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Abstract

In this paper, we describe PAG (Prototyping with Attribute Grammars), a frame-
work for building Prolog prototypes from specifications based on attribute gram-
mars, which we have developed for supporting rapid prototyping activities in an
introductory course on language processors. This framework works for general non-
circular attribute grammars with arbitrary underlying context-free grammars, in-
cludes a specification language embedded in Prolog that strongly resembles the at-
tribute grammar notations explained in the course cited, and lets students produce
comprehensible prototypes from their specifications in a straightforward way.
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1 Introduction

Attribute grammars have been recognized as very valuable artifacts to bring
together the design of programming languages and the construction of their
processors [13][15][20]. We have also adopted attribute grammar methodol-
ogy as the basis for our pedagogical strategy in teaching a graduate level
introductory course on language processors at the Complutense University of
Madrid (Spain). In this course, we encourage a clear distinction between the
specification of the source language and its translation, and the subsequent
implementation of the processor. During specification, students are compelled
to use attribute grammars, and subsequently to apply systematic techniques
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to move to a one-pass top-down or bottom-up based implementation. We also
promote an intermediate prototyping stage, where students program a proto-
type in Prolog that closely mirrors the specification. This stage is founded
both on a technical basis (e.g. to let the student validate and improve the
quality of the specifications) and on a pedagogical one (e.g. to motivate
the student to undertake an otherwise unpleasant activity). Our choice of
Prolog instead of more specific environments [14][20] is because our students
study logic programming as a core undergraduate topic, and therefore they
are familiar with the use of this language for developing small- and mid-scale
programming projects.

We have been promoting Prolog’s definite clause grammars (DCGs) [1]
as a prototyping technique for several years. While DCGs have been a very
useful mechanism in letting students comprehend the main concepts behind
syntax-directed translation techniques, and even many fundamental concepts
behind logic programming, we have also detected several practical limitations:
the lack of support for left-recursive specifications, and the need to be aware
of the evaluation order for semantic equations. To overcome these limitations
we have developed PAG (Prototyping with Attribute Grammars), a Prolog
framework for the rapid prototyping of language processors from their at-
tribute grammar based specifications. PAG includes a specification language
that closely resembles the usual notation for attribute grammars that we use
in our lessons. The combination of a general parsing algorithm with a sim-
ple technique for attribute evaluation lets PAG accept general non-circular
attribute grammars with arbitrary (even ambiguous) underlying context-free
grammars, a must for a successful prototyping activity.

The structure of this paper is as follows. In section 2 we describe the
pedagogical context where PAG has arisen. In section 3 we overview PAG.
In section 4 we describe its implementation. Finally, section 5 provides some
conclusions and some lines of future work.

2 The Pedagogical Context

In this section we describe the pedagogical context of the present work, cen-
tered on our course on Language Processors at the Complutense University. In
subsection 2.1 we briefly outline the main aspects of this course. In subsection
2.2 we describe how we have addressed rapid prototyping using Prolog’s DCGs,
as well as their pedagogical strengths and weaknesses. Finally, in subsection
2.3 we establish a set of initial requirements for a prototyping framework that
preserves the advantages and overcomes the limitations of the DCG-based ap-
proach, and we justify the design and construction of PAG on the basis of
these requirements.
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2.1 The Course on Language Processors

Language Processors is a two-semester course of the Graduate Degree in Com-
puter Science at the Complutense University. Our main pedagogical goal is
to let students learn methods for the systematic description of computer lan-
guages and for the systematic development of their processors. Therefore,
in this course we teach how systematically to specify computer languages
and their processors, and how to systematically implement these processors
using different standard techniques: hand-coded and automatically gener-
ated predictive-recursive top-down translators, automatically generated table-
driven top-down translators, and also automatically generated LR bottom-up
translators [2][8].

In our pedagogical method, we adopt a problem-based learning approach
where students, working in groups, incrementally solve the problems posed
by the specification and the construction of an interpretative compiler of a
Pascal-like language. In order to facilitate the maintenance and evolution
of the language and of its processor, we promote a clear distinction between
specification and implementation. As said before, the central descriptive for-
malism used during specification is based on attribute grammars, although we
also use other complementary resources (e.g. regular expressions and/or finite
automata for describing lexical aspects, and semiformal algorithmic specifica-
tions for describing target machines and their supported object languages).

During the teaching of the course we have noted how students are reluctant
to assimilate the convenience of separating specification and implementation.
To convince them of the advantages of this separation of concerns we have
adopted the following strategies:

• We make the incremental development process model usually followed in the
construction of language processors explicit. Indeed, we start by proposing
the implementation of a processor for a minimal language (two primitive
types, an expression language involving basic operators with different prece-
dence and association rules, declaration of variables and the assignment
statement). Once students have constructed this processor, we propose
successive extensions of the basic language: control statements, user-defined
types, and recursive subprograms.

• We require several alternative implementations. The processor for the min-
imal language is initially hand-coded as a predictive-recursive descendent
translator. Once we have introduced the students to more advanced im-
plementation techniques, they must refactor the translator in terms of the
techniques introduced , using suitable domain-specific supporting tools. In
addition, they incorporate the successive extensions to the language pro-
posed, either in the hand-coded processor or by using one of the tools tested.

• We introduce a rapid prototyping activity.

While incremental development and alternative implementations are useful
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in order to appreciate how carefully prepared specifications can pay off during
the development process, we have realized that they are not enough to con-
vince students of their benefits. Indeed, it is not unusual to see how excellent
students, overwhelmed by the work to be done, concentrate on the program-
ming tasks while abandoning specification activities. This situation has been
largely alleviated by rapid prototyping. Indeed, this activity is highly motivat-
ing for students, since they are able to get a running processor at a very early
stage of the development process. Therefore, students feel that they are doing
worthwhile work during specification, and they concentrate on this activity.
This effort has very positive repercussions in the rest of the process. The next
subsection concentrates on rapid prototyping in our pedagogical method.

2.2 Rapid Prototyping with Definite Clause Grammars

Prolog DCGs have been largely recognized as valuable artifacts for prototyping
language translators [5][24][25]. We have also realized this fact as part of our
teaching experience. Indeed, as said before, we have adopted DCGs as a basic
prototyping technique for several years, since our students have a good working
experience with Prolog as part of their undergraduate education. This enables
us to introduce the technique as syntactic sugar for the direct Prolog encoding
of a translation schema in one or two one-hour classroom sessions.

As we have realized during the use of the technique, our students have
found the use of DCGs very valuable for understanding the main concepts
behind language translation. More concrete than attribute grammars, DCGs
have also helped many of them to better understand the operational mech-
anisms behind the more abstract attribute grammar-based specifications. In
addition, we have been pleasantly surprised to discover how DCGs have helped
some of our students to better understand some of the more important features
of logic programming: non deterministic execution and the use of unification
to deal with incomplete structures [24].

Regardless of these advantages, the approach also exhibits several limi-
tations, as exposed in the introduction. Prolog’s DCGs do not work with
left-recursive underlying context-free grammars (with the exception of spe-
cialized implementations that make use of tabling, like [26]), therefore hin-
dering many otherwise natural specifications (e.g. left-recursive syntax for
expressions with left-associative operators). Also the usual DCG style pro-
motes attribute evaluation during parsing, which forces students to be aware
of the evaluation order for semantic equations. Thus, the primary spirit of an
attribute grammar-based specification is broken.

Example 2.1 In Fig. 1 we illustrate the use of DCGs in the construction of
prototypes based on attribute grammars. Notice that, in order to transform
the specification into a suitable form for prototyping, the student must make
an effort comparable to transforming the attribute grammar into a syntax-
directed translation schema oriented to a top-down recursive-descent imple-
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(a)

exp ::= exp + term
exp0.v = exp1.v + term.v

exp ::= term
exp.v = term.v

term ::= num
term.v = num.v

term ::= ( exp )
term.v = exp.v

(b)

exp(Vo) --> term(V1),rexp(V1,Vo).
rexp(Vho,Vo) --> [+],term(V1),{Vh1 is Vho+V1}, rexp(Vh1,Vo).
rexp(V,V) --> [].
term(V) --> [num(V)].
term(V) --> [’(’],exp(V),[’)’].

Fig. 1. (a) A very simple attribute grammar; (b) DCG-based prototype resulting
from (a). Left-recursion has been eliminated and an explicit evaluation order for
the semantic equations has been chosen.

mentation.

The limitations exposed can be frustrating for the average student, thus
defeating his/her acceptance of general attribute grammars as a good way
to think about programming language design and implementation. Indeed,
we have realized that many students concentrate on producing specifications
that avoid left-recursion in the underlying grammars, which can be readily
translated onto DCG-based prototypes, but which in some cases are rather
unnatural and not suitable for producing certain types of implementations
(e.g. based on LR translators).

2.3 A better Prototyping Alternative

The limitations detected with the use of DCGs during prototyping have led
us to consider alternative approaches. Among the initial requirements for a
suitable alternative we established the following:

• Simplicity requirement. The selected approach should maintain the sim-
plicity of DCGs. It should be easily assimilated by our students and the
impact on the current course schedule should be minimized. Ideally, the ap-
proach should provide a very simple formalism, close to the notation used
for attribute grammars in our lessons (see Fig. 1a for an example of such a
notation).

• Syntactic freedom requirement. The approach should be able to deal with
arbitrary context-free syntax.

• Semantic freedom requirement. The approach should deal with general non
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circular attribute grammars. Indeed, in our introductory course we do not
deal with the possibility of circular attribute grammars, and we identify
circularity as an erroneous condition.

• Comprehensibility requirement. The generated prototypes should be easily
understood by students, who should be able to trace their behavior when
required.

• Deployment requirement. The supporting tool should be portable and easy
to install. In addition, it should be modular and easy to integrate into web-
based learning scenarios like [22], and those based on the learning object
paradigm [21][23], since we are making intensive use of e-learning solutions
in order to accommodate a smooth migration of our pedagogical methods
to the forthcoming European Space of Higher Education [7].

When looking for a suitable solution meeting all these requirements, we con-
sidered the following alternatives:

• Using programming languages that, like Elegant [11] or ALE [4], are derived
from or closely related to the attribute grammar formalism. Nevertheless,
this alternative clearly violates the simplicity requirement, since we must
spend a considerable amount of time teaching the new language to our
students.

• Using an existing attribute-grammar based environment, like FNC-2 [12],
Eli [9] or Cocktail [10]. Some of them, such as LISA [17] are recognized
as especially well-suited for educational purposes [18]. Nevertheless, this
kind of environments is usually conceived as development tools instead as
prototyping ones. They usually integrate parser generators for determin-
istic classes of context-free grammars (e.g. LL(1), LALR(1), etc.), which
violates the syntactic freedom requirement. Also they are oriented to gener-
ating efficient static attribute evaluators, which violates the semantic free-
dom requirement, and, more important, the comprehensibility one (although
comprehensibility can be enhanced by using appropriate GUI support, as
in LISA [18]).Finally, these systems integrate specifications languages with
powerful features (e.g. attribution patterns, multiple inheritance, template
rules, etc). While these features are very valuable during development, they
violate the simplicity requirement in our educational context.

In addition, all these third-party alternatives also could make deployment
in a web-based learning scenario more difficult than our own tool. Once we
concluded this exploration without finding the perfect candidate, we decided to
undertake the design and construction of PAG. The rest of the paper describes
the technical details of the resulting framework.
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3 The Prototyping Framework

PAG produces working prototypes from attribute grammar specifications and
suitable Prolog implementations of the semantic functions required. In this
section, we survey the framework. In subsection 3.1 we describe the structure
of specifications in PAG. In subsection 3.2 we describe how the framework is
used during prototyping.

3.1 Specifications in PAG

A specification in PAG is formed by two parts:

• The specification of the attribute grammar. This specification is given in
a Prolog-embedded domain-specific language that strongly resembles the
basic notation for attribute grammars used in a typical introductory course
on language processor construction.

• The definition of the semantic functions. This definition can be kept inde-
pendent of the attribute grammar, and relates the signatures of the semantic
functions with the Prolog goals used to compute them.

Specification ::= Symbols Axiom (Rule)+
Symbols ::= ( nt‘(’symbol,inh-attr-list,syn-attr-list‘)’. |

t‘(’symbol,attribute-list‘)’. )+
Axiom ::= axion‘(’symbol‘)’.
Rule ::= head-nt ‘::=’ Body (, Equations)?.
Body ::= [ ] | symbol (, symbol)*
Equations ::= Equation (,Equation)*
Equation ::= Attribute = definition
Attribute ::= att-name of symbol

Fig. 2. Syntax of the specification language.

The syntax for the PAG attribute grammar specification language is out-
lined in Fig. 2. This syntax, which is embedded in Prolog with the usual
facilities to introduce user-defined operators, is featured as follows:

• Non-terminals must be declared using the nt/3 predicate. The first argu-
ment is the symbol itself. The second argument represents the inherited
attributes, while the third declares the synthesized attributes.

• Terminals can be declared using the t/2 predicate. The first argument is
the terminal name, while the second one is a list with the lexical attributes.
Notice that a terminal without lexical attributes does not need to be de-
clared.

• The axiom of the grammar is distinguished using the axiom/1 predicate.
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• Attributes attached to syntactic symbols are referred to using the of oper-
ator. When there is more than one occurrence of a symbol in a production,
the occurrence number can be indicated (by default it is the first one).

• Grammar rules are built with the ::= operator. λ is specified with the
empty list [], as in DCGs. With these rules it is also possible to attach a
set of semantic equations, which are specified using the = operator.

• The left-hand side of a semantic equation must be an attribute reference.
The right side of a semantic equation can be an arbitrary Prolog term,
which will usually contain references to other attributes. This term will be
interpreted as the expression for computing the attribute value.

Example 3.1 In Fig. 3 we show an attribute grammar for a simple calculator
language based on DESK, the example language introduced in [20]. This
language also enables us to bind constants to values and to use these constants
in the binding scopes. The attribute grammar associates a suitable value to
each expression.

In addition to the specification of the attribute grammar, definitions need
to be provided for the semantic functions used in computing the attribute
values. PAG establishes the defun/2 hook for this purpose. In this predicate,
the first argument must be a term whose functor identifies the function name,
and its arguments are associated with the function inputs. The second argu-
ment of defun/2 is associated with the function result. In its definition, the
body of the corresponding clause will link the function with a Prolog com-
putation of the result. By default all the functions declared are strict (i.e.
their arguments in semantic equations will be evaluated before applying the
function). This default behavior can be altered by distinguishing the function
signature with the nonstrict/1 hook. In this case, the evaluation strategy
must be customized in the definition. Finally, any undeclared semantic func-
tion will be interpreted as declared as defun(F,F), and therefore as a term
constructor. PAG defines several utility functions in a prelude file, which can
be loaded with each specification.

Example 3.2 In Fig. 4 we include the definitions of the semantic functions
used in the grammar of Fig. 3. The + arithmetic function is already de-
fined in the prelude, and we only include it for the purpose of illustration.
The emptyEnv, mkEnv and valueOf functions are used to manage a simple
environment binding variables to their values.

3.2 Prototyping with PAG

PAG lets students automatically process the specifications introduced in previ-
ous subsections to generate prototypes. PAG is able to deal with general non-
circular attribute grammars with an arbitrary underlying context-free syntax
in a simple way. The structure of the prototypes generated is sketched in Fig.
5, and it is featured as follows:
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nt(prog, [], [val]).
nt(exp, [envh], [val]).
nt(fact, [envh], [val]).
nt(constPart, [], [env]).
nt(constDefs, [], [env]).
nt(constDef, [envh], [env]).
t(num, [val]).
t(id, [lex]).
axiom(prog).

prog ::= exp, constPart,
val of prog = val of exp,
envh of exp = env of constPart.

exp ::= exp, +, fact,
val of exp(1) = val of exp(2) + val of fact,
envh of exp(2) = envh of exp(1),
envh of fact = envh of exp(1).

exp ::= fact,
val of exp = val of fact,
envh of fact = envh of exp.

fact ::= id,
val of fact = valueOf(lex of id, envh of fact).

fact ::= num,
val of fact = val of num.

constPart ::= where, constDefs,
env of constPart = env of constDefs.

constPart ::= [],
env of constPart = emptyEnv.

constDefs ::= constDefs, ’,’, constDef,
env of constDefs(1) = env of constDef,
envh of constDef = env of constDefs(2).

constDefs ::= constDef,
env of constDefs = env of constDef,
envh of constDef = emptyEnv.

constDef ::= id, =, exp,
env of constDef =

makeEnv(envh of constDef, lex of id, val of exp),
envh of exp = envh of constDef.

Fig. 3. A PAG Attribute Grammar.

defun(X+Y,R) :- R is X+Y.
defun(emptyEnv,[]).
defun(makeEnv(Env,Id,Val),[(Id,Val)|Env]).
defun(valueOf(Id,Env),Val) :-

member((Id,Val),Env),!.

Fig. 4. Definition of semantic functions for the attribute grammar of Fig. 3.
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Fig. 5. Structure of prototypes built with PAG.

• The parser parses sequences of tokens into parse trees.

• The builder of semantic expressions traverses these trees and associates a
suitable semantic expression with each attribute in each node. Semantic
expressions are ground terms on the signature of semantic functions, and
they will be used to compute the attribute values.

• The evaluator component performs the evaluation of the semantic expres-
sions. Actually, it is only needed to evaluate the expressions attached to
the synthesized attributes of the parse tree’s root.

Notice that the evaluation of attributes is further split into two indepen-
dent stages. The first one, which can be thought of as a substitution step
in solving semantic equations, is performed by the builder of semantic ex-
pressions. The resulting expressions are actually evaluated by the evaluator
during the second stage. Also, notice that a sentence can be parsed into sev-
eral parse trees (this will be the case with ambiguous syntax). In these cases
the prototype will non-deterministically yield several results.

These prototypes can be automatically generated from the specifications
by using the following PAG predefined components 4 :

• The parsing kernel. This component contains the machinery required to
parse sentences into parse trees.

• The evaluation kernel. This component is used to evaluate the expressions
attached with the semantic attributes.

• The generator. This component translates the attribute grammar specifi-
cation into several working components required to produce the final pro-

4 From an implementation viewpoint, in the context of this paper components are consti-
tuted by a set of clauses and optionally, directives to the underlying Prolog engine.
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totype.

• The prelude. As said before, this component defines several semantic func-
tions that can be reused in different specifications.

Fig. 6. Prototyping workflow in PAG. Predefined components are shadowed. Gen-
erated components are dash-lined. With + we denote unions of clause sets.

The entire process is depicted in Fig. 6, which also highlights the different
components in the framework. That way, the process begins when the student
specifies the prototype, providing an attribute grammar and defining the se-
mantic functions used. The union of these semantic functions, the prelude and
the evaluation kernel yields the prototype’s evaluator. In turn, the attribute
grammar specification is processed by the generator to produce:

• A description of the underlying context-free grammar that, added to the
parsing kernel, will yield the parser component.

• A builder of semantic expressions for the final prototype.

• A driver that will glue all the prototype components together. This driver
will be used by the student to run the prototype.

4 Implementing the Prototyping Framework

PAG is based on two simple principles to provide students with the expressive
freedom required during prototyping:

• On one hand, the framework is able to process arbitrary context-free gram-
mars. This is carried out by using a suitable implementation of Earley’s al-
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gorithm [6] in the parsing kernel, a general parsing method able to perform
a reasonably efficient parsing of sentences regarding any (even ambiguous)
context-free grammar.

• On the other hand, the system uses a simple technique for dealing with any
non-circular attribute grammar. By interpreting semantic functions in the
Herbrand domain (i.e. by interpreting them as term constructors) a logi-
cal one-pass attribute grammar (in the sense of [19]) is obtained. Indeed,
the builder of semantic expressions can be considered a one-pass evaluator
for such a grammar. The semantic expressions produced are subsequently
evaluated by the evaluator. Therefore, instead of interleaving parsing, tree
traversal, and evaluation, they are kept as separated processes. Separa-
tion of parsing and evaluation has been also proposed in [3], where lambda
calculus is taken as a notation for semantic expressions and circular depen-
dencies are transformed into lambda calculus fixpoint computations. It has
also been proposed in the context of definite clause translation grammars
(DCTGs) [1], where parsing yields parse trees decorated with Horn-like
semantic rules. PAG also separates parsing and tree traversal to enable
arbitrary context-free syntax. In addition, a simple technique is used to
avoid reevaluation of common subexpressions in the semantic expressions
produced.

The following subsections explore the implementation details. Subsection
4.1 presents the parsing kernel. Subsection 4.2 describes how this kernel is
specialized in particular grammars to yield parsers for these grammars. Sub-
section 4.3 describes the pattern followed by the builders of semantic expres-
sions. Subsection 4.4 describes the implementation of the evaluation kernel.
Finally, subsection 4.5 outlines the implementation of the generator.

4.1 The Parsing Kernel

As aforementioned, the parsing kernel is based on Earley’s algorithm [6]. The
algorithm works for arbitrary (even ambiguous) context-free grammars and
sentences of length n with a worst-case time complexity in O(n3) and space
complexity in O(n2). Since test sentences are usually small, these overheads
are acceptable. In addition, the algorithm is simple and intuitive enough to
be easily comprehended and traced by the students, therefore letting them
debug the syntax. In the following, we briefly summarize the main aspects of
the algorithm and of our implementation.

The central concept in Earley’s algorithm is that of an item. An item is an
object of the form < i, j, X ::= α.β >, indicating an intended situation where:

(i) The parser is at position i on the input.

(ii) The production X ::= αβ is being used to analyze an input fragment
starting at position j.

(iii) An α structure has already been recognized, and the parser is waiting for
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a β structure.

init: < 1, 1, S ′ ::= .S, [ ] >∈ IG

closure:
<i,j,X::=α.Y β,τ>∈IG ;; Y ::=γ∈PG

<i,i,Y ::=.γ,[ ]>∈IG

shift:
<i,j,X::=α.aβ,τ>∈IG ;; wi=a

<i+1,j,X::=αa.β,append(τ,[a])>∈IG

reduce:
<i,j,X::=γ.,τ>∈IG ;; <j,k,Y ::=α.Xβ,τ ′>∈IG

<i,k,Y ::=αX.β,append(τ ′,[t(X,τ)])>∈IG

Fig. 7. Rules characterizing the set of Earley’s items IG for a context-free grammar
G with a set of productions PG and for a sentence w.

The rules in Fig. 7 characterize all the possible items for a context-free
grammar and a sentence. In this characterization we have also enriched items
with a fourth component to yield objects with the form < i, j, X ::= α.β, τ >.
Here τ is the sequence of the parse trees corresponding to the parsed symbols
α. Parse trees are represented as terms with the form t(root,[Child 1, ...,

Child k]).

The intended meanings of the rules are:

• The init rule establishes the parser initialization. In this rule S denotes
the original grammar’s axiom, while S ′ is the new axiom of the grammar
expanded with a new production S ′ ::= S. Therefore, the item < 1, 1, S ′ ::=
.S, [ ] > means that the parser is waiting to recognize the entire input
according to the grammar given.

• When waiting for a non-terminal, the closure rule makes it possible to ac-
tivate all the productions for this non-terminal.

• The shift rule allows the recognition of a terminal on the input.

• The reduce rule enables all the rules waiting for a non-terminal to advance
when a production for this non-terminal has been finished.

Items of the form < n + 1, 1, S ′ ::= S., [t] > represent complete parses
of the input, with t the corresponding parse tree. Notice that items can be
grouped by the input position to yield parser lists. For an input of length n,
there will be n + 1 such lists. Earley’s algorithm proceeds by:

• Initializing the first list by applying the init rule.

• Applying the closure and reduce rules to the items in each list until reaching

13

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information



Sierra & Fernández-Valmayor

an equilibrium.

• Moving to the next list by applying the shift rule.

In addition, by fusing items with a common core (i.e. with the same three
first elements) into a single one and by making smart use of pointers to kept
track of the parse trees, it is possible to overcome the potential exponential
complexity of a näıve implementation based on the rules of Fig. 7. 5 Also, we
use lookahead information to achieve further improvements in efficiency.

4.2 Specializing the Parsing Kernel

As mentioned in the previous section, to produce a parser for a concrete
grammar, a suitable description of this grammar must be added to the parsing
kernel. This description includes:

• The grammar’s axiom. This is indicated with an axiom/1 predicate.

• A description of each production. This is indicated with a prod/3 predi-
cate. The first argument of prod/3 is a unique identifier for the production.
The second argument is the production head. The third argument is the
sequence of symbols in the production’s body. These symbols are encap-
sulated in a term with a body functor to make access to the arguments in
constant time possible. The empty phrase λ is represented with a body

constant.

The resulting parsers operate on lists of tokens. While it is possible to
attach lexical attributes to these tokens, representing them as terms, only
their functors are considered during shifting.

Example 4.1 Fig. 8a shows a representation of the underlying context-free
grammar in Fig. 3 to be used with the parsing kernel. The combination of
these facts and the parsing kernel yields the parser, as depicted in Fig. 8.
This parser can be applied to sentences, as represented in Fig. 8b, in order to
yield parse trees with the format illustrated in Fig. 8c.

4.3 Pattern for the Builders of Semantic Expressions

Builders of semantic expressions operate on the parse trees and take full ad-
vantage of the unification mechanism in logic programming to automatically
solve the dependencies between attributes during a single top-down, left-to-
right traversal. As mentioned before, they can be conceived as straightforward
implementations of evaluators for non-circular attribute grammars where all
the semantic functions have been interpreted as term constructors. These
components are structured according to the following common pattern:

• Each non-terminal yields a predicate. The last argument for this predi-
cate corresponds to the parse tree. The other arguments correspond to the

5 Consider a grammar like A ::= λ| aA | Aa with a näıve implementation.
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Fig. 8. (a) Description of the underlying context-free grammar in Fig. 3 for the
parsing kernel; (b) a sentence to be processed by the resulting parser; (c) list with
the single parse tree associated with this sentence.

semantic attributes.

• The predicate for a non-terminal is defined with a clause for each grammar
rule. The body is formed by following the right side of the production.

• Each non-terminal in the body is translated into an invocation to the cor-
responding predicate. In this invocation, the last argument is bound to
the corresponding child in the parse tree. In addition, fresh variables are
introduced for each semantic attribute.

• Each terminal is translated by binding the corresponding child to a suitable
term, with a fresh variable for each lexical attribute.

• Each copy equation a of s = a′ of s′ is translated as X = Y , where X is
the variable for a of s, and Y that for a′ of s′.

• Any other equation a of s = t is translated as X = #( , t′). X is the
variable associated with a of s, and in t all the references to attributes
are substituted by the corresponding variables to yield t′. Furthermore a
fresh variable is associated with the resulting term. This variable is called
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a backup variable, and it will be used to avoid redundant re-evaluations, as
indicated in the next subsection.

The resulting builders traverse the parse trees in a depth-first, left-to-right
way, binding the attribute variables to their possibly incomplete semantic
expressions. Indeed, when a variable associated to an attribute with right-
dependencies of other attributes is bound, variables associated with such at-
tributes remain unbound until they are reached. Then unification will fill the
holes for free. The pattern works for general non-circular attribute grammars.

prog(A, t(prog, [B, C])) :-
exp(D, E, B),constPart(F, C),A=E,D=F.

exp(A, B, t(exp, [C, D, E])) :-
exp(F, G, C),D= +,fact(H, I, E),B= #(J, G+I),F=A,H=A.

exp(A, B, t(exp, [C])) :-
fact(D, E, C),B=E,D=A.

fact(A, B, t(fact, [C])) :-
C=id(D),B= #(E, valueOf(D, A)).

fact(A, B, t(fact, [C])) :-
C=num(D),B=D.

constPart(A, t(constPart, [B, C])) :-
B=where,constDefs(D, C),A=D.

constPart(A, t(constPart, [])) :-
A= #(B, emptyEnv).

constDefs(A, t(constDefs, [B, C, D])) :-
constDefs(E, B),C= (’,’),constDef(F, G, D),A=G,F=E.

constDefs(A, t(constDefs, [B])) :-
constDef(C, D, B),A=D,C= #(E, emptyEnv).

constDef(A, B, t(constDef, [C, D, E])) :-
C=id(F),D= (=),exp(G, H, E),

B= #(I, makeEnv(A, F, H)),G=A.

Fig. 9. The builder of semantic expressions for the grammar in Fig. 3 such as it is
automatically generated in PAG.

Example 4.2 Fig. 9 shows the builder of semantic expressions generated by
PAG from the specification in Fig. 3.

4.4 The Evaluation Kernel

The evaluation kernel, whose code is shown in Fig. 10, evaluates semantic
expressions in an applicative order, with the exception of those affecting non
strict functions (for them, the arguments are passed to the function without
being evaluated, allowing the customization of any other suitable evaluation
strategy). The kernel invokes the semantic functions when defined, or other-
wise uses the functors as term constructors. The only tricky aspect of this
process is the use of backup variables to avoid the reevaluation of terms du-
plicated in the expression. Indeed, when an expression of the form #(V, E) is
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evaluated:

• If V is free, the expression E is actually evaluated and V is bound to the
resulting value.

• If not, the backed up value is used instead.

eval(#(Val,Exp),Val) :-
var(Val),!,
eval(Exp,Val).

eval(#(Val,_),Val) :- !.
eval(Exp,Val) :-
nonstrict(Exp),!,
doResult(Exp,Val).

eval(Exp,Val) :-
Exp =.. [F|Args],
evalArgs(Args,VArgs),
Funcall =.. [F|VArgs],
doResult(Funcall,Val).

evalArgs([],[]).
evalArgs([Exp|Exps],[Val|Vals]) :-
eval(Exp,Val),
evalArgs(Exps,Vals).

doResult(Funcall,Val) :-
defun(Funcall,Val),!.

doResult(Funcall,Funcall).

Fig. 10. The evaluation kernel.

#(A,
#(B, valueOf(x,
#(C,

makeEnv(#(D, emptyEnv),
x, 5))))

+
#(E, valueOf(x,
#(C,

makeEnv(#(D, emptyEnv),
x, 5)))))

Fig. 11. A semantic expression with duplicated subexpressions.

Example 4.3 In Fig. 11 the semantic expression for the val attribute of
prog and for the input [ id(x), +, id(x), where, id(x), =, num(5) ]

is shown. Notice that in this expression the subexpression for looking up
the value of x is duplicated. Nevertheless, each duplicated expression is only
evaluated once, since all the duplicates share the same backup variable. Also
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notice that the term shown in Fig. 11 is an externalization of the corresponding
structure, which can be stored efficiently by sharing common substructures.

4.5 The Generator

The generator processes the attribute grammar specification to produce a
context-free grammar description, a builder of semantic expressions, and a
driver. The grammar description and the parsing kernel yield the parser,
which is connected to the builder and the evaluator in the cited driver.

All the elements in the specifications, including the rules, are treated as
Prolog facts by the generator. Indeed, the syntax of the specification language
is easily embedded in Prolog by properly defining the ::= and the of operators.
The generator can be integrated with the Prolog system by using the static
metaprogramming facilities found in many Prolog implementations. This lets
students directly load PAG specifications into the Prolog engine.

5 Conclusions and Future Work

In this paper we have presented PAG, a framework for the rapid prototyping
of language processors in Prolog. This framework is oriented to supporting
the learning process of students enrolled in an introductory course in lan-
guage processors by letting them test their specifications. The framework is
able to deal with general non-circular attribute grammars on arbitrary (maybe
ambiguous) context-free syntax in a comprehensible way, which is a primary
requirement in the application context mentioned. To deal with arbitrary
syntax, Earley’s parsing algorithm is used. General non-circular attribute
grammars are managed by first interpreting semantic functions as term con-
structors. The semantic expressions yielded are then definitively evaluated
considering the actual definitions for the semantic functions. The overhead
incurred by the cited separation of concerns is acceptable in a prototyping
context, where the simplicity and comprehensibility of the techniques for the
average student come before considerations of efficiency.

Currently we are extending PAG with simple modularization facilities
based in the composition of semantic aspects, as suggested in [13]. This is in
accordance with our pedagogical method, since we introduce different views
of the complete attribute grammar: one for the construction of the symbol
table, another for checking the contextual constraints on the source language,
and a third one for dealing with the translation concerns. We are also con-
sidering the extension of PAG to deal with circular attribute grammars. This
extension is oriented to our students of a Ph.D. course on e-learning, where
we promote the use of language processor technologies in the processing of
the markup languages proposed by the different e-learning specifications (see,
for instance, [16]). The basic idea is to work with circular Prolog terms in
managing circular definitions. With this we hope to provide students, who
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belongs to several disciplines, with a less knowledge-demanding alternative
than the one based on fixpoint computations [3]. We are also planning to
include domain-specific visual tracing capabilities in the system. As future
work we want to use PAG in an introductory course on computational linguis-
tics. We also want to take advantage of the modularity of the approach to
build a complete learning scenario based on the learning object paradigm and
supported by the web-based e-learning systems deployed at our university.
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