
Integration of Markup Languages, Document Transformations and
Software Components in the Development of Applications: the

DTC Approach

Jose-Luis Sierra, Baltasar Fernandez-Manjon, Alfredo Fernandez-Valmayor, Antonio Navarro
Dpto. Sistemas Informaticos y Programacion. Universidad Complutense de Madrid (UCM)

Avd. Complutense S/N 28040 Madrid-Spain
Tel: +34-91-3944654 FAX: +34-91-3944602
{jlsierra,balta,alfredo,anavarro}@sip.ucm.es

Abstract
This paper describes the DTC approach to the
development of applications based on markup
languages. DTC consistently combines
componentware and markup technologies in a unified
solution. Building an application according DTC
supposes, on one hand, the provision of the set of
documents describing the application at a purely
declarative level (i.e. content, processes and
interaction) and, on the other hand, the derivation of
the application’s computational machinery by
assembling (reusable) software components. Each
software component considered in DTC gives
operational support and operational meaning to a type
of documents. If necessary, documents describing the
application can be integrated into the projected
application’s component structure using
transformations. Transformations make possible to
uncouple specific domain documents from reusable
components. This explicit separation between the
marked information, that describes the domain’s
application, and its computational support improves
the maintainability of the applications promoting
reuse at both information and software levels
(documents and components).

Keywords
Generalized Markup Languages, Document
Transformations, Reusable Software Components,
XML, XSLT

1. Introduction
Generalized markup makes possible to syntactically
define the structure of a document type. Because
efforts are put on document structure instead of on a
specific document processing, generalized markup
allows reusing marked documents in multiple markup
applications (programs doing real work with
structured documents). This approach has been widely

used and tested in the publishing domain [2][6][9] and
we have extended this idea to the construction of
more general software applications, especially
hypermedia applications in the educational domain
[4][5]. This work describes the DTC approach to the
development of executable applications based on
markup languages. DTC initials refer to structured
Documents, document Transformations and software
Components, the main technologies integrated in this
approach. The idea underlying DTC can be outlined
as follows. For building an application according to
DTC, first of all, the different kinds of information
(e.g. the domain information and the interaction with
this information) to be used in the application must be
provided as a collection of marked documents. In
parallel the computational support for the application
is built using software components. Each component
is able to process a kind of documents giving them an
operational meaning. The last step is to integrate the
domain documents into the derived component
structure. In a usual situation, components and
application documents could not match perfectly (i.e.
both could be potentially reused from pre-existing
repositories). In this case DTC involves some
adaptations for obtaining conformant documents.
These adaptations are used to cope with the different
structural and conceptual disagreements that can arise
and those are achieved using document
transformations. In this way, our approach promotes
reuse at different levels (reuse of documents and
documents schemas, reuse of the software
components used to built applications, and even reuse
of complete fragments of applications).
The structure of this paper is as follows. Section 2
briefly describes the different technologies involved
in the DTC approach. Section 3 details the DTC
approach itself. Section 4 analyses a non-trivial case
study of a DTC application that provides an
interactive graphical interface for information about
the subway network of Madrid (Spain). Section 5

1

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

discusses the main advantages and shortcomings of
the approach. Finally, section 6 gives some
conclusions and outlines the future work.

2. Technologies integrated in the DTC
approach.
This section introduces the different technologies
integrated in the DTC approach: generalized markup
languages, software components, and document
transformations.

2.1. Generalized markup languages
Generalized markup languages [2] are devoted to
describe the logical structure of documents. Usually
this structure is understood as a hierarchical
arrangement of elements with optional attribute-value
pairs attached to them. This structure is formalized in
terms of a document grammar or DTD (document type
definition). The document structure is stated using a
set of tags that, according to the grammatical rules of
the DTD, draw the boundaries of the elements that are
the actual content of the document. All this meta-
information that represents the structure of a
document is jointly named as markup. Two of the
most popular generalized markup languages are
SGML (Standard Generalized Markup Language) [6]
[9] and XML (Extensible Markup Language) [19].
Now we use XML, but this approach could be easily
extended to SGML.
Because generalized markup languages can be
tailored for each domain of application by defining
the appropriated DTD, they enable denotability. By
denotability we understand the possibility to attach
with the markup a consistent interpretation in the
domain at hand. It supposes to be able of establishing
a one to one correspondence between markup and
information types in the domain of interest.
Denotability is not feasible with a fixed markup
repertory, because the potential existence of different
domain referents that demand the same structure. The
drawback for denotability is the need to explicitly
define how to use the markup for each fixed markup
repertory and for each application. Next subsections
describe ways to cope with this problem.

2.2. Software components
In this work we propose the use of DTDs describing
abstract markup languages attached with interpreters
that give an operational meaning to documents
conforming these DTDs. These interpreters support
abstract uses of marked information. Because a non-
trivial application can use several information

sources, it would be possible to structure the
computational parts of the application by means of an
appropriated composition of several interpreters. This
makes componentware technology [17] a suitable
choice to give support for such interpreters. Each
interpreter is a software component able to process
information conforming a given DTD. These software
components can execute a set of actions, are able to
notify a set of events and, eventually, they can raise
some exceptional conditions. In addition they support
integration of documents conforming their DTDs, can
act as containers of other components and they can
offer a visual interface.
Components are completely documented. The

description of the services offered by each component
is done using XML (it can be accessed using the
information interface). The DTD of the kind of
documents processed by each component is also
included. This description simplify the maintenance
and reuse of components. Figure 1 outlines this
component model (actual implementation of the
model can be carried out by means of any well–
known componentware technology or directly from
scratch in any modern programming environment
supporting dynamic code loading). Figure 2 shows the
DTD included in a component for managing directed
graphs.
The difference between the type of DTC components
and generic XML or SGML processing tools relies
mainly in semantics. Generic tools, such as markup
parsers or markup editors are mainly focused on

 Execution

Event notification

Exception notification

Integration

Composition

Visualization

DTD

Figure 1. DTC component model that includes the DTD of the
type of processed documents. The description of the services
offered by the component is also done in XML.

Information

Incoming
interface

Outgoing
interface

2

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

syntactical manipulation of marked documents, while
components described here are focused on giving an
operational meaning to a particular markup language.
To enable component reusability, such languages and
meanings must be necessarily abstract (for instance,
directed graphs for the language given in Figure 2),
but the use of document transformations (introduced
in section 2.3) enables its specialization over

particular domains.
Components as those introduced here are used to
build the component-based executable computational
artifact for applications. Once this executable
component structure is assembled, the application
itself would be obtained processing the documents
required by each component if available, or by
directly deriving the documents required from each
abstract DTD. However, as discussed in the next
section, this approach has several shortcomings
derived from possible disagreements between
available documents and the specific documents
required by components. Introduction of document
transformations attempts to solve these shortcomings.

2.3. Document transformations
Document transformations are specifications for
deriving result documents from source documents (or,
more precisely, from parse trees of source documents
to parse trees of result documents [14]). Result
documents can vary both in structure and content
from the original sources. Transformations are usually
specified at the DTD level in order to allow their
application to any document conforming that DTD.
A simple form of document transformation can be
achieved using enabling document architectures
(EDAs) [10][12]. An EDA is a set of patterns or rules
that can be followed for writing markup applications.
These patterns could be used, for instance, for
representing lists of items, hyperlinks between chunks
of information, etc, and their syntax is formally
described in terms of DTDs (called meta DTDs). To
apply these patterns when devising a DTD an
architectural mapping from markup in the DTD to

markup forms in the meta-DTD must be specified.
These mappings basically rename elements into
element forms and attributes into corresponding
attribute forms. Following these mapping
specifications, documents conforming the derived
DTDs can be transformed into architectural
documents conforming the appropriated meta DTD.
The transformation process is carried out by means of
EDA processing.
EDA’s idea is useful for writing markup applications,
because semantics can be associated with
architectural markup and reused for each derived
language. But the kind of transformations based on
renaming introduced by EDAs could be insufficient
for simultaneously supporting both documentation
and software reuse. The reason is that each EDA
imposes its own structural rules on the information
and it would be very uncommon (and perhaps not
even desirable) for pre-existing domain
documentation to be structured in the terms required
by the EDAs. Therefore more complex transformation
processes are needed to cope with these potential
disagreements.
The three main types of disagreements found when
integrating pre-existing documents in applications
made of reusable components are: a) structural (e.g.
disagreements in the order or in the precedence of
elements); b) conceptual (e.g. when the source
document contains an speed and a time attribute
and the result element requires a space attribute);
and c) incompleteness (e.g. when you need additional
presentational information for representing a graph).
As discussed in [14], some kinds of structural
disagreements can be solved applying simple syntax
directed translators, while for conceptual
disagreements could be better to use more powerful
formal techniques (such as transducers based on
attribute grammars) [1][13]. When differences
between source and result documents are larger, or
different documents need to be involved (as with
incompleteness disagreements) manual methods based
on tree filter programming languages would be the
most pragmatic approach. In the SGML/XML world
two of the well-known tree filter programming
languages are the transformation language of DSSSL
(Document Style Semantics and Specification
Language for SGML) [11] and XSLT (Extensible
Stylesheet Language Transformations for XML) [20].
In our experiments we have used XSLT for specifying
tree filters for XML documents. Thus, the
transformations are also specified by documents.

<!ELEMENT Graph (Arc|Node)*>
<!ELEMENT Arc EMPTY>
<!ATTLIST Arc Origin IDREF #REQUIRED
 Destination IDREF #REQUIRED>
<!ELEMENT Node EMPTY>
<!ATTLIST Node id ID #REQUIRED>

Figure 2. A markup language for representing directed
graphs. This DTD can be associated with a software
component for processing DTD-conforming documents.

3

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

3. The DTC approach
Previous sections present the basic ingredients for
formulating the DTC approach. Figure 3 outlines this
approach. For building a generalized markup
application according DTC the following activities
must be carried out:

• Preparation of the set of basic documents that

describe an application (the content, the
processing and the interaction with the content
information).

• Derivation of the component-based
computational artifact (application software) for
processing this information.

• Generation of the documents required by the
software using document transformations as
needed.

The next subsections detail each activity. Section 4
shows an example of how the DTC approach has been
applied for building a non-trivial application.

3.1 Providing the application documents
The information describing a DTC application is
structured in terms of marked documents. These
documents are jointly named as application
documents. Application documents can be roughly
classified in the following categories:

• Domain documents. These documents contain
domain specific information that could be reused
across different applications (for instance, a
dictionary, a botanical glossary, etc). Most of the
reusable pre-existing documentation would lie in
this category.

• Application dependent documents. These are
documents with a low-level degree of reuse. Most
of the documents in this category have a meaning
only inside a specific application. Examples of
this kind of documents are presentational
information of a diagram, layout description of a
GUI, etc. Here it is possible to distinguish two
main types of application dependent
documentation. One type is that of the documents
oriented to solve incompleteness disagreements
between domain documents and DTDs associated
with the components used to build the application
software. A second type is formed by those
documents directly derived from the DTDs of
some components.

3.2. Devising the application software
The application software is built by means of the
configuration and assembling of software components
following the component model described in section
2.2. These components can be selected from a library
of reusable components or built from scratch. Here
will be some components suitable for being reused in
other developments and will be others specially
designed to cover some specific application-
dependent functionality. According to the introduced
component model it is possible to classify
components in several categories along several
classification axes. A first classification allows us to
distinguish between primitive components (the basic
building blocks for the application construction) and
containers (that allow the aggregation of a
conglomerate of sub-components by means of the
composition interface). Primitive components are
subdivided, in their turn, into markup interpreters
(devoted to give operational support for abstract
DTDs) primitive facilities (components that carries
out some basic functionality in the end application)
and mediators (components devised to give support in
the adaptation of information flows between
components). Containers can be divided into GUI
containers (oriented to display the visual
representations of their sub-components) and
controllers (oriented to describe the behavior of their
set of sub-components).

Componential
Documents

Domain
Documents

Application-
dependent
Documents

Application
documents

Transformation
Processes

Transformation
Specifications

Application
Software

Figure 3. Schema of the DTC approach.

4

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

3.3.Putting all together
Application software components demand documents
in their supported languages. These documents are
named as componential documents. Some
componential documents can be derived from
application documents using transformations.
Transformations demand of suitable specifications
that, in their turn, are enclosed in the corresponding
specification documents (for instance, XSLT
documents). Other application documents (those
directly derived from DTDs attached with
components) can be directly processed for the
application software (so application and componential
document sets can overlap).
In this way, the development of an application
according DTC approach can be represented as a set
of application documents linked to the application
software by means of transformations. To obtain the
executable application the componential documents
must be generated by transformations, or taken
directly from the application document set. Then the
application can be executed by invoking the right
action (or set of actions) over the components
integrated in the application.

4. An example
In this section we present a case study of applying
DTC in the development of a non–trivial application.
The application provides an interactive graphical
interface to find the minimum-cost path between any
two given stations in a subway network. We have
instantiated the application in the subway network of
Madrid (Spain). We used Java as implementation
technology, together with the Oracle Java Libraries
for XML parsing and XSLT support [7] and the XAF
engine (XML Architectural Forms) [8] both for
developing our DTC prototype and for the DTC
components involved in the case study.

4.1. The domain document
For building this application, a single domain
document is considered. This document contains
information about the structure of the subway
network, schedulers, trajectory times between
different points of a station, average speed in the
different lines, etc. Figure 4 details the DTD used for
representing this information. The actual document
with this information for Madrid subway network fills
around ten thousand lines of XML marked
information.

4.2. The application-dependent documents.
We need the following application dependent
information:
• Presentational information regarding the subway

map. Required information involves geometrical
coordinates for each station, location of the

<!ELEMENT SubwayNetwork
 (Stations,Corridors?,Lines)>
<!ELEMENT Lines (Line)+>
<!ELEMENT Line (Schedulers,Links)+>
<!ATTLIST Line id ID #REQUIRED>
<!ELEMENT Schedulers (Scheduler)+>
<!ELEMENT Scheduler EMPTY>
<!ATTLIST Scheduler
 StartTime CDATA #REQUIRED
 EndTime CDATA #REQUIRED
 Frequency CDATA #REQUIRED>
<!ELEMENT Links (Link)+>
<!ELEMENT Link EMPTY>
<!ATTLIST Link
 OriginStation IDREF #REQUIRED
 DestinationStation IDREF #REQUIRED
 Distance CDATA #REQUIRED
 Speed CDATA #REQUIRED>
<!ELEMENT Corridors (Corridor)+>
<!ELEMENT Corridor EMPTY>
<!ATTLIST Corridor
 id ID #REQUIRED
 OriginStation IDREF #REQUIRED
 DestinationStation IDREF
 #REQUIRED
 TraversingTime CDATA #REQUIRED>
<!ELEMENT Stations (Station)+>
<!ELEMENT Station (Accesses,Tracks,Times) >
<!ATTLIST Station id ID #REQUIRED>
<!ELEMENT Accesses (Access)+ >
<!ELEMENT Access (#PCDATA) >
<!ATTLIST Access id ID #REQUIRED>
<!ELEMENT Tracks (Track)+ >
<!ELEMENT Track EMPTY >
<!ATTLIST Track id ID #REQUIRED
 Line IDREF #REQUIRED
 Direction IDREF
 #REQUIRED >
<!ELEMENT Times (AscentTime |
 DescentTime|
 TransferTime)+ >
<!ELEMENT AscentTime EMPTY>
<!ATTLIST AscentTime
 Track IDREF #REQUIRED
 Access IDREF #REQUIRED
 Time CDATA #REQUIRED>
<!ELEMENT DescentTime EMPTY>
<!ATTLIST DescentTime
 Access IDREF #REQUIRED
 Track IDREF #REQUIRED
 Time CDATA #REQUIRED>
<!ELEMENT TransferTime EMPTY>
<!ATTLIST TransferTime
 OriginTrack IDREF #REQUIRED
 DestinationTrack IDREF #REQUIRED
 Time CDATA #REQUIRED>

Figure 4. DTD for representing information about a
subway network.

5

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

names of such stations and a color for each line.
Figure 5 shows the DTD used for structuring the
document. Building such a document can be a
tedious work. There are two ways of avoiding this
work: renounce to a metrical presentation of the
map (yet it is possible to generate a simpler
graphical representation for each subway line) or
build and use an special–purpose edition tool for
generating the required information. Section 5
will suggest how DTC can be extended for
coping with the second one.

• Application control and interaction information.

This is the information needed for basic facilities,
containers and control components. There should
be a componential document associated with each
occurrence of such components. To improve
maintainability this information is put together in
an interaction and control document. The needed
componential documents can be generated from
this document using EDA processing.

4.3. The software components and the
application software
We have used eight prototypes of DTC components
for devising the application software:
• Markup interpreters: Diagram, for supporting a

simple language that enables the description of
2D diagrams made of circles, straight line
connections and text labels, and Graph, that
supports a language for describing weighted
directed graphs, similar to that of Figure 2.

• Primitive facilities: ButtonArragement for setting
collections of buttons, and Label, that makes
possible to include static and dynamic text
fragments in a GUI interface.

• A generic mediator: XML manager, for
manipulating documents in terms of their DOM
(Document Object Model) trees [18].

• GUI Containers: Panel, supporting a Java AWT
bag layout–like layout mechanism, and Window,
for working with windows with an AWT’s card
layout-like policy.

• A controller: Automata, allowing the description
of application interaction and behaviour in terms
of a state–transition oriented formalism.

Using these components, the application software for
the subway application relies on the identification of
the component occurrences to be used and to properly
assemble such occurrences in a compositional
structure (Figure 6).

4. 4. Putting all together
Once available all the documents and the
computational support for the application only rests to
put all together. For doing it we need to perform the
following transformations:
• A transformation for generating a description of

the subway map in the language of the Diagram
component. Such a transformation takes both the

<!ELEMENT presentationalInfo
 (station*,name*,line*)>
<!ELEMENT station EMPTY>
<!ATTLIST station
 id ID #REQUIRED
 x CDATA #REQUIRED
 y CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ATTLIST name
 x CDATA #REQUIRED
 y CDATA #REQUIRED>
<!ELEMENT line EMPTY>
<!ATTLIST line
 id ID #REQUIRED
 colour CDATA #REQUIRED>

Figure 5. DTD for documents containing presentational
information required for the layout of the subway map.

Automata

(Subway)
 Graph

 Window

 XMLManager
 (for mapping
 nodes to
 Stations)

 XMLManager
 (for managing
 paths)

 (Main) Panel

 (State) Label

 (Lateral) Panel

 (Subway) Diagram

 (Destination title)
 Label

 (Origin title)
 Label (Origin)

 Label
 (Destination)
 Label

 (Exit-Reset)
 Buttons
Arrangement

Figure 6. Compositional structure for the software of the
subway route-finder application.

C S
C contains
to S

6

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

domain and the presentational documents as
sources.

• A transformation for generating a graph
representation of the subway network in the

language of the Graph component (Figure 7
shows a fragment of an XSLT filter for this
transformation).

• A transformation for generating a document
relating nodes in the graph representation with
stations in the domain document. This document
will serve as input for an occurrence of the XML
Manager mediator that enables to relate nodes in
the paths found by the Graph component with
circles in the language of the Diagram
component.

• A transformation (performed by EDA processing)
for generating application control and interaction
information from the interaction and control
document.

Figure 8 outlines how all this information (application
documents, application software description,

transformations and architectural mappings) can be
used to generate the final application (Figure 9).

5. Discussion.
Previous section shows the viability of building
applications according to the DTC approach.
Assuming an appropriate support environment, the
approach will improve the maintainability of
applications, because the explicit separation between
content and computational machinery and the
representation of information in the form of human
readable and editable documents [4][5].
Many of the changes and actualizations in the
application will be at the document level with no
programming effort. In our case study, changes in the
aspect of the GUI is straightforward without coding
(you only need to edit and modify the structured
presentational information). In addition you can
easily make more sophisticated changes. For instance,
the introduction of a new subway line can be
performed in a straightforward manner, changing the
domain document, with zero programming effort. Or
you could change the route search criteria with the
appropriated reformulation of the transformation that
produces the information attached with the Graph
occurrence, and not more changes would be needed in
the application.

<xsl:template match="SubwayNetwork">
 <graph>
 <xsl:apply-templates/>
 </graph>
</xsl:template>

<xsl:template match="Station">
 <node id="{@id[1]}"/>
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match="Track">
 <node id="{@id[1]}"/>
</xsl:template>

<xsl:template match="Access">
 <node id="{@id[1]}"/>
</xsl:template>

<xsl:template match="AscentTime">
 <arc origin="{@Track[1]}"
 destination="{@Access[1]}"
 cost="{@Time[1]}" />
</xsl:template>

<xsl:template match="DescentTime">
 <arc origin="{@Access[1]}"
 destination="{@Track[1]}"
 cost="{@Time[1]}" />
</xsl:template>
...

Figure 7. Part of the XSLT specification document for
transforming the subway description in a weighted graph.

Componential
Documents
(automata
behaviour, graph
description,
diagram
description, etc).

Transformation
Processes

Transformation
Specifications
(subway to graph
, subway to
diagram, etc)

Subway description Map presentation App Sw description

Application Software

Figure 8. DTC process for building the subway route finder
application.

7

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

DTC approach also take advantage of the component–
based software construction modularity for easing
update and maintenance. For instance, it would be
easy to introduce different Graph occurrences for
different time intervals, and, with the help of a Clock
component, to generate a time-adaptable application:
you only need to re-structure the components
arrangement, to change the Automata description, and
to write a transformation for generating the
information required for each Graph occurrence.

Moreover DTC approach encourages reusability at
different levels. Domain documents and DTDs can be
reused for multiple purposes. Software components
can also be reused in the construction of different
applications. Finally application software can be
reused for building applications in similar domains
(for instance, you could be thinking about reusing the
subway application software in building an
application for finding the best route in the roadmap
of a country).

As we have discussed, document transformations
have a prominent role in reusability, because it is the
glue that allows reusable domain documents and
reusable software to fit together. Transformations as
basic vehicles for enabling reuse are well-known both
in software reusability [3] and in the construction of
knowledge-based systems by means of reusable
components [15] (there the role of transformations is
played by ontology translations and ontology
mappings [16]).

We also identify some shortcomings of the DTC
approach, such as the complexity of managing
efficiently the different sorts of information (domain,
application and transformation specification
documents, application software description, etc.), the
static nature of the content documents, and the rather
strong assumptions made respect to domain and
application dependent information.
The complexity of the DTC process can be lowered
with a suitable automation. Currently we have

Figure 9. Screenshot of the subway’s route finder application built using the DTC approach.

8

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

developed a batch environment for doing all this
work1, but we plan to develop a graphical tool for
supporting the DTC process.

Regarding the content documents, DTC assumes that
these documents are given prior to the application
execution. It is a serious constraint when you need to
change this information as a consequence of the
application execution. Fortunately this drawback
could be easily solved either by generalizing the DTC
component model adding a reintegration interface or
by including special reintegration actions (in fact our
XML manager mediator provides with one of such
actions).
The shortcoming of domain and application
information is more difficult to solve. Indeed, we
think that many times (and it will be almost true in the
beginning of the implantation of the DTC approach in
an organization) the availability of suitable domain
documents is rather unrealistic. Moreover, as we have
illustrated in subsection 4.2, many times we will need
application dependent documents which are complex
and difficult to obtain. Depending of the application
domain, use of standard structured document editing
facilities can not be sufficient (as in the case of
documents marked according to DTD of Figure 5).
Because these considerations we think that for DTC
being useful in the day-to-day software development

1 In our prototype the DTC process is described in terms of a
markup language that is processed by a DTC engine. Such an
engine loads the needed components, makes the needed
instantiations, transformations, document integrations and
compositions and invokes the required actions.

practice it must be improved with authoring facilities.
Fortunately we think that it can be easily achieved
following the same component-oriented and
information and software separation ideas underlying
the approach described here. Currently we are
working on an extension of DTC oriented to the
generation of domain dependent document editors.
The idea is to derive specialized editors from reusable
DTC components (extended to support editing
capabilities). Because such components must generate
structured documents according their supported
languages, inverse transformations are needed for
generating domain documents from componential
ones. We refer to this approach as the inverse DTC.
The resulting extended (direct and inverse) DTC
approach is outlined in Figure 10. Using the extended
DTC approach you could devise an specialized editor
for subway networks allowing to collect the
information required by the DTDs of Figures 4 and 5,
and then to specify an inverse transformation for
generating the subway description document. Once
made it you could apply the direct approach for
mapping this information to the Graph component
language or to reuse the domain document elsewhere.

6. Conclusions and future work.
We have presented the DTC approach for building
software applications. DTC enables application
maintainability and different levels of reuse. These
goals are achieved integrating componentware and
markup technologies in a unified framework.
Reusable software components enable the derivation
of specialized application software and the use of
transformations facilitates the integration of domain
documents within this software. Furthermore DTC
can be easily extended for deriving specialized
markup editors in order to lower the complexity of the
document authoring.
The next steps in the project are to obtain a better
characterization of the application domains where
DTC is specially suited, and the development of a
user-friendly DTC environment. As future work we
are planning to perform a better classification of
transformations inside the DTC framework, to make
our component model more flexible and to refine our
idea of inverse DTC.

Acknowledgements
The EU project Galatea (TM-LD-1995-1-FR89) and
the Spanish Committee of Science and Technology
(TIC97 2009-CE and TIC98-0733) have partially
supported this work.

Figure 10. Schema of the extended (direct and inverse) DTC
approach

Inverse
Transformations

Direct
Transformations

Application
Documents

Componential
Documents

Application
Software

9

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

References
1. Aho,V.A; Ullman, J.D.: “The Theory of Parsing,

Compiling and Translation. Vols. I & II”.
Prentice-Hall. 1972.

2. Coombs, J. H.; Renear, A. H.; DeRose, S. J.:
"Markup Systems and the Future of Scholarly
Text Processing". Communications of the ACM
30/11 (1987) 933-947.

3. Feather,M.S.: “Reuse in the Context of a
Transformation-Based Methodology”. In
Biggerstaff, T.J.; Perlis,A.J.: “Software
Reusability. Volume I: Concepts and Models”.
ACM Press, 1989.

4. Fernandez-Manjon, B.; Navarro, A.; Cigarran, J.;
Fernandez-Valmayor, A.: “Using Standard Mark-
up in the Desing and Development of Web
Educational Software”. In “Proceedings of
Teleteaching 98”. Book Series of the Austrian
Computer Society. 5th IFIP World Computer
Congress. 1998.

5. Fernandez-Manjon, B.; Fernandez-Valmayor, A.:
"Improving World Wide Web Educational Uses
Promoting Hypertext and Standard General
Markup Language Content-based Features".
Education and Information Technologies, vol 2,
no 3. 1997.

6. Goldfard, C.F.: “The SGML Handbook”. Oxford
University Press 1990

7. http://technet.oracle.com/
8. http://www.megginson.com/XAF/
9. International Standards Organization: “Standard

Generalized Markup Language (SGML)”.
ISO/IEC IS 8879, 1986.

10. International Standards Organization:
“Architectural Form Definition Requirements
(AFDR)”. In “Hypermedia/Time-based
Structuring Language (HyTime) – 2d Edition”.
ISO/IEC 10744 . 1997.

11. International Standards Organization: “Document
Style Semantics and Specification Language
(DSSSL)”. ISO/IEC 10179. 1996.

12. Kimber, W. E.: "A Tutorial Introduction to
SGML Architectures". ISOGEN International
Corporation workpaper. 1997.

13. Knuth,D.: “Semantics of Contex-Free
Languages”. Mathematical System Theory 2:2.
1971.

14. Kuikka, E.; Pentonnen, M.: “Transformation of
Structured Documents”. Tech. Report CS-95-46.
University of Waterloo. 1995.

15. Motta, E.: “Reusable Components for Knowledge
Modelling”. IOS Press. 1999.

16. Park J.Y.; Gennari J.H.; Musen M.A.: “Mappings
for Reuse in Knowledge-based Systems”. 11th
Workshop on Knowledge Acquisition, Modelling
and Management KAW 98. Banff, Canada, 1998.

17. Szyperski, C.: “Component Software: beyond
Object-Oriented Programming”. Adisson Wesley.
1998.

18. W3C Candidate Recommendation.: “Document
Object Model (DOM) Level 2 Specification
Version 1.0”. 1999. http://www.w3.org/DOM

19. W3C Recommendation.: “Extensible Markup
Language (XML) 1.0”. 1998.
http://www.w3.org/XML/

20. W3C Recommendation.: “XSL Transformations
(XSLT) Version 1.0”. 1999.
http://www.w3.org/TR/xslt

Biography
• Mr. Jose-Luis Sierra is a Computer Science

assistant professor at UCM. He is preparing a
Ph.D. dissertation on the development of
applications based on structured documents,
document transformations and software
components.

• Dr. Baltasar Fernandez-Manjon is a Computer
Science professor at UCM. His research interests
lie in the educational uses of computers, markup
languages and user modelling.

• Dr. Alfredo Fernandez-Valmayor is a Computer
Science professor at UCM and his research
interest includes markup languages and its
application to hypermedia and educational
systems construction.

• Mr. Antonio Navarro is a Computer Science
assistant professor at UCM. He is working in a
Ph.D. dissertation centred on markup languages
and hypermedia systems.

10

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

