
Operationalizing Application Descriptions in DTC: Building Applications with
Generalized Markup Technologies 1

J.L. Sierra, A. Fernández-Valmayor, B. Fernández-Manjón, A. Navarro

Dpto. Sistemas Informáticos y Programación, Facultad de Informática,
Universidad Complutense de Madrid, Avda. Complutense S/N, 28040 Madrid, Spain

{jlsierra, alfredo, balta, anavarro}@sip.ucm.es

1 The EU project Galatea (TM-LD-1995-1-FR89) and the Spanish
Committee of Science and Technology (TIC97 2009-CE,TIC98-0733 and
TIC2000-0737-C03-01) have partially supported this work.

Abstract: This paper describes the operationalization
process (i.e. the step from application descriptions to
executable applications) followed in DTC (structured
Documents, document Transformations and software
Components), an approach to develop applications using
generalized markup technologies. DTC encourages the
definition of XML-based domain-specific languages
(DSLs) for describing each relevant aspect of the
application. These DSLs are composed to obtain a single
application DSL. Structured documents describing the
application are the input for an operationalization process
that yields a component-based artifact implementing the
application. Operationalization process is performed in
terms of a flexible architecture, where software components
interact for assembling the application software in a
collaborative, domain-dependent, way. Main benefits of our
approach are software reuse and maintenance. These
benefits are obtained through: a) the separation between
high-level application description and application
implementation and b) the provision of a flexible
architecture, technologically neutral, enabling multiple
implementation strategies.
Keywords: Content-based Applications, Application
Development, Domain Specific Languages, Markup
Technologies, Software Components, XML.

1 Introduction
There are application domains where the provision of the
contents to be processed by the application is a critical part
of the development process. We call this kind of
applications content-based applications, because they
process highly structured contents provided by domain
experts, whose prior knowledge in software development is
not guaranteed. This situation has been largely described in
domains such as knowledge based systems [16], or, in our
case, in the development of educational applications
[2][3][9]. We consider that domain-specific languages
(DSLs) [17] are crucial for the successful development of
these content-based applications. A good definition for a
DSL is that given in [1]: a domain-specific language (DSL)

is a programming language or executable specification
language that offers, through appropriate notations and
abstractions, expressive power focused on, and usually
restricted to, a particular problem domain. For content
description, we are also interested in DSLs with more
descriptive domain oriented meanings [4].
DTC (structured Documents, document Transformations
and software Components) is our approach for building
content-based applications using generalized markup
technologies. Building an application according to DTC
starts with the description of its most relevant aspects (e.g.
contents, presentation, interaction) in terms of a collection
of structured documents. Then, these documents are
processed to obtain the executable application. The
description of a DTC application is achieved by firstly
selecting or devising suitable DSLs for each of these
different application aspects. All these languages must be
described with the same meta-language, so the same
repertory of technologies can be used for their integration
in a single description framework. DTC uses XML
(eXtensible Markup Language) [19] as the common
syntactic framework.
DTC encourages the explicit separation between content
documents and documents involved with the description of
the application's behavior. So a first distinction between
content and application DSLs arises. These languages are
intended for different users: content DSLs are used by
domain experts, while application DSLs are used by
software developers. The integration of both kinds of
DSLs will be done by means of document transformations
written by developers.
Application DSLs are composed for obtaining a single
application description DSL. This language guides an
operationalization process, so descriptions conforming it
can be turned onto executable applications.
This paper describes the DTC approach focusing on the
operationalization process. The structure is as follows.
Section 2 outlines DTC. Section 3 describes the
operationalization framework used for turning DTC
descriptions onto executable applications made of discrete

1

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

software components instances. Section 4 gives an
example. Section 5 discusses some related work. Finally,
section 6 gives some conclusions and outlines future work.

2 The DTC approach
We have defined our approach DTC (structured
Documents, document Transformations and software
Components) [10][13][14] for building content-based
applications. DTC makes an extensive use of the DSL
principle. Building an application, according to DTC, can
be largely viewed as the process of formulation,
transformation, composition and operationalization of
DSLs. At a very high level, DTC splits application
development into two broad activities: one giving an
explicit description of the application in a suitable DSL and
a second, providing operational support for the DSL used to
describe the application. In addition, when describing the
application, DTC encourages an explicit separation
between the description of contents and the description of
the other application aspects.
Contents are described in terms of one or several DSLs,
called content DSLs. Ideally, these DSLs are use-neutral, in
the sense that they are involved with the descriptive and
structural aspects of the information in the application
domain, instead of dealing with how this information is
going to be used or processed by the application. So,
content DSLs can be formulated using a vocabulary close
to the domain experts providing the contents. Therefore,
descriptions conforming these content DSLs can be reused
in multiple ways, either inside the same application or
between different applications in the same domain area.
However, for enabling particular uses of a given content,
additional contextual or use dependent information will be
required. For example, in a transport network application,
we can have a DSL for describing the relevant data of the
transport network domain (e.g. structure and timing). But,
at this level it is not important the inclusion of additional
data for describing presentational information (e.g. metrical

coordinates of the connected places, fonts and colors) that
will be necessary for visualizing the transport network.
DTC contemplates the description of this kind of use
enabling information, providing additional content DSLs,
called use dependent content DSLs (this information could
be provided by a different expert).
Once content description has been decided, the uses of this
information in the application must be stated. This is
achieved again by selecting DSLs for describing how
contents must be interpreted inside the application. Because
this fact, we call these DSLs interpretation DSLs. The link
between content and interpretation DSLs is actually
described with transformations written by developers. For
instance, the search of routes in a transport network can be
easily reformulated as a route search problem in a weighted
directed graph. In this way, the DSL describing transport
networks can be interpreted in terms of a language for
describing weighted directed graphs. The actual
interpretation is stated by writing a transformation from the
transport network DSL onto the graph description DSL.
Other application aspects, not directly related with content
interpretation, must be described in terms of additional
application DSLs. These DSLs allow the description of
other aspects, such as GUI structure and layout, user
interaction, and control processing. Interpretation DSLs are
considered just as a particular kind of application DSLs.
Finally, an appropriate composition of the application
DSLs results in a single application description DSL.
Application itself is described in terms of this final
composite DSL.
For defining DSLs in DTC we are currently using XML. In
this way, each DSL is conceived as a XML based markup
language. XML provides a common syntactic framework
suitable for representing, in a structured way, all the
information relevant for application’s deployment. In
addition, XML is accompanied with a set of
complementary technologies that make easier a DSL-based
application development with independence of particular,

Product Activity

Application
Requirements

Domain
analysis
experiences

DSL
Provision

Content
DSLs

Application
DSLs

Configuration
of authoring
frameworks

Configuration
of authoring
frameworks

Content
Editors

Application
Editors

Content
Authoring

Contents

App. Desc.
Authoring

App.
Descriptions

Transformation
Specifications

Operationalization

Executable
Application

Fig. 1. Main products and activities involved on application development according DTC. From application requirements and domain analysis experiences,
suitable DSLs are provided. These DSLs are devoted both for content description and for describing another application aspects. Transformations are also
provided for mapping contents onto interpretation DSLs. Definition of suitable authoring syntaxes enables authoring frameworks to be configured. The
results are editors tailored both for content and application description authoring. Content descriptions, transformation specifications and application
descriptions are the inputs to an operational process producing the desired executable application.

2

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

vendor-oriented, implementation platforms. However, for
some application domains, direct provision of XML
structured documents could be inconvenient (e.g. providing
all the description of a huge transport network directly in
terms of raw XML). Thus DTC also introduces the concept
of document authoring. This way, generic authoring
frameworks (e.g. visual editors) can be configured by
defining authoring syntaxes together with translation
relationships between these syntaxes and the specific XML-
based markup languages.
Finally, it is the semantic associated to interpretation and
application DSLs. DTC is mainly concerned with
operational semantics. In this way, each application DSL
must be accompanied by a computational artifact (i.e. a
component) giving one (or a set) of operational(s)
meaning(s) to the information conforming this language.
Regarding content DSLs, DTC does not prescribe a
particular way for describing the associated semantics (i.e.
it could be either given in an informal document or
established using some suitable formal technique). Indeed,
when transformations between content DSLs into
interpretation ones are defined, operational semantics of the
interpretation languages could be automatically attributed
to the content ones.
Fig 1. outlines the main activities and products involved in
the development of an application according DTC. In this
work we are mainly interested on the process that makes
DTC application descriptions operational. Next section
describes our solution.

3 Construction of applications using DTC
descriptions
Fig.2 sketches how a particular DTC application instance is
built. In this process we identified two main phases:
− The authoring phase, where application descriptions

are provided. Contents are authored and, then, they are
transformed onto interpretations. Description of other
application aspects relies on additional authoring.
Finally, authored application descriptions and derived
interpretations are composed in an overall application
description.

− The operationalization phase, where the actual
executable program is obtained from documents with

the application description and a set of appropriate
components. The ingredients in this phase are: a) the
application description produced in the authoring
phase, b) suitable software components giving
operational support to the DSLs, and c) a DTC
repository grouping all the components.

Next subsections go inside the details of the
operationalization process.

3.1 The operationalization ingredients
The operational meaning of a DTC application is obtained
by assigning computational artifacts to descriptions.
Because DTC does not compromise itself with any
particular DSL, this operationalization process must be
necessarily open. In this way, the existence of a universal
engine that, given any DTC application description, yields
the associated artifact is clearly meaningless. On the other
hand, DTC encourages the formulation of description
languages by an appropriate combination of simpler
languages, each one for the description of a particular
application aspect. Thus, applications can be implemented
using the components attached with those simpler
languages. Hence, in DTC, language composition has an
operational counterpart in composition of software
components.
A more in-depth view of the language composition
approach followed in DTC reveals the convenience of
maintaining the semantics of some languages parametric in
some of their aspects. For instance, a language for
describing control and interaction with a stated-based
formalism can be parametric in the repertory of control
actions. Those aspects can, in their turn, be described by
other DSLs. Actually, the ability for finding and using
suitable description languages able to be parameterized is a
key aspect for enabling the compositional approach
encouraged by DTC. On the implementation side, the direct
consequence of this approach is the distinction between two
different categories of software components:
− Atomic components. Components that perform entirely

their functionalities without the need of delegating
further tasks in other artifacts. These components give
support for non-parametric application DSLs. An
example of this sort of components, in the application

Contents
Authoring

Transformation
Process

Contents

Descriptions of
application aspects

Composition of
descriptions

Application
description Software

components
Component –
based executable
application Transformation

specifications

Operationalization
phase

Authoring
phase Application

Description
Authoring

DTC
repository

Fig.2. Schema of the building process for a particular DTC application instance.

3

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

domain of finding routes in transport networks, is the
component for finding paths in a weighted graph.

− Combinators. Components that require the help of
simpler components for performing their tasks. These
combinators are associated with parametric DSLs. For
instance, a component associated with the state-based
interaction language, or any of the containers found in
GUI building frameworks are good examples for
combinators.

Components work on the abstract syntax [15] of the
associated DSLs. Because we are using XML as a common
meta-language, we can get a common abstract syntax
represented by the ordered attributed trees associated with
XML documents. For managing these trees, a DOM
(Document Object Model) [18] compliant interface can be
used.
Once a suitable component repertory and a particular
application description is available, components must be
properly instantiated and their instances assembled to
obtain the executable application. Again the consideration
of an universal assembler is out of discussion, because
assembling strongly depends on the particular semantics of
each DSL. And the semantics of a DSL is confined to its
associated component. In this way, the key idea is to allow
the components themselves to control the
operationalization process. So components must be
equipped, on one hand, with the ability to process
descriptions conforming their associated languages. On the
other hand, they must be able to delegate the processing in
other components when they reach description parts outside

their scope. For doing so, they can use the DTC repository.
Next subsection gives the details.

3.2 The operationalization process
Operationalization in DTC emerges as a collaborative
process between the components associated with the DSLs.
In this way, components work on the document tree
associated with the single application description. For
enabling this collaboration they use a common DTC
repository.
The operationalization process starts by querying the DTC
repository with an initial context. For a context we mean a
reference to a node (the context node) in the tree instance of
the single application DSL. The initial context node usually
(but not necessarily) is the document element node.
Behavior of the DTC repository is very simple: when it
receives a context, it firstly checks if a component was
previously instantiated as the result of processing this
context. If it is the case, the repository returns the resulting
instance. If not, it queries the available components until it
finds one able to process the context. To implement this
behavior, components are equipped with an interface for
deciding in which context they can be applied to. Concrete
implementation of this interface is not relevant for the
process, but it could be as simple as checking the tag and/or
the namespace [20] associated with the context node, or as
complex as involving a complete validation of the
document structure rooted in this node. When the
repository finds a component applicable in the context, it
instantiates this component, records the instance as engaged

Io

Io

I1

Io

I1

Io

I2
Io

I1 I2
I2

Io

I1

Fig. 3. Example of the DTC operationalization process behavior. Process starts with the DTC repository being queried with a context for the root of the
description tree. Then the repository selects the right component for processing this context (that labeled by). The next step for the repository is to
instantiate the component (let be it called Io) and to delegate it the process of the context. After a bit of processing, Io decides to query the repository for the
processing of the context in . The repository behaves as described above, selecting and instantiating the corresponding component (let be the new
instance called I1), and delegating the context processing in the resulting instance. I1 eventually finishes the processing without further interaction, so control
is returned to the repository that, in its turn, returns it to Io (together I1). Io establishes some sort of relationship with I1 and continues processing its contexts
until deciding to query again the repository (this time with the context for). This leads to the creation of a new instance (I2) which is engaged on the
processing of the context. I2 carries out the task without further interaction, so the control is returned to the repository, and, from the repository to Io that,
after establishing the corresponding relationship with I2, finishes the processing. The control is returned to the repository that returns Io (and, consequently,
the assembled artifact) as result of the operationalization process.

4

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

on the context processing, and delegates the processing to
this instance2.
When a component instance A receives a context it
processes the context in a component dependent way.

2 Sort of things such as coping with the possibility of having multiple
components applicable to the same context (for instance, in order to use
this architecture for automatically indexing a huge repository of
components) is out of scope in our approach. It is the responsibility of the
application developer to ensure these ambiguities do not arise by a proper
setting of the operationalization framework for a given application or
application domain. In case of ambiguity, the first choice is taken. When
the search for a component fails, the operationalization fails.

Normally this processing supposes for A to configure itself
with the information in the subtree rooted on the context
node. During tree traversal, A can decide to delegate the
processing of another context. Indeed, this will be true for
combinators, when descriptions associated with DSL
parameterizations will be reached. Delegation supposes to
query the repository with the new context in order to obtain
an appropriate component instance, let it be called B. Once
B is available, A can use this instance for their own
purposes (e.g. for delegating in it some tasks when the
application will be activated; in general we speak about a
relationship being established between the two instances)
and it can continue processing the original context if
required.
In a normal situation, when the repository is queried with a
context for an external entity, it returns as a result a
component instance. In its turn, this instance can have
established relationships with another instances, and so on,
producing a component-based implementation of the
application described in the context. For executing the
application, the appropriate methods of the instances in this
application can be invoked. Fig.3 graphically exemplifies
the operational process.
The operational architecture enables a great variety of
behaviors, apart from that described above. There,
application description was completely processed for
yielding a component aggregation implementing the
description. We will call it as a normal behavior. Anyway,
component instances are free to delay the process until
needed. This leads to a kind of lazy operationalization
process, where instances remember their associated
application contexts and they interact with the repository
during application execution. Another sort of more
complex behaviors could also arise when new descriptions
are generated on the fly, during application execution, and
subsequently operationalized. Such dynamical generation
could be due to some user interaction or to the inclusion of
other dynamic information sources in the application
implementation. Of course that all these kind of behaviors
can be combined in a single application component
repertory as needed.

4 An example
In this section we describe how a real DTC application has
been produced using the processes described in the
previous sections. The application provides an interactive
graphical interface to find the best route between any two
given stations in a subway network. This application was
previously developed assembling software components
manually, as reported in [14] (see sections 5 and 6 for
differences between our current approach and previous
work in DTC). Porting the application to the
operationalization framework described in this work has
been quite straightforward. We have made use of the
namespace mechanism for avoiding name collisions

<!ENTITY % condition "(and| or | not | fired
 | vareq | eventeq)">
<!ENTITY % action "(seq | if | do |
 set | lit)">

<!ELEMENT automaton (init,state*)>
<!ATTLIST automaton id IDREF #REQUIRED>
<!ELEMENT init EMPTY>
<!ATTLIST init state CDATA #REQUIRED>
<!ELEMENT state
 (%condition;?,%action;,transition?)+>
<!ATTLIST state id ID #REQUIRED>
<!ELEMENT transition EMPTY>
<!ATTLIST transition state IDREF #REQUIRED>
<!ELEMENT and (%condition;,%condition;)>
<!ELEMENT or (%condition;,%condition;)>
<!ELEMENT not (%condition;)>
<!ELEMENT fired EMPTY>
<!ATTLIST fired event CDATA #REQUIRED
 of CDATA #REQUIRED>
<!ELEMENT vareq EMPTY>
<!ATTLIST vareq var CDATA #REQUIRED
 to CDATA #REQUIRED>
<!ELEMENT eventeq EMPTY>
<!ATTLIST eventeq event CDATA #REQUIRED
 of CDATA #REQUIRED
 to CDATA #REQUIRED>
<!ELEMENT seq (%action;)*>
<!ELEMENT if
 (%condition;,%action;,%action;?)*>
<!ELEMENT do (with?,param*,result*)>
<!ATTLIST do action CDATA #REQUIRED
 in IDREF #IMPLIED>
<!ELEMENT with EMPTY>
<!ATTLIST with tag CDATA #REQUIRED>
<!ELEMENT param (%action;)>
<!ATTLIST param pname CDATA #REQUIRED>
<!ELEMENT result EMPTY>
<!ATTLIST result pname CDATA #REQUIRED
 storeIn CDATA #REQUIRED>
<!ELEMENT set (%action;)>
<!ATTLIST set var CDATA #REQUIRED>
<!ELEMENT lit (#PCDATA)>

Fig. 4.Document grammar for automaton. Automata are described in
terms of their states, their actions and their transitions. Each state have
associated a set of (possible guarded) actions and transitions. In addition
automata are allowed to use a finite number of variables for storing
intermediate values. When the automaton enters a given state, it waits
for a condition to be true. When it occurs, it executes the associated
action and it either goes to the state given by the associated transition, if
present, or, otherwise, stays in the current state. Conditions are
described in terms of fired events, and variable and event values, and
they can be composed using boolean operators. Basic actions are to set
variables, to perform external actions or to exhibit literal values. They
are composed in sequence and by using alternatives.

5

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

between different application languages when composing
them into a single description3 and we have adapted the
components in the old implementation to the new
operationalization schema, by equipping them with a
selection function matching the document element and
namespace for the supported languages. In the next
subsections we give more details about this example of
DTC application.

4.1 Content DSLs
We use a content DSL (subway) for describing
information about the subway network. Such information
involves structural aspects of the network, as well as timing
information (schedules, access and transfer times in each
station, average speed in each line, etc). Because we want
to provide a graphical interface to the network, similar to
the actual map facilitated by the subway company, we have
a use-dependent content DSL (subwayStyle). This DSL
enables us to code this additional information. The syntax
of these DSLs is given in [14].

4.2 Interpretation DSLs and Transformations
We have used the following interpretation DSLs (some of
them are described in [14]): (i) a language (graph) for
describing directed weighted graphs, (ii) a language
(diagram) for describing diagrams made of circles, labels
and straight-line connections, (3) a language (mapping)
for relating terminologies in the graph and the diagram
languages.
The mapping language relates visual representations of
stations with interpretations of such stations as nodes in the
graph. Indeed, each station has associated a single circle in
terms of the diagram language, but multiple nodes in
terms of graph4. So, visualizing sequences of nodes in the
visual representation requires knowledge about how nodes
are associated with stations. Generally speaking, we think
that this kind of mapping information is needed when
independent aspects must be subsequently composed in a
single application description.
In order to interpret contents in terms of these languages
three transformation specifications are used: (i) a
transformation for deriving diagram descriptions from
descriptions in subway and subwayStyle, (ii) a
transformation for deriving graph descriptions for
subway ones, (iii) a transformation for deriving mapping
descriptions for subway ones. All these transformations
are specified using XSLT (eXtensible Stylesheet Language
Transformations) [23].

3 For simplicity, we omit the details of namespace use in the subsequent
descriptions. Indeed, we directly outline document grammars in terms of
the simpler DTD formalism instead of using the more powerful, but more
verbose, XML Schema [22].
4 A station is structured, in its turn, in accesses, tracks, corridors, etc.
These elements are not visually represented.

4.2 Other application DSLs.
The other application aspects have been described using the
DSLs for describing GUI elements (window, panel,
label and buttomArragement) and a state transition
based DSL (automaton) for describing interaction and
control. These languages and their associated components
have been slightly modified from a previous version to
obtain a better conformance with the language
composition-based approach described here. Fig. 4. shows
the document grammar for the markup language associated
with automaton5.

4.3 The application language.
The application language is obtained as a direct
composition of the different application DSLs. Fig. 5
outlines the top-level structure of the resulting application
language. Required relationships between the different
languages are described by means of attributes. For
instance, automata descriptions make references to external
actions performed on other descriptions. These actions are
described using two attributes in the do elements: action
(for naming the action) and in (for referring the part of the
description being the target of the action). For simplicity,
the ID – IDREF XML basic linking mechanism is used, but
this constrain could be easily removed by using a more
complex query support (for instance, XPATH expressions
[21]).

5 Because the possibility for appropriate authoring syntaxes, we can
exhibit some degree of syntactic verbosity in the description. We are
currently working on a general approach for authoring this sort of
descriptions by using visual grammars [5] for defining concrete syntaxes
and by providing translators from editions conforming these grammars to
XML documents.

<!ELEMENT subwayApp
 (behaviour,mainWindow,mainPane,
 lateralPane,subwayDiagram,controlLabel,
 controlButtoms,originTitleLabel,
 originLabel,destinationTitleLabel,
 destinationLabel,subwayGraph,
 graph2diagram)>
<!ELEMENT behaviour (automaton)>
<!ELEMENT mainWindow (window)>
<!ELEMENT mainPane (panel)>
<!ELEMENT lateralPane (panel)>
<!ELEMENT subwayDiagram (diagram)>
<!ELEMENT controlLabel (label)>
<!ELEMENT controlButtoms
 (buttomsArrangement)>
<!ELEMENT originTitleLabel (label)>
<!ELEMENT originLabel (label)>
<!ELEMENT destinationTitleLabel (label)>
<!ELEMENT destinationLabel (label)>
<!ELEMENT subwayGraph (graph)>
<!ELEMENT graph2Diagram (mapping)>
...

Fig.5. Top-level structures for the application description language. The
omitted definitions directly correspond with the application DSLs
described in subsections 4.2 and 4.3.

6

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

4.4 Operationalization
The operationalization process relies on components
supporting each application DSL presented above. Because
composition introduces additional vocabulary, it could
seem that some sort of adaptation is required to cope with
it6. Nevertheless, in this language all the new vocabulary is
merely structural, and it can be skipped. It is done by
querying the DTC repository with a context pointing the
automaton description, instead one for the document
element. Fig. 6. shows an snapshot of the resulting
application for a subway description corresponding with
the subway of Madrid (Spain).

5 Related work
The operational process described here substantially differs
from previous work reported on DTC [10][13][14]. In those
works operationalization was conceived as the manual
provision and composition of the component structure for
the application software. Therefore, descriptions were a
consequence of operationalization. A static component-
based structure were manually assembled for each
application. Currently our approach is more description-
language centered, being software structure a consequence
from the composition of languages. The main advantages of
the new way of operationalizing DTC descriptions are a
clear distinction between the description and the
implementation levels and a greater flexibility in the
operationalization schemas.
DSLX [7], a framework for the operationalization of XML-
based DSLs, and Jargons [8], an approach for defining
DSLs by composing simpler ones, have strongly influenced
our current work. The main difference between our
operationalization schema and the DSLX architecture relies
on composition. While in DSLX a document processor (an

6 We are currently working on a more in-depth identification of the kind of
adaptation stuff required when composing DSLs for obtaining application
description languages.

interpreter) would be provided for each DSL, our
interpreters are automatically derived by assembling
simpler artifacts: reusable software components. On the
other hand, Jargons were mainly involved with composition
criteria. So, operationalization in Jargons was conceived as
the association of a chunk of code, written in an scripting
language called Fit, with each element type involved in the
DSL7. Our operational schema is more flexible, because
semantic association is able to consider more context apart
from the tag of a given element node, and because our
collaborative schema enables a greater repertory of
behaviors, either in operationalization and in execution
stages.
XML data binding proposals [12] have also several
common points with our operational approach. The key
idea under data binding is to specify a mapping between a
schema language and an object-oriented model. Once this
mapping is available, each document can be compiled into
language-specific object oriented representations. The main
advantage is to enable the manipulation of documents in
language-specific terms, instead of using general-purpose
frameworks, such as DOM. Once these representations are
available, application logic is provided to work on them.
The main difference with our approach is that these
mappings are associated with the schema language instead
with particular document grammars.
Finally, several proposals have been made for processing
XML documents using software component technologies
[6][11]. The main difference with DTC is that DTC effort is
put in describing applications to a higher level of
abstraction, instead on giving alternatives to existing
implementation technologies. Because the explicit
distinction between description and implementation,
concrete implementation could be included in DTC as
required with little effort.

6 Conclusions and future work
This paper describes a flexible operationalization process in
the development of content-based applications. The main
benefit of this process is to provide a clear separation
between application description and implementation
technologies. This aspect is specially crucial in the
development of content-based applications, where
maintainability and portability are key factors for the final
success of the project [9]. In previous works, application
description were directly achieved by providing and
assembling software components, each one able to process
a type of componential documents conforming their
supported markup languages. In this work application
description is understood at a linguistic level, as the
outcome of the composition of different application DSLs.

7 Jargons actually does not make use of markup languages for defining
DSL syntax, but they use a common syntax based on ground terms that
can be directly translated into XML. Jargons associates an action which
each functor type.

Fig.6. Screenshot for the subway application instantiated in the subway
of Madrid (Spain).

7

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

Once the description is available, operationalization
becomes as a different, independent stage of the application
development. This improves maintainability, because
application maintenance is no longer involved with any sort
of software arrangement, being instead performed at the
higher abstraction level of the application description DSL.
This also improves application portability, because
descriptions are more independent from particular
implementation technologies.
The operationalization process described here also
enhances DTC operationalization flexibility. The
implementation is driven by the application descriptions,
instead of being manually programmed.
Currently we are working on a better characterization of
how application DSLs can be composed into a single
application description DSL, together with a method to
parallel composition mechanisms at the implementation
level. In the future we plan to apply DTC for developing
web-based educational applications.

7 References
[1] Deusen,A.V.; Klint, P.; Visser,J. Domain-Specific
Languages: An Annotated Bibliography. ACM SIGPLAN
Notices 35(6). 2000.
[2] Fernández Manjón, B.; Fernández-Valmayor, A.
Improving World Wide Web educational uses promoting
hypertext and standard general markup language content-
based features. Education and Information Technologies,
vol 2, no 3, pp. 193-206. 1997.
[3] Fernández-Valmayor, A.; López Alonso, C.; Sèrè A.;
Fernández-Manjón,B. Integrating an Interactive Learning
Paradigm for Foreign Language Text Comprehension into a
Flexible Hypermedia system. IFIP WG3.2-WG3.6
Conference Building University Electronic Educational
Environments. University of California Irvine, California,
USA August. 4-6 1999
[4] Fuchs, M. Domain Specific Languages for ad hoc
Distributed Applications. First Conference on Domain
Specific Languages. USENIX. Sta. Barbara. CA. October
17-17. 1997.
[5] Marriott,K.; Meyer,B.; Wittenburg,K.B.A. Survey of
Visual Language Specification and Recognition.
Marriot,K.Meyer,B (eds). Visual Language Theory.
Springer-Verlag. 1999.
[6] Martin,B. Creating Distributed Applications Using
Xbeans. http://www.xbeans.org/. 2000
[7] Morrow,P.; Alexander,M. Domain Specific
Languages – Tools for Better Programming. PCAI
Magazine. Vol 13. Issue 1. Jan/Feb 1999.
[8]Nakatani,L.H.; Ardis,M.A.; Olsen,R.G.; Pontrelli,P.M.
Jargons for Domain Engineering. Second Conference for
Domain Specific Languages. USENIX. Austin. Texas.
October 3-6. 1999.
[9] Navarro,A.; Fernández-Valmayor,A.; Fernández-
Manjón,B.; Sierra,J.L. A Practical Methodology for the

Development of Educational Hypermedias. ICEUT 2000 -
16th IFIP. World Computer Congress 2000. Beijing-China.
August 21-25, 2000.
[10] Navarro,A.; Sierra, JL.; Fernández-Manjón, B.;
Fernández-Valmayor, A. XML-based Integration of
Hypermedia Design and Component-Based Techniques in
the Production of Educational Applications. M. Ortega and
J. Bravo (Eds) Computers and Education in the 21st
Century: Invited papers from the Spanish Congress on
Computers in Education (CONIED'99). Kluwer Publisher.
2000
[11] Pfeiffer, R.; Clack, A. XML Productivity Kit for Java
- Programming Guide. IBM Development Center. 1999.
[12] Reinhold,M. A XML Data-binding Facility for the
JavaTM Plataform. Sun Microsystems. 1999
[13] Sierra, JL.; Fernández-Manjón, B.; Fernández-
Valmayor,A.; Navarro, A. Developing Applications with
XML Documents, Documents Transformations and
Software Components. 10th International Conference on
Computing and Information. ICCI-2000. Kuwait.
November 18-21. 2000
[14] Sierra,JL.; Fernández-Manjón,B.; Fernández-
Valmayor,A.; Navarro,A. Integration of Markup
Languages, Document Transformations and Software
Components in the development of applications: the DTC
approach. ICS 2000 - 16th IFIP World Computer Congress
2000. Beijing-China. August 21-25. 2000.
[15] Stoy,J.E. Denotational Semantics: The Scott-Strachey
Approach to Programming Language Theory. MIT Press.
1977.
[16] Studer, R.; D. Fensel,; Decker.S.; Benjamins V.R.
Knowledge Engineering: Survey and Future Directions. In:
F. Puppe (ed.): Knowledge-based Systems: Survey and
Future Directions. Lecture Notes in Artificial Intelligence
(LNAI), vol. 1570, Springer-Verlag. 1999
[17] Thibault,S. Domain-Specific Languages: Conception,
Implementation and Application. Ph.D. Dissertation.
Université de Rennes. 1998.
[18] W3C Proposed Recommendation. Document Object
Model (DOM) Level 2 Specification Version 1.0.
http://www.w3.org/DOM. 2000.
[19] W3C Recommendation. Extensible Markup Language
(XML) 1.0. http://www.w3.org/ XML. 1998
[20] W3C Recommendation. Namespaces in XML.
http://www.w3.org/ TR/REC-xml-names. 1999.
[21] W3C Recommendation. XML Path Language (XPath
1.0) Version 1.0. (Second edition) http://www.w3.org/
TR/xpath. 2000.
[22] W3C Proposed Recommendation. XML Schema
(Parts 0,1,2) http://www.w3.org/XML/Schema.html. 2001.
[23] W3C Recommendation. XSL Transformations
(XSLT) Version.1.0.http://www.w3.org/TR/xslt. 1999.

8

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

