
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Games for coding to attract new students to STEM

Antonio Calvo-Morata

Universidad Complutense de Madrid

Madrid, Spain.

acmorata@ucm.es

Rasmus Pechuel
Ingenious Knowledge

Cologne, Germany
rasmus.pechuel@ingeniousknowledge.com

Niklas Humble

Mid Sweden University, Sweden

Sweden

niklas.humble@miun.se

Baltasar Fernández-Manjón

Universidad Complutense de Madrid

Madrid, Spain.

balta@ucm.es

Peter Mozelius

Mid Sweden University, Sweden

Sweden

peter.mozelius@miun.se

Abstract— There is a need to increase the number of

students, especially women, choosing programming and STEM

disciplines. We need innovative approaches in schools to better

engage students and awake their interest in computer science.

This paper addresses the need to create tools that effectively

support the learning of programming and the development of

computational thinking, highlighting why video games can be an

effective educational tool for it and also attract new students to

STEM. The Game4Coding Erasmus+ project proposes the

design of a video game called CodeQuest, using a game genre

that has not been frequently used before to address the teaching

of programming, the monster tamer genre. We consider that

video games have a number of benefits such as that stimulate

active learning, are engaging for a wide range of students, and

present information in a way that is attractive to learners. We

want to explore this kind of game’s effectiveness as a learning

tool as well as its effect on the perception of STEM disciplines

and programming to attract new public to coding (especially

girls).

Keywords— Game-based learning, Programming learning

games, Computational thinking.

I. INTRODUCTION

The basic understanding of computer science at early
stages is a key element for the digital transformation of our
society and economy. With the generalization of technology
in all facets of daily life, a trend that has been accelerated
recently (e.g. teleworking or remote education due to
COVID), and the emergence of new and increasingly
sophisticated computer applications (e.g. those based on
artificial intelligence), a minimum knowledge of computer
science and programming is becoming more and more
necessary. For this reason, computational thinking and
programming have become highly relevant in the compulsory
education program [1]. However, achieving this digital
literacy is complex as it requires not only trained teachers and
a coherent curriculum approach but also to engage students
and awaken their interest in computer science. Many students,
especially girls, have no interest in the subject and still
consider computer science to be a difficult and arduous subject
that they dismiss out of hand. Therefore, we need new
approaches to teaching and learning programming that are
more motivating and attractive to a wider audience.

Until now, programming and computational thinking has
usually been a supplementary content in schools and its
assessment has not usually been very systematic. For example,
in the OECD's Programme for International Student

Assessment (PISA 2022), which evaluates education systems
worldwide by testing the skills and knowledge of a sampling
of 15-year-old students, computational thinking appears
within the mathematics assessment framework. Furthermore,
little attention is paid to coding as a way of developing
computational thinking. But this is beginning to change and
computer science is now more frequently becoming a core
subject in schools. And this will be accelerated as the new
PISA assessment for 2025 will include a new test called
“Learning in the Digital World” 1 , which will evaluate
"students' capacity to engage in an iterative process of
knowledge building and problem solving using computational
tools". It seems that this test will include questions that should
be solved using a visual block-based programming language
(Scratch-like) (Fig. 1). Schools will therefore need to improve
the coding teaching process.

On the other hand, it has been shown that videogames can
be an effective learning and motivational approach for
engaging students in difficult STEM subjects (e.g.
mathematics). This is in line with the literature that reflects
that gamification techniques and the use of games, Game-
Based Learning (GBL), are becoming more common as an
educational methodology. But videogames are not only for
learning. Videogames can also be used to address other issues
such as raising students' awareness or change attitudes
towards complex social problems (e.g., cyberbullying, gender
discrimination). In addition, according to
videogameseurope.eu, some experiments suggest that girls
who play video games choose 3 times more STEM disciplines
than those who do not play (even if this is a topic that need
more systematic research to be confirmed).

Therefore, we consider that video games can be a natural
learning tool to both learn basic programming concepts and to
increase interest in computational thinking in new public (e.g.,

1 https://www.oecd.org/pisa/innovation/learning-digital-world/

This work has been partially funded by the Ministry of Education

(PID2020-119620RB-I00), by the European Commission (Gaming4Coding

Erasmus+ project 2021-1-SE01-KA220-SCH-000023932) and by the
Telefónica-Complutense Chair on Digital Education and Serious Games.

Fig. 1. Complex programming task in the Karel the Turtle unit. PISA
2025 Learning in the world framework.

https://www.oecd.org/pisa/innovation/learning-digital-world/

girls). We want to explore a more natural way of presenting
programming not so much as something compulsory to learn
but as something beneficial to the player. Programming as a
kind of superpower that will "power-up" your avatar making
it easier for you to win in a game (i.e. in the same line that in
Minecraft programming can be a way to automatize and speed
up building construction avoiding doing repetitive tasks such
as laying bricks one by one). Through playing with the avatars
students will better understand the computational concepts
through active engagement, all while learning at their own
pace. But we want to do it in a way that helps the teacher in
teaching programming without requiring a great deal of added
effort or complexity. That means that the game should be easy
to deploy in a classroom. The game should be motivational
but simple enough so that learning to play does not take too
much time. And finally, the videogame should be flexible and
powerful enough to introduce all the required programming
concepts effectively so they can be transferred to a visual
language (e.g. Scratch) or a text language (e.g., Python).

The Gaming4Codign Erasmus project aims to highlight
the need to find effective and engaging ways to better teach
programming at compulsory education stages and the
usefulness of video games as an educational tool for this
purpose. It also proposes the design of a video game to learn
basic programming concepts and, also, to improve
computational thinking due to the close relationship between
both. We consider that a programming game is an effective
way to involve more students into computational thinking in a
very concrete way using some interactive and appealing

scenarios.

II. PROGRAMMING VS COMPUTATIONAL THINKING

The concept of Computational Thinking (CT) [4] often
appears in studies dealing with the teaching of programming.
But this also happens in the opposite direction. We also see
this when looking for educational games focused on learning
programming. It is therefore necessary to have a better
understanding of the concept of computational thinking and
how it relates to programming.

There are several definitions and frameworks for CT [2].
An early definition, which also popularized the concept, stated
that the characteristics of CT were that it was about thinking
like a computer scientist, learning fundamental skills, solving
problems in a human way, drawing on mathematics and
engineering, [3] highlighting ideas rather than artifacts and
that it is for everyone everywhere [4]. Later definitions often
view CT as a collection of skills or aspects. Shute, Sun and
Asbell-Clarke [2] divide CT key concepts in the facets of
decomposition, abstraction, algorithms, debugging, iteration,
and generalization. While Brennan and Resnick [5]
understand CT as encompassing three key dimensions,
namely computational concepts, computational practices, and
computational perspectives. Grover and Pea [6] have stated
that research on CT often focuses on the problem of definition
when it comes to CT, and which tools that could be said to
foster development in CT. In many countries CT has become
an integral part of kindergarten to grade 12 (K-12) education
and curriculum through the ongoing integration of
programming in schools [7].

Regarding the relationship between programming and CT
there are both similarities and differences between the two.
Computer programming is the activity “to write a computer
program” [8], and several practices associated with

programming can be found in the definitions and frameworks
of CT. Practices such as algorithms and debugging [3] and
concepts such as sequences, loops, parallelism, and
conditionals [5]are part of definitions and frameworks for CT
but also closely related to computer programming. However,
CT is often described in more general terms, including skills
and practices that go beyond computer programming. Going
back to the definition by Wing [4], it is stated that CT is not
about programming but rather about conceptualizing. This is
motivated by that “thinking like a computer scientist means
more than being able to program a computer. It requires
thinking at multiple levels of abstraction”. A similar
relationship between programming and CT can be viewed in
later definitions and frameworks for CT, such as
generalization in the framework by Shute, Sun and Asbell-
Clarke [3] and the key dimension of computational
perspectives by Brennan and Resnick [5].

III. DIGITAL GAMES FOR PROGRAMMING

GBL concept appeared at the university level in the 1970s
introduced by pedagogues such as Piaget [9] and
Vygotsky[10]. Jean Piaget was also the pedagogue who
presented the GBL ideas of Comenius for a new target group
[11]. Later the idea of using games in educational contexts got
a renaissance when Mark Lepper [12] and Thomas Malone
[13] first separately presented their analyses of how computer
games could stimulate intrinsic motivation. Their findings on
digital games and intrinsic motivation were later merged in the
creation of the taxonomy of intrinsic motivation [14]. One of
several links between Comenius’s ideas and Lepper and the
taxonomy of intrinsic motivation is the American pedagogue
and philosopher John Dewey. Both Comenius and Dewey
criticized the frequent occurrence of root learning and
suggested the idea of learning through activities outside the
traditional classroom activities [15]. In the 21st century, there
has been a rapid development of digital games with a wide
variety of game genres. With the phenomenon of digital
'casual games', playing has reached new target groups in all
age groups [16]. Today, when humans play more than ever, it
would be desirable to increase the use of games in teaching
and learning activities.

The use of video games as an educational resource in the
field of programming provides a practical and motivating
experience for students. These games allow students to learn
to program in a playful and engaging way, eliminating some
of the initial fear that some beginners may feel towards
programming. By interacting with games, students can
experience visible and rewarding results from their work,
increasing their engagement and interest for learning.

Fig. 2. Rabbids Coding. A Ubisoft game to learn programming.

The importance of programming and computational
thinking in society has led many companies to develop video
games to address a current educational need. Big companies
such as Google and Ubisoft have developed and explored
video games that teach basic programming concepts with
BlocklyGames2 and Rabbids Coding3 (Fig. 2) respectively.
Other game developers are taking advantage of the need to
create platforms that work as a service to particular people and
schools. This is the case for CodeCombat4 and Programming
Hero. On5 the other hand, researchers study the best ways and
mechanics with which video games can teach programming
and how effective are compared with more traditional
approaches [17]. They also explore how players themselves
learn, the differences between novice and expert
programmers, and what difficulties players encounter during
their learning [18].

The different video games that can be accessed can be
classified into those that are free like ToolboX academy6 (Fig.
3) and those that require some kind of subscription or payment
to access like CodeSpark7. On the other hand, we have those
that focus on text-based programming, sometimes with real
language syntax and others with pseudocode (CodeCombat),
and others that use visual programming (Lightbot8). However,
not all the games created over the last few years are still
available. Many of them stops receiving maintenance,
disappear from the different download platforms like
Grasshopper and May’s Journey, or are simply developed for
research purposes and are never published [19]. Usually, those
games are not distributed as open code therefore it is not
possible to update them or to modify them to specific purposes
or contexts (e.g. localization).

Other aspects to consider are the programming concepts
involved in the gameplay and their sequencing in the game.
What are the key concepts required to learn programming and
how and in which order they should be introduced to simplify
its learning is still an open question. According to some
studies, variable initialization is more difficult to understand
than variable updating or testing. Novice programmers also
have problems with loops and conditionals, as well as actions
performed within loops or conditional statements. Students
also often have misconceptions about the operation of
recursive functions [19]. Most developed video games to
teach programming are focused on fundamental programming
concepts such as variables, syntax, data types, output and

2 https://blockly.games/
3 https://store.ubisoft.com/es/rabbids-

coding/5d96f9b05cdf9a2eacdf68cb.html
4 https://codecombat.com/
5 https://www.programming-hero.com/

input, conditions, loops, and functions. And in some cases,
they even address recursion. However, not all games introduce
the same concepts or in the same order. Other concepts that
are also covered for some games include simple data
structures such as arrays and lists, program debugging, and
code documentation [17]. However, there are very few games
that address learning through multiplayer features,
encouraging player cooperation or competition between
players, their advantages over single-player games are
currently being explored [20].

Finally, it should be noted that all these games are intended
not only to teach the basics of learning to program but also
encourage the development of deeper computational thinking.
In the end, even if they are big controversy about what is more
important and are usually taught in a very different way, we
consider that both aspects are closely related and could be
integrated to get a more comprehensive understanding of
computer science.

Among all games and platforms currently available, we
can use games and GBL in more ways than most other
subjects due to the opportunity to make game programming a
part of teaching and learning activities. There are at least four
GBL approaches that can be used in programming education:
1) The use of commercial games to learn programming [17],
2) The use of teacher or student-developed educational games
for programming [21], 3) Learning to program by building
games [22], and 4) Teaching and learning activities in
interactive game environments [23].

 Firstly, existing commercial-off-the-shelf (COTS) games
can be used on several difficulty levels to learn programming
or computational thinking. On the easier levels for the younger
target audience games such as Lightbot (Fig. 4). This easy-to-
learn game that teaches the very fundamental concepts has
been widely used both in primary school [24], and in
introductory courses at the university level [25]. The Lightbot
game is in the spirit of Seymour Papert’s classic Turtle
Graphics and introduces computational thinking and
sequential instructions by moving objects around. On the
more advanced side of COTS games for programming, there
are games such as the Human Resource Machine9, TIS-10010,

6 https://toolbox.academy/
7 https://codespark.com/play/
8 https://lightbot.com/
9 https://tomorrowcorporation.com/humanresourcemachine
10 https://www.zachtronics.com/tis-100/

Fig. 4. Lightbot. Puzzle game based on coding that introduces
programming concepts.

Fig. 3. Toolbox academy. Platform to teach programming.

https://blockly.games/
https://store.ubisoft.com/es/rabbids-coding/5d96f9b05cdf9a2eacdf68cb.html
https://store.ubisoft.com/es/rabbids-coding/5d96f9b05cdf9a2eacdf68cb.html
https://codecombat.com/
https://www.programming-hero.com/
https://toolbox.academy/
https://codespark.com/play/
https://lightbot.com/
https://tomorrowcorporation.com/humanresourcemachine
https://www.zachtronics.com/tis-100/

and Shenzhen11. Three games that try to teach something as
complex as low-level assembly programming in an enjoyable
manner [26]. Some of these games not only cover
programming concepts, but also with much more advanced
topics related to computation. Concepts such as artificial
intelligence, automata, cybersecurity and machine learning
also appear. An example of this is the game while True:
learn()12 (Fig.4).

Secondly, teachers with programming skills can develop
their own learning games that are tailored to the actual
curricula. A university-level branch of this concept is to have
assignments for students who have good programming skills,
where they build learning games for training in fundamental
programming. At the same time as more experienced students
improve their programming skills by building games, the best-
built games could be used in introductory courses [21].

 Thirdly, learning to program by building games has been
used for many years in computer science. Like the second
approach, this can be applied in a wide range from building
games by the use of block programming environments [27],
to advanced low-level programming [28].

Finally, the fourth approach, which resembles the third, is
to use various interactive environments to practise
computational thinking and programming. An example of
such a digital interactive environment is Minecraft. An
environment that has been described as “Virtual Lego” [29],
where the digital building blocks can be used to stimulate
interest in programming [23], or for learning to program by
building games [30].

In addition to these approaches, programming learning
games are also starting to appear in metaverse environments
(Minecraft environment could also be considered as a
metaverse) [31]. For example, a CodeCombat Wolds 13game
has just been released within the Roblox gaming environment
(which at least in some respect can be considered as one of the
game metaverses with potential educational uses).

IV. CODEQUEST

Gaming4Coding has led to the creation of a simple open-
source game concept that has been iteratively expanded. This
game aims to teach programming in a more natural and
engaging way. The game focus on the age group of 10–16

11 https://www.zachtronics.com/shenzhen-io/
12 https://store.steampowered.com/app/619150/while_True_learn/

year-old students and the aesthetics is designed to appeal to a
broad spectrum of players (e.g. girls).

 The core idea of this game called CodeQuest is that
players play by collecting avatars that are cute fantasy
creatures called ‘critters’ which can be trained by giving them
instruction scripts. The training is purposefully not called
programming to give the game less of a technical feeling. The
main gameplay consists of collecting interesting critters,
training them for racing and entering them into a race against
other players. Races are held on different obstacle courses.
The critters compete either against bots or against other
players.

While there are games for learning programming
characterized by puzzle mechanics and RPGs, there are none
focused on training and collecting creatures. This game genre
characterized by training and collecting creatures is called
Monster-taming, one of its greatest exponents being the
Pokémon saga. Another underexplored feature of games for
developing computational thinking and learning programming
is multiplayer. CodeQuest implements this option, enabling
players to play against each other, and researchers to study the
effects of competition during learning in the field of
programming.

The design of the game therefore focuses on the following
4 pillars:

• Collecting: The activity of collecting things has a large
appeal as a game element, especially when the player can
collect creatures. The most prominent example of this is
the Pokémon game. Since new creatures are awarded for
winning races or for other achievements the interest in
collecting critters has a strong impact on the motivation
of the players to get better at coding, so that collecting
new critters becomes easier.

• Rewards: Rewards are very important for player
motivation. The game rewards victories in races so that
players get something out of having created well working
training scripts for their critters. However, the game also
rewards personal achievements, even if the player doesn’t
end up winning the race. Thus, rewards play an important
role in keeping the motivation high for any learning and
gaining of experience. The biggest rewards are new
collectable critters, smaller rewards are special items for
the critters and trophies.

13 https://www.roblox.com/games/11704713454/Pets-CodeCombat-Worlds

Fig. 6. Avatar selection.

Fig. 5. while True: learn():. Puzzle game that introduces deep learning
concepts.

https://www.zachtronics.com/shenzhen-io/
https://store.steampowered.com/app/619150/while_True_learn/
https://www.roblox.com/games/11704713454/Pets-CodeCombat-Worlds

• Competition: The competition element is a well-
established way to challenge a player to become better.
The game uses a mixture of players and bots as
competitors so that the player always has the opportunity
to win against someone, even if it is too hard to win first
place. Competition should also give players an
opportunity to learn from others.

• Matching Difficulty: The game uses a smart algorithm to
assign competence levels to players in order to match
them with other players or bots that are performing at
comparable levels. This avoids having a beginner crushed
by a very advanced player.

Being able to choose between different creatures to play
with, compete with other players, complete challenges and
discover new blocks of code to progress with are intended to
be the motivating engine that keeps players interested and thus
motivates them to keep learning and improving (Fig. 6).

In the actual game the players first learn how to give
critters commands to guide them through an obstacle course.
Commands correspond to functions in Python but the players
will be using predefined functions from the beginning (such
as “Run”, “Move Left”, “Move Right”, “Jump Forward”, etc.)
before learning how to create their own functions (Fig. 7). The
game starts with tutorials which challenge the player to solve
a situation, so they are essentially little puzzles that help the
player acquire the skills needed. The tutorials gradually
introduce the player to the competitive racing game in which
more critters can be unlocked and rewards can be won. Of
course, the tutorials can be skipped and the players can
immediately start training their critters and enter them into
races.

In a race the player only has limited control over the
critters as they are mainly in the role of a spectator. Winning
or losing a race has a lot to do with which critter is selected
for the racetrack and which commands are given to the critter
in the ‘training script’. This is where it is most important to
get new creatures and train them to fit the different circuits.

When training a critter, a player writes down a sequence of
commands which the critter will execute in the race. This
could start in a very simple way (“Run”, “Run”, “Run”, “Jump
Forward”) and then move to more advanced coding structures
with while loops and conditionals. The game never pushes the
player to advance in coding skills, however the competitive
aspect and the rewards for winning races are a huge
motivation to improve the performance of the critters, thus
leading to players trying out more advanced code.

Another feature is that the view where the code is
implemented mixes both a more visual part, of predefined
code blocks, with a textual part that follows the Python syntax
(Fig. 7). Python syntax was chosen for the coding elements
since Python is one of the most popular programming
languages which is also widely recommended for school
environments in Europe. It is also easy to learn. In the actual
game the players first learn how to give critters commands to
guide them through an obstacle course. Commands
correspond to functions in Python but the players will be using
predefined functions from the beginning (“Run”, “Dodge
Left”, “Move Right”, “Condition”, etc.) before learning how
to create their own functions.

Regarding programming concepts, the tutorial (Fig. 8)
introduces some of them as in other games and the different
levels are categorized by the concept being taught or
practiced. the tutorial deals first with the different commands
that allow the player to move, then loops, conditionals and
finally variables. There is also a last advanced category with
nested loops and switch cases. But the tutorial es optional, so,
in CodeQuest the concepts are intrinsic, and the player
develops computational thinking and learns programming
concepts without being aware of it. The game seeks that the
player learns in an unconscious way, practicing the concepts
through finding new ways to improve, training his creatures,
and completing the challenges presented to him through
competition with other players.

The game also incorporates an analytics system that
captures user interaction information. For the capture of this
information a standard language is used, specifically xAPI
(eXperience API). For this purpose, the game incorporates a
tracker that supports xAPI and that takes care of
communicating the relevant interaction data to a data server
(which in xAPI terminology is called a Learning Record
Store). This allows to have all the information of the users
while they play and makes possible to make different types of
analysis (e.g. average playing time, progress in the game,
difficulty of the levels based on the playing time or on the
number of failed attempts). This will allow to better evaluate

Fig. 7. Circuit and code screens in CodeQuest.

Fig. 8. Tutorial screen in CodeQuest.

the game as it is deployed in real classroom environments. To
guarantee all aspects of privacy and to comply with the
European GDPR regulation, all data captured for the scientific
validation of the game will be pseudo-anonymized at the
origin using a unique code provided by the teachers for each
of the players.

V. DISCUSSION

A digital transformation of our society is necessary, and to
this end, over the last few years, computational thinking and
programming have been introduced in the compulsory stages
of education. This makes it necessary to create new tools
adapted to these stages to enable learning in these two
subjects. Video games can be a useful tool for them, either as
a classroom tool to be used with game-based learning
methodologies or for students themselves to learn at home and
find interest in STEM careers. For instance, software
developers such as Microsoft saw the potential of video games
in education, buying Minecraft and releasing an educational
version.

As we have seen, some studies speak of games as an
activity that is intrinsically motivating, due to aspects such as
challenges, progression, learning new things and being able to
make decisions, all of them characteristics that attract players
to play. However, many gamers also report that they play
games to relax, destress or share time with friends, indicating
that video games are becoming more and more a part of
society, like books or films, and there is also an extrinsic
motivation to play for some players. But not all of society
plays video games [32]. Even though more and more people
play games there are also very different profiles of players.
For example, Bartle, proposes 4 profiles [33]. This makes it
necessary to study different game genres and mechanics, as
well as ways of approaching programming and computational
thinking. To study the effectiveness of video games, their
acceptance among different student profiles and to compare
them. In this case, the proposed game has as its mechanics the
collection and training of creatures, the critters. The game falls
into the monster-tamer genre, a genre different from the more
typical one used to teach programming, which is the puzzle
genre.

Since not all players are the same and not all people play
games, it is necessary to research and create new video games,
different from each other, that address the teaching of
programming and/or computational thinking to help this
digital transformation of society. One of the features that has
been little explored in this area is that of multiplayer games,
and more specifically, competitive gaming. Adding this
option, allowing students to challenge each other and
compete, can help to retain players with a more "killer"
profile, encouraging them to improve and continue learning
new concepts and techniques related to programming that will
help them to beat their opponents. Therefore, the game
presented in this paper introduces the option for players to
challenge each other with the scores obtained so far. This
allows players to learn from the strategies used by the players
they face.

On the other hand, maintaining challenges and level
completion, as well as collectibles, allows reaching out to
more "explorer" and "archiever" players. Finally, we must not
forget those players who are more “social”, adding mechanics
for sharing achievements and collaboration can help to
maintain the interest of this type of player. But balancing the

mechanics to maintain the interest of all these profiles is a very
hard task. CodeQuest's option to complete quests and collect
new creatures is intended to appeal to this type of player. In
addition, while there is the option to face other players, this is
optional, and students can use the game as a conventional
single player.

One of the limitations of this game is that its deployment
is intended for mobile devices (e.g. IOS and Android). As
practically all the students have a smartphone, the initial idea
was to use a BYOD (Bring Your Own Devices) approach
where students provide their own device as it simplifies the
deployment and reduces the requirement for schools.
Therefore, its use in the classroom may be affected by the
possible regulations of the center where it is to be used (for
instance in Spain mobile phone use in schools is being
restricted in some regions). However, this feature, on the other
hand, makes it easier for players to practice and learn outside
the school, seeing the activity from a more leisure point of
view.

Moreover, while it is common to talk about computational
thinking and programming together, it should be noted that
they are two different but related things. So, it would be
possible to develop games that develop computational
thinking without having to deal with programming. However,
it is more complex to develop programming knowledge
without fostering computational thinking because these skills
are necessary for programming and problem solving.

Finally, all the ethical and privacy issues involved in both
game research and its application in the classroom must be
taken into account. For example, this would make it very
complex to use some of the new metaverse game proposals as
there may not be sufficient clarity on the privacy and
ownership aspects of student data acquired during the game.
European privacy and data protection regulations GDPR must
be complied with at all times and users and schools must be
informed and sign consent for both data collection and data
processing and the purpose of the intended data analysis.

VI. CONCLUSIONS AND FUTURE WORK

As previously stated Gaming4Codign Erasmus project
aims to highlight the need to find effective and engaging ways
to better teach programming at compulsory education stages
and the usefulness of video games as an educational tool for
this purpose. This paper addresses the need to create new
games focused on players to learn programming and develop
computational thinking, highlighting why video games can be
an effective educational tool for it. Therefore, the design of a
video game called CodeQuest is also presented, using a game
genre that has not been frequently used before to address the
teaching of programming.

Video games stimulate active learning, are motivating and
present information in a way that is attractive to learners. This
can have a positive impact on motivation to learn. While we
already find numerous educational games in this area of
programming, studies indicate a lack of research on the use of
multiplayer and how it affects learning. CodeQuest introduces
multiplayer features that will allow researchers to study in the
future how competition affects the motivation and learning of
programming. This multiplayer feature will allow us to
evaluate whether competitive mechanics can be an interesting
feature when teaching programming, compared to single-
player games, thus differentiating itself from other proposals
such as Articoding (Fig. 9).

With the inclusion of computational thinking and coding
aspects in the new PISA school evaluation the interest in those
kinds of innovative ways to effectively include programming
in schools will be more important. As previously stated, the
new PISA evaluation in 2025 will add computational thinking
and block coding to the list of competencies it evaluates, the
need for schools to have tools to train these skills in an
effective way increases.

Finally, to avoid the obsolescence of the game and to
increase its impact, we plan to distribute the game as open
code so other researchers can learn from this experience, reuse
it and improve or adapt to their requirements. Next steps in the
Gaming4Coding project are to run a case study with
CodeQuest in the coming months to explore its effectiveness
as an educational tool as well as the effects of competition
between players on learning.

REFERENCES

[1] S. Bocconi et al., “Reviwing computational thinking

in compulsory education. State of play and practices

from computing education.,” Luxembourg, 2022.

doi: https://data.europa.eu/doi/10.2760/126955.

[2] N. Humble and P. Mozelius, “Grades 7–12 teachers’

perception of computational thinking for

mathematics and technology,” Front Educ

(Lausanne), vol. 8, Mar. 2023, doi:

10.3389/feduc.2023.956618.

[3] V. J. Shute, C. Sun, and J. Asbell-Clarke,

“Demystifying computational thinking,”

Educational Research Review, vol. 22. Elsevier Ltd,

pp. 142–158, Nov. 01, 2017. doi:

10.1016/j.edurev.2017.09.003.

[4] J. M. Wing, “Computational thinking,” Commun

ACM, vol. 49, no. 3, pp. 33–35, Mar. 2006, doi:

10.1145/1118178.1118215.

[5] K. Brennan and M. Resnick, “New frameworks for

studying and assessing the development of

computational thinking,” Proceedings of the 2012

annual meeting of the American educational

research association (AERA), 2012, Accessed: Sep.

12, 2023. [Online]. Available:

https://www.media.mit.edu/publications/new-

frameworks-for-studying-and-assessing-the-

development-of-computational-thinking/

[6] S. Grover and R. Pea, “Computational Thinking in

K–12,” Educational Researcher, vol. 42, no. 1, pp.

38–43, Jan. 2013, doi:

10.3102/0013189X12463051.

[7] N. Humble and P. Mozelius, “Teacher perception of

obstacles and opportunities in the integration of

programming in K-12 settings,” Jul. 2019, pp. 350–

356. doi: 10.21125/edulearn.2019.0125.

[8] IEEE Computer Society. Standards Coordinating

Committee., IEEE standard computer dictionary : a

compilation of IEEE standard computer glossaries,

610. Institute of Electrical and Electronics

Engineers, 1991. doi:

https://doi.org/10.1109/IEEESTD.1991.106963.

[9] Jean Piaget, To understand is to invent: the future of

education. New York: Penguin Books, 1973.

[10] L. S. VYGOTSKY, Mind in Society. Harvard

University Press, 1980. doi: 10.2307/j.ctvjf9vz4.

[11] J. Piaget, Play, Dreams And Imitation In Childhood.

Routledge, 2013. doi: 10.4324/9781315009698.

[12] M. R. Lepper and D. Greene, “Turning play into

work: Effects of adult surveillance and extrinsic

rewards on children’s intrinsic motivation.,” J Pers

Soc Psychol, vol. 31, no. 3, pp. 479–486, Mar. 1975,

doi: 10.1037/h0076484.

[13] T. W. Malone, “Toward a Theory of Intrinsically

Motivating Instruction*,” Cogn Sci, vol. 5, no. 4,

pp. 333–369, Oct. 1981, doi:

10.1207/s15516709cog0504_2.

[14] Thomas Malone and Mark Leeper, “Making

Learning Fun: A Taxonomy Of Intrinsic

Motivations For Learning, Aptitude, learning and

instruction,” 1987, pp. 223–253.

[15] V. Zoric, “The importance of the impact on the

formation of pedagogical ideas of the greatest minds

in pedagogy: The origin and development of John

Dewey’s pragmatistic pedagogy Educational policy

in socialist Montenegro View project Teacher

Education in Europe-History, Structure and Reform

View project,” 2019. [Online]. Available:

https://www.researchgate.net/publication/33628817

2

[16] J. Juul, A casual revolution : reinventing video

games and their players, MIT press. MIT Press,

2010.

[17] M. A. Miljanovic and J. S. Bradbury, “A Review of

Serious Games for Programming,” vol. 11243, S.

Göbel, A. Garcia-Agundez, T. Tregel, M. Ma, J.

Baalsrud Hauge, M. Oliveira, T. Marsh, and P.

Caserman, Eds., in Lecture Notes in Computer

Science, vol. 11243. , Cham: Springer International

Publishing, 2018, pp. 204–216. doi: 10.1007/978-3-

030-02762-9_21.

[18] C. Delozier and J. Shey, “Using Visual

Programming Games to Study Novice

Programmers,” International Journal of Serious

Games, vol. 10, no. 2, pp. 115–136, Jun. 2023, doi:

10.17083/ijsg.v10i2.577.

[19] J. Díaz, J. A. López, S. Sepúlveda, G. M. Ramírez

Villegas, D. Ahumada, and F. Moreira, “Evaluating

Aspects of Usability in Video Game-Based

Programming Learning Platforms,” Procedia

Fig. 9. Articoding, single-player game to teach programming basic
concepts.

Comput Sci, vol. 181, pp. 247–254, 2021, doi:

10.1016/j.procs.2021.01.141.

[20] A. Wynn, J. Wang, R. Han, and T.-C. Hsu,

“Multiplayer Serious Games Supporting

Programming Learning,” European Conference on

Games Based Learning, vol. 17, no. 1, pp. 721–729,

Sep. 2023, doi: 10.34190/ecgbl.17.1.1621.

[21] M. Olsson and P. Mozelius, “Learning to Program

by Playing Learning Games Active Learning

Classrooms View project Learning to Program by

Playing Learning Games View project Learning to

Program by Playing Learning Games,” 2017.

[Online]. Available:

https://www.researchgate.net/publication/32027139

1

[22] A. Batista et al., “A Framework for Games-Based

Construction Learning: A Text-Based Programming

Languages Approach 3D Me App View project

Designing and Validating a Methodology for Shared

Decision-making Between Patients and Healthcare

Professionals View project A Framework for

Games-Based Construction Learning: A Text-Based

Programming Languages Approach,” 2016.

[Online]. Available:

https://www.researchgate.net/publication/30877786

4

[23] C. Zorn, C. Wingrave, E. Charbonneau, and J. J.

Laviola, “Exploring Minecraft as a Conduit for

Increasing Interest in Programming,” 2013.

[24] J. Erazo-Palacios, C. R. Jaimez-González, and B.

García-Mendoza, “Towards a Web Generator of

Programming Games for Primary School Children,”

International Journal of Engineering Pedagogy

(iJEP), vol. 12, no. 4, pp. 98–114, Jul. 2022, doi:

10.3991/ijep.v12i4.17335.

[25] M. A. López, E. V. Duarte, A. P. Valderrama, and

E. C. Gutierrez, “Teaching abstraction, function and

reuse in the first class of CS1 - A lightbot

experience,” in Annual Conference on Innovation

and Technology in Computer Science Education,

ITiCSE, Association for Computing Machinery, Jul.

2016, pp. 256–257. doi: 10.1145/2899415.2925505.

[26] S. Cass, “Some assembly (language) required -

Three games that make low-level coding fun

[Resources_Geek Life],” IEEE Spectr, vol. 54, no.

5, pp. 19–20, May 2017, doi:

10.1109/MSPEC.2017.7906890.

[27] I. Ouahbi, F. Kaddari, H. Darhmaoui, A. Elachqar,

and S. Lahmine, “Learning Basic Programming

Concepts by Creating Games with Scratch

Programming Environment,” Procedia Soc Behav

Sci, vol. 191, pp. 1479–1482, Jun. 2015, doi:

10.1016/j.sbspro.2015.04.224.

[28] J. Kawash and R. Collier, “Using video game

development to engage undergraduate students of

assembly language programming,” in Proceedings

of the 14th annual ACM SIGITE conference on

Information technology education, New York, NY,

USA: ACM, Oct. 2013, pp. 71–76. doi:

10.1145/2512276.2512281.

[29] A. Overby and B. L. Jones, “Virtual LEGOs:

Incorporating Minecraft into the Art Education

Curriculum,” Art Education, v68 n1, pp. 21–27,

2015.

[30] A. Bile, “Development of intellectual and scientific

abilities through game-programming in Minecraft,”

Educ Inf Technol (Dordr), vol. 27, no. 5, pp. 7241–

7256, Jun. 2022, doi: 10.1007/s10639-022-10894-z.

[31] J. Han, G. Liu, and Y. Gao, “Learners in the

Metaverse: A Systematic Review on the Use of

Roblox in Learning,” Educ Sci (Basel), vol. 13, no.

3, p. 296, Mar. 2023, doi:

10.3390/educsci13030296.

[32] G. Reid, “Motivation in video games: a literature

review,” The Computer Games Journal, vol. 1, no.

2, pp. 70–81, Nov. 2012, doi: 10.1007/BF03395967.

[33] R. Bartle, “Hearts, clubs, diamonds, spades: Players

who suit MUDs,” 1996.

