page 7

An extensible and modular processing model for document trees

Rendered by www.RenderX.com

http://www.renderx.com

composition function is supposed to work on these parameters and on the semantics values assigned
to the linked nodes, in order to obtain a new semantic function.

Composition functions are the primary pieces used in the processing specification. They are
independent of the explicit tree manipulation, which isolates them from changes in the superficial
structure of the markup language. All the required information is exposed by the parameters and by
the semantic values for the linked nodes. Information about these semantic values must be given in
a way such that the structure of the operational links is preserved. This allows the composition
functions to reference the semantic roles associated with each operational link. Figure 8 illustrates
a decoration for the hypergraph in Figure 7. There, CRect,CUnion, etc., refer to the composition
functions assigned to the element nodes (definitions omitted).

3.3 The semantic composition stage
Once the dependency hypergraph has been appropriately decorated, the composition functions in
the nodes must be applied to obtain the tree semantic value. We refer to this process as semantic
composition. To do semantic composition, an admissible application order for the composition
functions must be selected. More precisely, an application order is admissible if the semantic value
for a node is presented when required. Figure 9 shows two different admissible application orders
for the example in Figure 8.

Figure 9 Two admissible application orders for the example in Figure 8

The semantic composition stage is similar to evaluating computations in the syntax-directed translation
model. When the evaluation order is decided during translation time (i.e., for each particular syntax
tree), the attributes of the dependency graph are usually topologically sorted (i.e., an attribute must
be preceded by all the attributes used in its computation). This method works for acyclic dependency
graphs (definitions yielding cyclic graphs are usually considered to be ill-formed), and can be applied
to decide the application order in our semantic composition stage. In this case, because of the order
in the operational links, application should be in inverted topological order.

Thus, due to the composition functions’ black box nature, an application built according to a
topological order, although admissible, is not necessarily the most appropriate. Indeed, it could lead
to an eager evaluation order for the composition functions. In this case, a lazy evaluation strategy is
more appropriate. Here, semantic values can be computed under demand. In addition, when a semantic
value is computed, it can be cached in order to avoid its recomputation. This is the composition
strategy followed in the framework outlined in section 4.

An extensible and modular processing model for document trees

page 8 Extreme Markup Languages 2002

Rendered by www.RenderX.com

http://www.renderx.com

Figure 8 Illustration of a decoration for the dependency hypergraph in Figure 7

3.4 The evaluation stage

The semantic composition stage yields a semantic value associated with the document element. In
many cases, this value can be a function that must be evaluated to obtain the processing result. This
evaluation stage usually requires preparing the initial parameters for the evaluation, performing the
invocation, and re-collecting the result.

3.5 Extensibility and modularity
The construction of a processor for a markup language using the model described here would define:

i. a procedure L to obtain the operational links for the element nodes,

ii. a procedure P to assign a set of parameters with each element node in the dependency
hypergraph, and

iii. a procedure C to assign a composition function to each one of these elements.

These procedures can be independently specified for each element type, and subsequently be combined
with a general processing engine that uses them consistently with the process model described here.
We will refer to triples of the form <Le,Pe,Ce> associated with an element type e as markup
interpreters for e. In addition to the markup interpreters, the processing engine requires an evaluation
procedure Ev to obtain the final result. The process is as follows:

• During the dependency hypergraph construction stage, the engine starts by visiting the
document element. When the engine visits an element node of type e, it recovers the
procedure Le from the markup interpreter for e and uses it to obtain the operational links
associated with the node. Then, the engine proceeds to visit the target element nodes of
these operational links.

• During the dependency hypergraph decoration stage, the engine assigns the parameters
and composition functions with the element nodes in this hypergraph. Here, the engine
uses Pe and Ce for each element node of type e.

Extreme Markup Languages 2002 page 9

An extensible and modular processing model for document trees

Rendered by www.RenderX.com

http://www.renderx.com

• During the semantic composition stage, the engine calculates an admissible evaluation
order on the hypergraph and proceeds to apply the composition functions in this order.

• Finally, the engine delegates in the evaluation procedure Ev the evaluation of the tree
semantic value.

Obviously, such behavior for a generic engine is only conceptual. An implementation can be free to
carry out an observationally equivalent, yet more efficient, processing.

A particular processor can be now considered as the addition of a set of markup interpreters
<Leo,Peo,Ceo>...<Len,Pen,Cen> to a generic engine E. Because new interpreters can be added,
the processor can be extended to deal with other markup structures. This leads to extensible processors.

For instance, for the shape markup language, we can begin by providing two interpreters
IRectangle= <LRectangle,PRectangle,CRectangle> and
IUnion=<LUnion,PUnion,CUnion> to obtain a processor observationally equivalent to that
sketched in Figure 2. Then, we can extend this processor with a new interpreter IIntersection
= <LIntersection,PIntersection,CIntersection> to obtain a processor equivalent to
those sketched in Figures 3 and 4.

What happens if the new interpreter is not compatible with the existing ones? The idea is to apply
adaptors to the existing interpreters, the new incorporated interpreter, or both. An adaptor is a
procedure for generating interpreters from interpreters. In addition, because interpreters are structured
in different procedures, adaptors can be structured accordingly into procedures for adapting those
procedures.

For instance, when the processor induced by the interpreters { IRectangle, IUnion,
IIntersection } must be extended with IScale = < LScale , PScale , CScale >,
some adaptation is required, because the scale factor must now be propagated by the composition
functions of IUnion and IIntersection, and it must be used by IRectangle. In this way, if
we suppose CScale is defined as:

CScale(pars,sems) = λscale(
 1. get the scale factor f from pars
 2. get the semantic value s associated with the child element
from sem
 3. apply s to f*scale
)

(i.e., as a function that, for each parameter set and for each semantic assignment, gives a function
that accepts a scale parameter and behaves as described), and CUnion is defined as:

CUnion(pars,sems) = (
 1. get from sems the list of semantics ls for the children
elements.
 2. make a Union with ls.
)

we need to transform this function with:

C'Union(pars,sems) = λscale (
 1. get from sems the list of semantics ls for the children
elements.
 2. make a new list ls’ evaluating each element in ls with scale
 3. make a Union with ls’.
)

This can be done by applying an adaptor in the form:

AddScale(c) =

An extensible and modular processing model for document trees

page 10 Extreme Markup Languages 2002

Rendered by www.RenderX.com

http://www.renderx.com

 λ<pars,sems> (
 λscale (
 1. get from sems the list ls of semantics for the children
elements.
 2. make a new list ls’ with the results of evaluating each
element
 in ls with scale.
 3. make a new sems’ equal to sems, but with ls’ instead of
ls
 as the semantic values for the children elements.
 4. Apply c to <pars,sems’>
)
)

Thus, AddScale(CUnion) = C'Union. In addition, this adaptor could also be applied to adapt
CIntersection. In this way, the same adaptor can be used to adapt semantically-related interpreters
in an uniform way.

§ 4 Implementing the processing framework

Figure 10 Class diagram of the main classes and interfaces involved in the framework supporting our processing

model

We have built an experimental object-oriented Java framework that implements the processing model
described in this paper. The class diagram in Figure 10 outlines the main classes and interfaces
included in this framework. The typical use of this framework for building a document tree processor
is as follows:

Extreme Markup Languages 2002 page 11

An extensible and modular processing model for document trees

Rendered by www.RenderX.com

http://www.renderx.com

• To provide suitable implementations of the Linker and the Compositor interface for the
element types that require them. The framework includes two implementations of the Linker
interface. DefaultLinker creates a parameter for each attribute present in the element node,
and a child link for the children elements. DeclarativeLinker allows a linker to be built
from an XML description. In addition, a trivial implementation of Compositor
(TrivCompositor) is included. This implementation can be instantiated with a semantic
role name and an index. The instance will use the index on the semantic value associated
with the role.

• To provide implementations for the required adaptors. This is done by implementing the
LinkerAdaptor (for adapting linkers) and CompositorAdaptor (for adapting compositors)
interfaces. The framework includes three LinkerAdaptors. IdentLinkerAdaptor is a trivial
identity adaptor (i.e., it returns the received linker unchanged). RemoteLinkerAdder adds
a new linker to a remote node using an attribute name and a value as key, and
DeclarativeAdaper allows use of an XML description for defining new links and parameters
or overriding existing ones. A trivial identity implementation of CompositorAdaptor is
also provided (IdentCompositorAdaptor).

• To provide suitable implementation of the Evaluator interface. This will be used to carry
out the evaluation stage.

• To provide suitable implementation of the interface ProcSpec (process specification). This
will be used to obtain the interpreter associated with each element node in the dependency
hypergraph, and the evaluator to be used. This implementation can be also built from an
XML description using the ProcSpecImpl implementation provided by the framework.

• To instantiate the ProcEngine class with a suitable process specification, and to apply this
instance to process DOM representations of the document trees. ProcEngine implements
the processing model described in this paper using a lazy strategy.

4.1 Using XML in the framework instantiation
The existence of XML languages for describing either linkers and process specifications eases the
use of this framework. To describe linkers we use the following markup language:

<!ELEMENT LinkSpec (Vars?,Parameters?,Links?)>
<!ELEMENT Vars (Var)+>
<!ELEMENT Var (#PCDATA)>
<!ATTLIST Var name NMTOKEN #REQUIRED>
<!ELEMENT Parameters (Parameter)+>
<!ELEMENT Parameter (#PCDATA)>
<!ATTLIST Parameter name NMTOKEN #REQUIRED>
<!ELEMENT Links (Link)+>
<!ELEMENT Link (#PCDATA)>
<!ATTLIST Link name NMTOKEN #REQUIRED>

Here, the contents of either Vars, Parameter, and Link must be XPath expressions [W3C 1999a].
These expressions are evaluated taking the element node associated with the linker as the context
node. Each Var element allows the definition of a variable that can be used in subsequent XPath
expressions. When the expression associated with a parameter is evaluated, the content of the result
is taken as the value of the parameter. For operational links, the targets are the element nodes in the
result. Note that this language can be used to configure either linkers or linker adaptors. For instance,
the following XML fragment describes a linker for the Ref element in the shapes markup language:

<LinkSpec>
 <Vars>
 <Var name="shapeId">@ref</Var>
 </Vars>
 <Links>
 <Link name="ref">//Shape[@id = $shapeId]/*</Link>

An extensible and modular processing model for document trees

page 12 Extreme Markup Languages 2002

Rendered by www.RenderX.com

http://www.renderx.com

 </Links>
</LinkSpec>

The description of process specifications is performed in terms of the following language:

<!ELEMENT ProcSpec (Adaptors?,Interpreters,Namespaces)>
<!ATTLIST ProcSpec evaluator CDATA #IMPLIED>
<!ELEMENT Adaptors (Adaptor|Composition)+>
<!ELEMENT Adaptor ((LinkerAdaptor | LinkSpec)?,CompositorAdaptor?)>
<!ATTLIST Adaptor id ID #REQUIRED>
<!ELEMENT LinkerAdaptor EMPTY>
<!ATTLIST LinkerAdaptor ref CDATA #REQUIRED>
<!ELEMENT CompositorAdaptor EMPTY>
<!ATTLIST CompositorAdaptor ref CDATA #REQUIRED>
<!ELEMENT Composition EMPTY>
<!ATTLIST Composition id ID #REQUIRED
 a1 IDREF #REQUIRED
 a2 IDREF #REQUIRED>
<!ELEMENT Interpreters (Interpreter)+>
<!ELEMENT Interpreter ((Linker |LinkSpec)?,Compositor)>
<!ATTLIST Interpreter id ID #REQUIRED
 adaptor IDREF #IMPLIED>
<!ELEMENT Linker EMPTY>
<!ATTLIST Linker ref CDATA #IMPLIED>
<!ELEMENT Compositor EMPTY>
<!ATTLIST Compositor ref CDATA #REQUIRED>
<!ELEMENT Namespaces (Namespace)+>
<!ELEMENT Namespace (Bind)+>
<!ATTLIST Namespace ns CDATA #REQUIRED
 default IDREF #IMPLIED>
<!ELEMENT Bind EMPTY>
<!ATTLIST Bind tag CDATA #REQUIRED
 interpreter IDREF #REQUIRED>

This language allows declaration of the adaptors and interpreters to be used, and the association of
interpreters with element types.

Each required adaptor is introduced using an Adaptor element. The adaptor can introduce a linker
adaptor and a compositor adaptor. If one of these two adaptors is not present, the corresponding
identity adaptor is taken instead. For linker adaptors, an explicit description can be given in terms
of the linker description language (here, a DeclarativeLinkerAdaptor is used); alternatively, the Java
class implementing the adaptor to be used can be referenced (using the ref attribute of the
LinkerAdaptor element). For compositor adaptors, the name of the Java class implementing it
must be explicitly referenced. Finally, using a Composition element, it is possible to create an
interpreter adaptor composing other two adaptors. For the shape markup language, a possible
description of the adaptors to be used is:

<Adaptors>
 <Adaptor id="addScaleA">
 <CompositorAdaptor ref="AddScaleAdaptor"/>
 </Adaptor>
 <Adaptor id="rectangleA">
 <CompositorAdaptor ref="RectangleAdaptor"/>
 </Adaptor>
 </Adaptors>

Each interpreter to be used is introduced by an Interpreter element. Here, an adaptor to be
applied to the interpreter can be referenced (using the adaptor attribute). As with linker adaptors,
linkers can be described either in terms of the linker description language, or by referencing an
external Java implementation. If a linker is not specified, the default linker is used instead. In turn,
the Compositor element allows reference (using the ref attribute) to the Java class implementing
the compositor. For instance, the declaration for the interpreter to be associated with the Ref element
type can be:

Extreme Markup Languages 2002 page 13

An extensible and modular processing model for document trees

Rendered by www.RenderX.com

http://www.renderx.com

<Interpreter id="iref" adaptor="addScaleA">
 <LinkSpec>
 <Vars>
 <Var name="shapeId">@ref</Var>
 </Vars>
 <Links>
 <Link name="ref">//Shape[@id = $shapeId]/*</Link>
 </Links>
 </LinkSpec>
 <Compositor ref="CRef"/>
</Interpreter>

Finally, the association between interpreters and element types is done for each namespace, using a
Namespace element. The value of the ns attribute must be the namespace URI, or “none” (to refer
element types without an associated namespace). Each association is described in terms of a Bind
element. For instance, for the shapes markup language we have:

<Namespace ns="none">
 <Bind tag="Rectangle" interpreter="irectangle"/>
 <Bind tag="Union" interpreter="iunion"/>
 <Bind tag="Intersection" interpreter="iintersection"/>
 <Bind tag="Scale" interpreter="iscale"/>
 <Bind tag="Shapes" interpreter="ishapes"/>
 <Bind tag="Ref" interpreter="iref"/>
</Namespace>

The interpretation framework itself is applied to process these two description languages. The resulting
classes, together with other minor ones, are not present in the class diagram shown in Figure 10.

§ 5 Related work
The analyze eval approach to the construction of interpreters has been described by Abelson and
Sussman [Abelson 1996], where its invention was attributed to the teams of Rees & Adams, and
Feeley & Lapalme [Rees 1982] [Feeley 1987]. In “Semantic Lego” [Espinosa 1995], the evaluation
part of this approach has been denominated as semantic-based.

The construction of modular interpreters is a hot topic in the functional programming community.
There, the dominant approach is based on monads and monads transformers [Steele 1994] [Espinosa
1995] [Liang 1995]. According to this approach, interpreters are written in the so-called monadic
style. Here, two functions (bind and unit) are used to enable an explicit representation of the control
flow in the interpreter. This two functions, together with a polymorphic type used to represent
computations, constitutes a monad (see “Monads and Functional Programming” [Wadler 1993] for
more details). When the interpreter is programmed, the monad is left as a parameter. So, by defining
an appropriate monad, the interpreter can be tailored to a different context. In these frameworks,
monads are usually defined using monad transformers. A monad transformer defines a result monad
in terms of a source monad. In addition, the transformer is equipped with a mapping for lifting
operations to the newly defined monad. Our approach is, to some extent, similar to the monadic one.
However, while monadic interpreters are parametric in a monad, our interpreters are parametric in
an evaluator adaptor. Because this behavior is explicitly encoded into the framework, we explicitly
avoid compromising ourselves with a particular coding style (e.g., the verbose monadic style). In
addition, we avoid the use of second order types that arises when general monads are managed.
Nevertheless, our adaptors play the role of monad transformers, although we omit the capability of
these transformers to lift operations between monads. In the monadic approach, this feature allows
use of coarser grain operations as primitives in the interpreter construction (e.g., fetch and update to
operate on an store). But, because our framework explicitly hides control of the internal
implementation of the compositors, this feature is dropped from adaptors. If required, this feature
should be simulated by applying transformations to the document trees, before their processing, in
order to generate structures with the appropriate granularity.

An extensible and modular processing model for document trees

page 14 Extreme Markup Languages 2002

Rendered by www.RenderX.com

http://www.renderx.com

Our assembler adaptors are similar to the so-called mixins in the object-oriented paradigm [Bracha
1990]. The informal description of a mixin is a class that is parametric in its superclass (i.e., which
super variable can be dynamically changed). “A Mixin-Based Semantic-Based Approach to Reusing
Domain-Specific Programming Languages” [Duggan 2000] describes another mixin-based Java
framework for the development of modular interpreters. There, mixins represents interpreters that
can be assembled together in a mixin chain. Each interpreter maintains its own state and encapsulates
inner classes for the construction of abstract syntax trees made from expressions. These expressions
can be evaluated into computations (the equivalent to our semantic values). The chaining of mixins
leads to an associated chaining of states. To recover the appropriate state in each interpretation step,
the framework enforces the writing of computations using a monadic style. However, the framework
does not includes an equivalent to monad transformers. Instead, the monadic operations must be
explicitly defined in each mixin to recover the appropriate state from the state chain.

There are several works describing the application of syntax-directed translation techniques to markup
languages. Kuikka and Pentonnen have described a method to perform document transformation by
automatically deriving a translation schema from a source to a result document grammar [Kuikka
1993]. In “SIMON: A Grammar-based Transformation System for Structured Documents” [Feng
1993], document transformations are specified using higher order attribute grammars [Vogt 1989].
F. Neven [Neven 1999] has shown how to apply the attribute grammar formalism to extended BNF
grammars (and, hence, to document grammars) oriented to be used as document query mechanisms.
In “Adding Semantics to XML” [Psaila 1999], a method to associate semantic functions with
documents (following the attribute grammar paradigm) is described. While these approaches perceive
the syntax-directed translation engine as the processor, our approach conceives this engine as a way
to generate the actual processor by assembling smaller processors, according to the analyze eval
spirit.

Note that the analyze eval approach adopted here can also be identified in the processing model
underlying publication approaches such as XSL [W3C 2001] (and its predecessor DSSSL [ISO
1996]). In effect, in XSL, documents are transformed into a markup language of formatting objects.
The resulting specification must be subsequently evaluated to generate the presentation. The first
phase corresponds with an analysis phase, while the second one is a particular type of evaluation
phase.

The work described here relies on our previous work on the DTC [structured Documents, document
Transformations and software Components] approach [Sierra 2000a] [Sierra 2000b] [Sierra 2001].
DTC is an approach to the development of applications that are described using domain-specific
languages [van Deursen 2000]. We use XML to define domain-specific languages describing the
contents managed by the application. Then, we transform these contents to languages supported by
pre-existing software components. Hence, software components are interpreters for markup languages
that must be combined to obtain more complex interpreters able to give operational support to the
desired application domain. We have applied this approach both to the domain of route searching in
transport networks [Sierra 2000a] and the domain of educational hypermedia applications [Navarro
2000]. Work described here substantially improves the previously reported research. In other studies
[Sierra 2000a] [Sierra 2000b], we adopted a syntactic-based approach and focused on component
composition instead of language composition. In this way, components might be reorganized for
different applications in the same application domain. Later, we adopted a semantic-based approach
and focused on the composition of languages [Sierra 2001]. Components were automatically assembled
by interpreting documents trees. Components carried out both the analysis and the evaluation phase.
In addition, we did not include any special adaptation mechanism in our framework. Adoption of
the analyze eval approach described in this paper raises the true linguistic nature of DTC and alleviates
many of its previously encountered shortcomings.

Extreme Markup Languages 2002 page 15

An extensible and modular processing model for document trees

Rendered by www.RenderX.com

http://www.renderx.com

§ 6 Conclusions and future work

Extensibility and modularity are two key factors in the successful operationalization of XML
applications. Just as XML applications can combine pre-existing vocabularies from different
namespaces, the processors for the resulting XML applications should naturally arise from combining
the processors associated with the pre-existing aplications. This would require extensibility also on
the operational level. Regardless, extensibility alone is not sufficient. In effect, modularity is also
required in the processors to allow new extensions to be added without needing to modify previous
ones.

As the definition of modular language processors is not straightforward, we present a processing
model that encourages the use of these kinds of processors. This model combines ideas from the
construction of modular, semantic-based, interpreters, with syntax-directed translation techniques.
Because, according to this model, the structure of the resulting processors is explicitly represented
(in terms of composition functions associated with element nodes), extensibility and modularity is
made possible. In effect, we can build processors by extending a generic engine with new markup
interpreters associated with element types, and we can use adaptors as required to integrate these
interpreters.

We also show how the processing model can be built using object-oriented technologies. We have
built an experimental object-oriented framework to support our model. The use of high-level
descriptions (given by XML documents) eases the instantiation of this framework, so we can focus
on the essential aspects of the processors’ development for document trees (i.e., linkers, compositors,
and adaptors), instead of focusing on lower-level details concerning the internal work of the
framework.

The next steps in our work will continue experimentation with our processing model and the associated
application framework in order to refine them, especially the aspects concerning adaptation. For this
purpose, we want to develop a library of general purpose adaptors, together with mechanisms to ease
their definition and application.

Acknowledgements
This work has been partially funded by CICYT [the Spanish Commission of Science and Technology]
through the projects TIC2000-0737-C03-01 and TIC2001-1462.

Also, we would like to thank Tonya R. Gaylord (of Mulberry Technologies, Inc.) for careful editing
of this paper.

Bibliography
[Abelson 1996] Abelson, H., Sussman, G. J.: "Structure and Interpretation of Computers Programs.

Second Edition". Mc Graw Hill. 1996

[Aho 1986] Aho, A., Sethi, R., Ullman, J. D.: "Compilers: Principles, Techniques and Tools".
Adisson-Wesley. 1986

[Bracha 1990] Bracha, G.: "Mixin-based Inheritance".ACM SIGPLAN Notices. 25(10). 1990

[Bradley 2000] Bradley, N.: "The XML Companion. Second Edition". Addisson-Wesley. 2000

[Duggan 2000] Duggan, D.: "A Mixin-Based Semantic-Based Approach to Reusing Domain-Specific
Programming Languages". 2000

[Espinosa 1995] Espinosa, D. A.: "Semantic Lego". PhD. Dissertation. Columbia University. 1995

An extensible and modular processing model for document trees

page 16 Extreme Markup Languages 2002

Rendered by www.RenderX.com

http://www.renderx.com

[Feeley 1987] Feeley, M., Lapalme, G.: "Using Clousures for Code Generation".Journal of Computer
Languages 12(1). 1987

[Feng 1993] Feng, A.,Wakayama, A.: "SIMON: A Grammar-based Transformation System for
Structured Documents".Electronic Publishing. 6(4). 1993

[Friedman 2001] Friedman, D. P., Wand, M., Haynes, C. T.: "Essentials of Programming Languages
(Second Edition)". MIT Press/McGraw-Hill. 2001

[Goldfard 1990] Goldfard, C. F.: "The SGML Handbook". Oxford University Press. 1990

[ISO 1986] ISO. "Standard Generalized Markup Language (SGML). ISO/IEC IS 8879". International
Standards Organization. 1986

[ISO 1996] ISO. "Document Style Semantics and Specification Language (ISO/IEC 10179)".
International Standards Organization. 1996

[Kuikka 1993] Kuikka, E., Pentonnen, M.: "Transformation of Structured Documents with the Use
of Grammars".Electronic Publishing. 6(4). 1993

[Liang 1995] Liang, S., Hudak, P., Jones, M.: "Monad Transformers and Modular Interpreters".
22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 1995

[Maruyama 1999] Maruyama, H., Tamura, K., Uramoto, N.: "XML and Java: Developing Web
Applications". Addison-Wesley. 1999

[Navarro 2000] Navarro, A., Sierra, J. L., Fernández-Manjón, B., Fernández-Valmayor, A.:
"XML-Based Integration of Hypermedia Desing and Component-Based Techniques in the
Production of Educational Applications". In "Ortega, M.,Bravo, J. (eds).Computers and Education
in the 21st Century". Kluwer. 2000.

[Neven 1999] Neven, F.: "Extensions of Attribute Grammars for Structured Document Queries".
7th International Workshop on Database Programming Languages. Kinloch Rannoch - Scotland.
December 1 - 3. 1999

[Nilsson 1980] Nilsson, N. J.: "Principles of Artificial Intelligence". Tioga Publishing Company,
Palo Alto, CA. 1980

[Ousterhout 1990] Ousterhout, J. K. "TCL: An Embeddable Command Language". Proceedings
of the USENIX Association Winter Conference. 1990

[Psaila 1999] Psaila, G., Crespi-Reghizzi, S.: "Adding Semantics to XML". Second Workshop on
Attribute Grammars and their Applications. WAGA'99. Amsterdam. The Netherlands. March
26. 1999

[Rees 1982] Rees, J., Adams, N. I. I.: "T: A dialect or LISP or, lambda: The Ultimate Software
Tool". Conference Record of the 1982 ACM Symposium on LISP and Functional Programming.
1982.

[Sierra 2000a] Sierra, J. L., Fernández-Manjón, B., Fernández-Valmayor, A., Navarro, A.:
"Integration of Markup Languages, Document Transformations and Software Components in
the Development of Applications: the DTC Approach". International Conference on Software
ICS 2000. 16th IFIP World Computer Congress. Beijing - China. August 21-25. 2000.

[Sierra 2000b] Sierra, J. L., Fernández-Manjón, B., Fernández-Valmayor, A., Navarro, A.:
"Developing Applications with XML Documents, Document Transformations and Software
Components". 10th International Conference on Computing and Information ICCI-2000. Kuwait.
November 18-21. 2000.

Extreme Markup Languages 2002 page 17

An extensible and modular processing model for document trees

Rendered by www.RenderX.com

http://www.renderx.com

[Sierra 2001] Sierra, J. L., Fernández-Valmayor, A., Fernández-Manjón, B., Navarro, A.:
"Operationalizing Application Descriptions with DTC: Building Applications with Generalized
Markup Technologies". 13th International Conference on Software Engineering & Knowledge
Engineering SEKE'01. Buenos Aires. Argentina. June 13-15. 2001.

[Steele 1994] Steele, G.: "Building Interpreters by Composing Monads". 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Portland, Oregon.
Janury 17-21. 1994

[Stoy 1977] Stoy, J. E.: "Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory". The MIT Press. 1977

[van Deursen 2000] van Deursen, A., Klint, P.,Visser, J.: "Domain-Specific Languages: An
Annotated Bibliography".ACM SIGPLAN Notices. 35(6). 2000.

[Vogt 1989] Vogt, H. H., Swierstra, S. D., Kuiper, M. F. "Higher-Order Attribute Grammars".
Proceedings of the ACM SIGPLAN'89 Conference on Programming Language Design and
Implementation. 1989

[W3C 1999a] W3C. "XML Path Language (XPath) Version 1.0 (W3C Recommendation)". World
Wide Web Consortium. 1999

[W3C 1999b] W3C. "Namespaces in XML (W3C Recommendation)". World Wide Web Consortium.
1999

[W3C 2000a] W3C. "Document Object Model Level 2 (W3C Recommendation)". World Wide
Web Consortium. 2000a

[W3C 2000b] W3C. "Extensible Markup Language (XML) Second Edition (W3C Recommendation)".
World Wide Web Consortium. 2000b

[W3C 2001] W3C. "Extensible Stylesheet Language (XSL) (W3C Recommendation)". World Wide
Web Consortium. 2001

[Wadler 1993] Wadler, P. "Monads and Functional Programming". Proceedings of the 1992
Marktoberdorf International Summer School in Program Design Calculi. Springer Verlarg. 1993

The Authors

José Luis Sierra
Dpto. Sistemas Informáticos y Programación, Universidad Complutense
Madrid
Spain
jlsierra@sip.ucm.es

Mr. José Luis Sierra is a Computer Science assistant professor at UCM. He is preparing a Ph.D.
dissertation on the use of domain-specific markup languages in the development of applications.

Baltasar Fernández-Manjón
Dpto. Sistemas Informáticos y Programación, Universidad Complutense
Madrid
Spain
balta@sip.ucm.es

Dr. Baltasar Fernández-Manjón is a Computer Science professor at UCM. His research interests lie
in the educational uses of computers, markup languages, and user modelling.

An extensible and modular processing model for document trees

page 18 Extreme Markup Languages 2002

Rendered by www.RenderX.com

mailto:jlsierra@sip.ucm.es
mailto:balta@sip.ucm.es
http://www.renderx.com

Alfredo Fernández-Valmayor
Dpto. Sistemas Informáticos y Programación, Universidad Complutense
Madrid
Spain
alfredo@sip.ucm.es

Dr. Alfredo Fernández-Valmayor is a Computer Science professor at UCM, and his research interests
include markup languages and its application to hypermedia and educational systems construction.

Antonio Navarro
Dpto. Sistemas Informáticos y Programación, Universidad Complutense
Madrid
Spain
anavarro@sip.ucm.es

Dr. Antonio Navarro is a Computer Science assistant professor at UCM. His research interests include
markup languages, hypermedia, and software engineering.

Extreme Markup Languages 2002
Montréal, Québec, August 6-9, 2002

This paper was formatted from XML source via XSL
Mulberry Technologies, Inc., August 2002

Extreme Markup Languages 2002 page 19

An extensible and modular processing model for document trees

Rendered by www.RenderX.com

mailto:alfredo@sip.ucm.es
mailto:anavarro@sip.ucm.es
http://www.renderx.com

