
Multi-level Game Learning Analytics for Serious Games 

Abstract  Serious games are usually used or deployed in an 
educational setting as an isolated or individual activity, 
disconnected from other curricular activities. However, to really 
increase the adoption of serious games in different educational 
scenarios, the combination and integration of games into the 
educational flow should be simplified. We envision Serious Games 
as new type of educational activity that can be combined as parts 
of other games (e.g. minigames integrated in larger games), 
integrated into other online activities, or even mixed with both 
game and non-game activities. In addition, if we want to make the 
most from serious games, a learning analytics system must be in 
place to harvest and analyze interactions, providing metrics and 
insights to instructors regarding the gameplay sessions. Moreover, 
if a course-level learning analytics strategy is designed, it must be 
aligned with the game learning analytics. This approach requires 
communication between games and educational activities used 
during the educational experience. From a game learning 
analytics standpoint, gaining insights from these integrated 
experiences introduces new requirements within potentially 
complex multi-level or hierarchical activities. Moreover, the 
analysis required to generate these metrics should be both efficient 
and provide insight in an understandable way and for different 
stakeholders. This paper describes an approach to multilevel game 
learning analytics from the perspectives of data model, 
implementation architecture, and result visualization in teacher-
oriented dashboards. 
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I. INTRODUCTION  

Serious games 
 are becoming popular in different 

educational and training settings. As a medium, they build upon 
the popularity of video games, which are played by a large and 
growing percentage of the population, well beyond their initial 
teenage-male demographic. Games present advantages for 
education, since they have greater potential engagement and 
interactivity and immersion [1]. We consider that a key element 
in a more general serious game adoption is the inclusion of 
Game Learning Analytics (GLA), where in-game user 
interactions are collected and analyzed to gain insights and 
simplify game usage in different domains [2]. 

However, games are not frequently integrated in e-learning 
systems. Games are not easily composable with other 
educational activities. For instance, it is complex to include 

games in hierarchies as the ones found in Learning Management 
Systems (LMS) that support highly structured contents such as
SCORM [3] packages. Also, it is complex to communicate the 
games with the rest of the educational content and include them 
in the analytics. But from the learning analytics perspective the
Experience API (xAPI) [4] specification simplify to track rich 
interaction data, generated by any educational activity including 
games. However, xAPI is mainly a format for structuring and 
collecting data, but it is does not impose nor provide guidance
or default strategy about what kind of analysis and visualizations 
can or should be performed with the data once collected. 

To address these identified limitations, we have extended 
our previous serious games analytics system to support multi-
level games. This evolved model supports new educational 
scenarios where, for example, a geolocated game can launch 
different minigames depending on the player  position; or even 
launch another game composed of minigames. Moreover, this 
approach supports other low-interaction and even teacher-
reported offline activities. We have built our approach based on 
the concept of Learning Analytics Models (LAMs) [5], that 
model how the inputs/signals/events generated from an activity 
are selected, aggregated, reported and evaluated. We also 
adopted the concept of Meta-LAMs [6] which are analytics 
models built using individual, per-activity LAMs, as building 
blocks. Fig. 1 briefly illustrates their relationship. 

This paper describes a working implementation of multi-
level analytics. Section II describes the conceptual model. 
Section III chitecture, 
Section IV describes the application of the described conceptual 
model, and Section V presents the resulting visualizations 
available for teachers when using the system. Finally, we 
Section VI contains our conclusions and outlines future work.

 

 

Fig. 1 Learning Model built using a Meta-LAM where multiple LAMs 
provide outputs as assessment resources and dashboards for teachers.
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II. CONCEPTUAL MODEL

As defined in [2], a Learning Analytics Model (LAM) is a
multidisciplinary effort, involving educators, designers, and  
developers to describe everything needed in order to assess a 
serious game. LAMs specify the player information that will be 
sent during gameplay as traces to the analytics server, and how 
these traces should be interpreted (analyzed) and displayed in 
different dashboards for different stakeholders. A Meta-LAM 
generalizes this approach and describes how a LAM should be 
applied to a multi-level game structure. 

Meta-LAMs are built using outputs of LAMs as building 
blocks as illustrated in Fig. 1. This allows games to act as black 
boxes. To achieve this goal, outputs and aggregations of each 
level should be defined. Meta-LAMs should provide answers to 
the following questions: 

1. What are the learning goals of the multi-level game? 
The Meta-LAM uses the outputs of the (mini)games as 
its inputs to satisfy learning goals. 

2. How is the multi-level game hierarchy structured?  
Analysis needs a structure to aggregate learning goal 
progresses. The more complex the structure, the harder 
to use to combine individual game results, to design, 
and understand.  

3. How should the data be aggregated through the 
structure, and what consequences can be extracted 
from this aggregation? Determining, when an activity 
is considered successful, its contributions and the 
common language. In a hierarchy, parent nodes are 
designed to receive updates from their children and its 
handling should be defined in the Meta-LAM. 

We have built up our default Meta-LAM from a simplified 
version of SCORM 2004 4th Edition Sequencing and 
Navigation (SN) [3], which already includes similar concepts of 
aggregation. SN can be very briefly characterized by its use of a 
tree of activities, where each activity communicates with its 
parents, which aggregate activity results to update the LOs in a 
process termed rollup.  

Answering question 1, designed Meta-LAM limits LOs to 
only learning goals and competencies to simplify the analysis. 
As Meta-LAM is generic, LOs and competencies are defined by 
the aggregation of the ones from every LAM. 

Answering question 2, our adaptation maintains the tree 
structure, simplifying the resulting aggregation process as 
relationships are well-defined and easy to handle. 

Answering question 3, our analysis uses SN rollup rules, 
where results for any activity node are propagated through its 
ancestors up to the root. This allows parent nodes to determine 
their progress and completion status. Also, analysis is 
parametrized with meta-data that includes optional limits and 
contributions. Where limits include thresholds that allow to 
accommodate the difficulty as minimum requirements of an 
activity and contributions include a LOs dictionary that 
describes how much each one should be incremented. Finally, 
regarding language, we use xAPI as a standard for all interaction 
traces, building up on pre-existing glossaries of terms related 
with Serious Games [7] and Location-based games [8]. 

III. ARCHITECTURE FOR PERFORMING MULTI-LEVEL ANALYTICS  

This section describes the architecture that we use to 
implement the previously described Meta-LAM. Our LA server 
used a standalone, generic single-game analysis, called Default 
Analysis (DA). The DA processes xAPI traces from the actual 
gameplay according to the xAPI-SG [7] format, and generates a 
number of metrics and dashboards as a result. 

Even through the conceptual model, described in section II, 
manages the multi-level requirements, it does not store or 
generate results for the gameplay of each game. We have 
combined the existing DA with a new Multi-Level Analysis 
(MLA) that implements the conceptual model of Section II. 

To successfully build a Meta-LAM using independent 
analyses as building blocks, the Meta-LAM architecture 
designer must answer a few questions: 

1. What does the Meta-LAM require from each activity? 
E.g. games sending xAPI-SG traces require DA, higher 
level analysis require an overall-storing-analysis. 

2. What analysis-to-analysis communication is used? e.g. 
queue, messaging system, notifications, common 
storage, etc. 

Answering question 1, regarding activity results, the 
combination of the DA and the MLA will generate, per each of 
the activities, a results file that contains all its gameplay 
information along its successors gameplays, meta information 
related with the achievement of game goals, and results 
generated based on MLA-generated traces. 

However, some of the learning activities may have their own 
LAM and can use their own analysis to generate the results. To
maintain coherency along the multi-level ecosystem, these LAM 
traces should be stored inside their own analysis results, and 
translated for their  analyses to understand them.

Answering question 2, regarding the communication 
method, all analyses use a common queue to obtain the traces. 
This way, instead of sending a trace, it is queued with the target 
node as destination, ensuring that the server is not overloaded. 
Additionally, every node stores their results into separated 
documents, causing the root node document to include the whole 
analysis results. 

Fig. 2 Diagram of the multi-level game analysis consuming and bubbling 
traces
parent of each originating node, until the root of the hierarchy is reached. 

 



IV. MULTI-LEVEL ANALYSIS CONCEPTUAL MODEL APPLICATION

Our system follows a Kappa Architecture [9] by using a
stream-based analysis, as we analyze traces sent from games in 
near real-time. When games send traces to the LA 
to a queue. Analyses read them from this queue being processed 
once and only once by all analyses associated with the 
corresponding game. Analyses can maintain their state by 
reading and writing from and to datastores, and can add new 
created statements to the queue. Statements in the queue can be 
either game-generated (GGS) or analysis-generated (AGS). 

By allowing analyses to feedback into themselves, we enable 
a message system where each statement is targeting a node. GGS 
are always targeted to leaves, while AGS are used to inform 
intermediate nodes of knowledge propagation within the 
hierarchy, bubbling up from leaves from each node to its parent 
until the root is reached. This process is illustrated in Fig. 2. 

To feed our default multilevel dashboard, we perform 
several types of leaf aggregation: when leaf nodes are 
considered completed, LOs and competencies gets increased. 
For each leaf, computes the minimum, maximum and average 
scores of each player to easily contrast the results. Time-to-
completion, and completion history: average time to complete 
missions and quests by players. Player choices, and choice 
accuracy: The amount of correct and incorrect alternatives is 
computed and stored, together with a list of choices over time. 
Player progress is stored, and an average calculated, so that we 
can later display average player progress. Performance of 
students is computed from the score and aggregated by years, 
months and weeks. When a child trace is completed the parent 
node progresses accordingly.  

When a child node is completed, the parent node progresses 
accordingly. Furthermore, when all the children have been 
completed, the parent node completes itself, increasing its 
related contributions.    

V. USER INTERFACE 
Regarding data visualization, one important difference 

between a regular LAM and the Meta-LAM is going from one 
single dashboard to multiple dashboards. This forces developers 
to add an upper layer in the UI allowing to navigate through the 
multi-level game tree. Our approach depicted in Fig. 3, consists 
of an admin-panel view where the left part (Fig. 3 A) depicts a 
menu that allows users to select the desired dashboard, while the 
dashboard are displayed in the main frame (Fig. 3 B). 

The root (and in some cases non-leaf node) dashboard has
been designed following the conceptual model described in 
Section II. Aims to be as generic as possible, mostly adhering to 
xAPI-SG, implying that every game that successfully 
implements xAPI-SG will fit the Meta-LAM and its data will be
correctly analyzed for display in the Meta-LAM dashboard. 

By design, every visualization is intended to be meaningful
both unfiltered and filtered-by-student, with only few exceptions 
tog this rule. Our approach aims to be generic enough; however, 
some cases are not covered when using specific LAM. The more 
heterogeneous the variety of traces, the more diverse the sections 

 
Fig. 3 Web tool used to navigate through game-tree dashboards. Menu list 
(A) allows to select dashboard while the main frame (B), displays the 
dashboard, in this case MLA dashboard. Main frame is displaying Scores 
section with aggregated scores, composed of Average Score of all students 
(B.1), Average Score per student (B.2) and Stacked scores per player (B.3). 

Fig. 5 Location-Based game section. Includes 
two visualizations: a heatmap of every position 
tracked by any activity (A); and the minimum, 
average and maximum duration of the travel 
between a POI and next POI (B) 

 

Fig. 6 Progress and duration section. including: a 
matrix of vertical bar progress visualization where 
X is student and Y is the activity (A); The average 
progress of each activity over time (B) and the min, 
avg and max duration per activity(C).  

 

Fig. 4 Answers section showing aggregated 
answers. Includes total received answers, filtered 
by correct and incorrect view (A). Specific answers 
stacked per student (B), where top (B.1) are the 
correct and bottom (B.2) are the incorrect. And 
percent of answers received per sub-game (C) 



included in the dashboard. Even though we could add further 
visualizations it would likely overwhelm teachers, worsening 
the user experience. Dashboards can easily be overloaded with 
too much information, so every visualization must have multiple 
purposes. Our solution is composed of five sections: 

The General information and configuration section has been 
designed to allow teachers to quickly access information 
regarding whether the lesson is working properly; and allowing 
them to filter and personalize the dashboard. Includes four 
visualizations: a student list for dashboard filtering, a session 
counter for quick comparisons with the expected number of 
learners, a completion counter to check how many students have 
already finished, and a time-frame selector. 

The Scores section, illustrated in Fig. 3, has been created to 
easily determine if a learner has succeeded or failed, and how 
well have each learner performed in each multi-level game node. 
As seen in the previous section, most GLA models can 
determine if a game has succeeded, and even determine a score 
that describes how well the learner has played. In the end, this 
allows educators to transform LA results into grade marks. 

The Answers section, illustrated in Fig. 4, includes 
information about the choices that learners have made 
throughout all sub-games. It is meant to allow the teacher to 
specifically detect where learners have failed or succeeded, to 
personalize feedback and provide better assessment. Almost 
every game allows to make choices, and its answers are usually 
given with a correct or incorrect result. Those answers can be 
from a quiz, or can from a potion-mixing minigame, meaning 
that the potion have been successfully crafted or not.  

The Progress and duration section, illustrated in Fig. 6, is 
designed to provide control of the current state of the students 
by providing and overview of the progress of each student in 
each activity, their progression, and its duration. It explores the 
possibilities of MLA by showing non-leaf nodes progress and 
duration, which are calculated by the analysis (as explained in 
section IV). It also allows to check when the progress has been 
made, showing the students  play periods, and providing 
feedback to understand the homework window available to the 
teacher, or adapt future games to more appropriate durations. 

The Location-Based games section, illustrated in Fig. 5,  
satisfies a frequent use-case of multi-level games, which are 
Location-based gymkhana-like games, where multiple stops are 
presented, and each stop requires the player to pass a minigame 
to continue. This section provides, an overview of where the 
players have physically been, along the time it took to them to 
reach each stop. This is made using a heatmap, displaying the 
position of the players. It helps to understand the most-used 
routes to travel from stop to stop, together with the time spent in 
each of the stops.  

VI. CONCLUSSIONS AND FUTURE WORK 

In the previous sections, we have identified and addressed 
the issues that arise from using multi-level learning analytics for 
multi-level / hierarchical tree-like activities, focusing on multi-
level game scenarios. 

In addition, we have also briefly described the main 
components of our solution, which is designed to be modular 

and could potentially support several different analyses side-by-
side using entirely different Meta-LAMs, by changing the 
chosen answers to the questions of Section II. 

The implementation of the conceptual analysis can be done 
in several ways, however the driving questions stated in section 
III lead us to a modular architecture where we defined a default 
analysis that works at the individual game level; and a multi-
level analysis (MLA) that performs all calculations for the 
intermediate levels. The combination of these two analyses
satisfies the needs of Meta-LAM as described in IV. 

We have developed a dashboard that displays aggregated 
results from the MLA, providing a useful tool to track and 
evaluate multi-level game scenarios. The dashboard is divided 
into five sections, one for management, three that gather 
information on aspects needed to assess learners, and a last one 
for location-based games as a usual multi-level game as 
described in V. 

Although an initial qualitative evaluation of the current 
dashboards has been positive, based on previous work with non-
multilevel teacher dashboards, we feel that many teachers are 
already overwhelmed with relatively simple dashboards, and 
multi-level ones may produce additional cognitive overload. We 
will be collecting additional teacher feedback to lower the 
cognitive demands of multi-level dashboards  
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