
January 7, 2005 17:34 WSPC/117-ijseke 00174

International Journal of Software Engineering
and Knowledge Engineering
Vol. 14, No. 6 (2004) 565–602
c© World Scientific Publishing Company

CONCEPTUALIZATION, PROTOTYPING AND PROCESS OF

HYPERMEDIA APPLICATIONS

ANTONIO NAVARRO, ALFREDO FERNÁNDEZ-VALMAYOR,
BALTASAR FERNÁNDEZ-MANJÓN and JOSÉ LUIS SIERRA

Dpto. Sistemas Informáticos y Programación,
Universidad Complutense de Madrid,

C/Professor José Garćıa Santesmases s/n, 28040 Madrid, Spain

Latest-generation hypermedia applications represent a new challenge in traditional de-
sign and development software engineering techniques. Although there is an impressive
array of models to design hypertext applications, these models may not be specially
suited for conceptualization-prototyping stages. In this paper, we provide a comprehen-
sive software engineering approach for dealing with the conceptualization, prototyping,
and process of hypermedia applications. This approach uses the Pipe Model to char-
acterize hypermedia applications during the conceptualization stage, while prototyping
is accomplished using XML and Java technologies. An XML-based representation of
the Pipe structures is the input for a Java application that automatically builds the
prototypes of the hypermedia application. This XML representation may reference to
Subordinate Processes, i.e. compiled Java classes that implement a predefined interface
and can be executed in the hypermedia application without interacting with the naviga-
tion. We also present the Plumbing and PlumbingXJ process models, two specializations
of a well-known hypermedia process model, which integrate and manage the use of the
Pipe model and its associated XML and Java technologies.

Keywords: Hypermedia-oriented model; hypermedia process model; hypermedia proto-
typing; XML; hypermedia; software engineering.

1. Introduction

More than fifty years ago Vannevar Bush described Memex [1], which can be con-

sidered as the first hypermedia system. Nowadays the dramatic evolution of digital

systems has provided us with a capacity for processing information that would have

been unthinkable in the past. Internet (and therefore hypermedia applications) is

one of the more active areas in this evolution. Today, web sites are developed using

advanced technologies and multitier architectures, producing much more complex

and powerful applications than those built in the precedent years.

Because of this complexity, the use of software engineering techniques is

mandatory during the development of these applications [2]. Several difficulties

arise when traditional models and methodologies in software engineering are used

for the design of hypermedia applications because they are not specially adapted

565

January 7, 2005 17:34 WSPC/117-ijseke 00174

566 A. Navarro et al.

for representing the intrinsic characteristics of hypermedia systems: navigational

structures and the use of multimedia contents [3]. Moreover, hypermedia applica-

tions have a number of requirements that do not appear during the development of

non-hypermedia software [4], such as the necessity of handling both structured data

(e.g. database records) and non-structured data (e.g. multimedia items), the sup-

port of exploratory access through navigational interfaces, a high level of graphical

quality, the customization and possibly the dynamic adaptation of content struc-

ture, navigation primitives and presentation styles, and the support of proactive

behavior (i.e. for recommendation and filtering).

In our opinion the process model proposed by Fraternali [4] contains most of the

structural activities for dealing with most of the difficulties to be taken into account.

This process model identifies the need for prototyping (as Nanard [5] does), but also

includes a conceptualization phase prior to the prototyping phase. At the concep-

tualization stage the application is represented through a set of abstract models

that convey the main components of the envisioned solution [4]. These models used

in conceptualization can be understood as semantically closed abstractions of sys-

temsa [6]. The conceptualization-prototyping loop precedes the design-development

stage, where the final application is designed and developed.

A number of hypermedia-oriented models [7] have been proposed to help design-

ers to face their conceptualization task such as: Dexter [8], Amsterdam [9], HAM

[10], Trellis [11], hipergraphs [12], Labyrinth [7], HDM [2], RMM [13], and OOHDM

[14]. They are models with a different orientation.

Some of them are system-oriented models [2]. These models provide a data model

for hypertext systems, environments that facilitate the creation of hypertext appli-

cations [13]. Dexter, Amsterdam, HAM, Trellis, Tompa hipergraphs and Labyrinth

are some of these system-oriented models [2], [7].

Some others are mainly conceived as application-oriented models. These models

provide a language for describing the information objects and the navigation mech-

anisms in hypermedia applications, like RMM [13]. HDM, RMM and OOHDM are

some of the more relevant application-oriented models [15].

Notwithstanding this impressive array of hypermedia-oriented models, according

to Nanard [5], the range of hypertext applications is so broad that no single formal

design technique is relevant for designing all of them. For example, as described in

the work of Wills [16], Balasubramanian rejected the application-oriented models

RMM, HDM and OOHDM when designing a large-scale web site for a financial-

management company because all of them require the application domain to be

abstracted in the forms of entities or classes and relationships [17]. The problem is

that according to Isakowitz, applications that have irregular (or dynamic) structures

and high volatility (e.g. literary work or multimedia news service) may gain little

from the use of the RMM and similar approaches [13].

We could propose the use of system-oriented models for the conceptualization

of these hypermedia applications with irregular structures. However, these system-

aCollections of connected units that are organized to accomplish a specific purpose.

January 7, 2005 17:34 WSPC/117-ijseke 00174

Conceptualization, Prototyping and Process of Hypermedia Applications 567

oriented models, like those previously mentioned, provide an application repre-

sentation that is tied to the underlying data model of the hypertext system. In

our opinion, these models not only characterize the conceptualization-prototyping

stages, but also constrain the design-implementation stages. This problem is related

to that found by Barry [15] when analyzing the low impact of application-oriented

models in industry, because the model concentrates on the production of a design

representation rather than assisting the design process. Moreover, other authors

such as Isakowitz consider that systems oriented models are of little value in mod-

eling hypermedia applications [13].

Note that we are not arguing that hypermedia-oriented models are useless. In

fact, they are helpful contributions when designing hypermedia applications. We

have only identified a stage in the development of some hypermedia applications

where a new model would be useful.

Taking into account several works in the hypermedia domain we can conclude

that this new model must fulfil, at least, the following four requirements:

(i) If the model is focused on applications with irregular structure [13], then such

a model should be focused on the common structure that appears in every

hypermedia application: links between contents. In this way, contents represent

units of information while links indicate relations between those units [18], [19].

(ii) As Schwabe [14] and Koch [20] identify, the model should describe the navi-

gational items of the application.

(iii) If this model serves as the basis for prototyping, an easy transition from model

diagrams to running applications would be desirable [5]. This requirement

makes the definition of a common default browsing semantics necessary [2]

[11].

(iv) Moreover, due to the nature of actual hypermedia applications, the character-

ization of dynamic linking would be a valuable characteristic [7][21].

The solution that we propose to help characterize the conceptualization stage

is the Pipe Model, an application model able to:

(i) Capture the relationships between elements in the domain using a graph, called

Contents Graph.

(ii) Describe the navigation desired for the contents using another graph, called

Navigational Schema. This navigational schema is defined independently of

(without taking into account) the contents graph. The relationships between

both graphs are defined using the so called Canalization Functions.

(iii) Provide a default browsing semantics that, using the Pipe graphs and func-

tions, is able to describe the behavior of the application when the user traverses

a link.

(iv) Enable the abstract characterization of dynamic links using the contents graph.

Note that although other approaches such as OOHDM, UWE [20] or WebML

[22] seem to have modeling primitives with more abstraction power, entities/classes

January 7, 2005 17:34 WSPC/117-ijseke 00174

568 A. Navarro et al.

and their relationships are not more powerful abstractions than informational units

of content and their relationships (or links). They are simply tailored for differ-

ent domains. For example, if we need to model a hypermedia literary work, the

entity/class primitives, as Isakowitz states, are of little use, and in our opinion, a

graph is one of the clearest, simplest and most formal representation that can be

provided. Moreover, although Pipe does not explicitly define a notation to represent

entities and their relationships if there is a need to characterize this type of elements

in the application domain, a suitable model, like RMM, can be used. Later, a Pipe

contents graph can refer to the instances of these entities/classes using the genera-

tion function g, presented later. In this way, for example, if an index is represented

using an RMM index guided tour node [14], the generation function can be used to

select and link the elements that compose this guided tour.

The inclusion of the Pipe model into the Fraternali process model (with some

influences of Ginige/Lowe’s process model [16]) generates a new process model

called Plumbing. We have specialized Plumbing with a specific prototyping tech-

nique where XML [23] documents represent the hypermedia application that is

described using the Pipe model, and where a Java hypermedia system (the Auto-

matic Prototypes Generator, APG) generates the prototypes used at the prototyping

stage. This process model is called PlumbingXJ.

This paper gives a brief review of the work related to our approach. It presents

the Pipe model (omitting its formal component), and shows how Fraternali’s pro-

cess model is particularized to obtain Plumbing and PlumbingXJ process models.

Throughout these sections we will use a case study to demonstrate the applicability

of our approach. Finally we present our conclusions and ongoing work.

2. Related Work

In this section several approaches to the modeling of hypermedia applications,

hypermedia process models and the use of markup languages in hypermedia de-

velopment are reviewed.

2.1. Hypermedia-oriented models

The Dexter Hypertext Reference Model [8] was the first attempt to unify and clar-

ify hypermedia technology, and it has become a reference model to compare with

any other system-oriented model. Its most important feature is the division of a

hypermedia application into three layers: within-component, storage and runtime.

The first layer represents the contents as independent elements. The second layer

represents the linked elements of a hypertext application. Finally, the third layer

represents the running application. Note that according to the Dexter Model, an

application can be characterized providing the data in the within component layer,

the storage and the run-time layer. By using a contents graph, the Pipe model

characterizes the application data, which in the Dexter model are considered in

the within-component layer. The presentation specifications that relate the storage

January 7, 2005 17:34 WSPC/117-ijseke 00174

Conceptualization, Prototyping and Process of Hypermedia Applications 569

and the runtime layer, thus allowing for the presentation of the application, is de-

scribed using a navigational schema and canalization functions. Finally, the default

browsing semantics allows for the description of the behavior in the run-time layer.

The Amsterdam Hypermedia Model [9] is based on Dexter’s layers and expands

them with synchronization and context capabilities. The need for synchronization

appears in modern hypermedia application where multimedia contents are involved.

The context capabilities appear when the simultaneous visualization of several con-

tents (of the same or different nature) is needed (e.g. the HTML frames). Pipe is

able to represent the notion of context using a navigational schema. At the same

time, this navigational schema is used to attach the synchronization information.

Although Pipe’s synchronization characteristics are not as powerful as the charac-

teristics of the applications that are described using the total expressive power of

the Amsterdam model, it is powerful enough to depict the usual timing information

that appears in most hypermedia applications.

The Hypertext Abstract Machine (HAM) [10] is an abstract representation of the

storage layer of a hypermedia application. The Pipe representation of the storage

layer coincides with the HAM approach, but Pipe provides an explicit representation

of the more complex graphical user interface and context characteristics that HAM

cannot represent.

The Trellis Model [11] is a hypermedia model that tries to characterize the si-

multaneous presentation of several contents using a Petri net. Although valid for

earlier applications, it cannot support the modern context user interfaces and the

complex navigation capabilities that they induce. The most important feature of

this model (present also to a certain extent in HAM) is the browsing semantics

represented by the Petri net. The Pipe browsing semantics is defined via the link

activation function that indicates the changes in the hypertext when the user tra-

verses a hyperlink. The Hypergraph Model [12] is a similar approach to that of the

Trellis model. In this case, the Petri net is replaced by a hypergraph, but the final

browsing semantics relies on several primitives defined by the model.

The Hypertext Design model (HDM) [2], the Relationship Management Model

(RMM) [13] and the Web Designing Language (WebML) [22] are design method-

ologies that define a relational hypermedia-oriented model. They provide several

access structures that define the different navigational alternatives when added to

Entity-Relationship [24] (or extensions) diagrams. These models are appropriate for

providing a hypertextual access to a database, where the hypertextual relationships

are (basically) derived from the foreign keys of the relational schema. In other hyper-

media applications these models do not fit well [13]. Although it is not a relational

model, Pipe is also able to represent relational hypermedia applications using the

graph representation of the instances derived from the relational schema [22].

In the former hypermedia-oriented models the selection of an anchor was the

only event that could occur. The Labyrinth Model [7] is prepared to respond to

any event that may occur in an application, pure hypermedia or Computational

Hypermedia Applications (CHAs) [25]. This is a more powerful approach, but with

January 7, 2005 17:34 WSPC/117-ijseke 00174

570 A. Navarro et al.

a significant shortcoming: there is no default browsing semantics, and therefore the

automatic generation of applications based on the Labyrinth model representation

is more complicated. On the contrary, although the Pipe model can only represent

the anchor selection event, it has a default browsing semantics.

Although the Object-Oriented Hypermedia Design Methodology (OOHDM) [14]

identifies a set of classes and relationships between them, in the same manner as

HDM or RMM methodologies, it presents more powerful object-oriented capabili-

ties. It describes hypermedia applications by means of three main activities, with

their corresponding diagrams (or schemas). The conceptual design characterizes the

underlying classes and their relationships in the application domain. The naviga-

tional design characterizes the navigational structure of the application. Finally the

abstract interface design describes the user interface of the application. OOHDM is

a powerful methodology suitable for representing CHAs, but like HDM and RMM

methodologies, it does not fit well in applications where the domain is not natu-

rally abstracted in the form of classes and relationships [17]. Regarding OOHDM,

in Pipe, the contents graph characterizes the elements of the application domain

and their relationships. It is similar to the OOHDM conceptual schema, but in the

case of Pipe, objects (or elements) are described, not classes. The Pipe navigational

schema is similar to the OOHDM navigation chart, but again expressed in terms

of elements. Because Pipe manages elements, not classes, there is no need to define

OOHDM navigational classes or OOHDM navigational schemata. On the contrary,

a mapping between the Pipe contents graph and the Pipe navigational schema must

be defined. Precisely, the canalization functions define the map that relates both

structures.

There are several Web design methods influenced by OOHDM such as the UML-

based Web Engineering approach (UWE) [20] and the Web Site Design Method

(WSDM) [26] that are tailored for Web Engineering. Consequently, the conclusions

extracted from OOHDM are also applicable.

Other approaches like the Object-Oriented Hypermedia method (OO-H) [27] or

the Object-Oriented Web-Solutions modeling approach (OOWS) (an extension of

OO-H) [28] are also based on OOHDM and tailored for Web Engineering and UML,

but present more advanced characteristics: they present a pattern catalog which

can be applied to the different diagrams to modify both the model and the final

implementation. Anyway, as in the case of OOHDM, they are not suitable for

domains in which there are no identifiable classes or relationships.

The Hera methodology [29] is inspired by RMM and includes several features

in order to provide a better support for an automated design which can be ap-

plied to adaptive Web applications. Like in RMM, there is a conceptual model

expressed in an Entity-Relationship manner. Consequently it is not applicable in

those applications where RMM is not suitable.

The Fundamental Open Hypertext Model (FOHM) [30] defines a common data

model and a set of related operations that are applicable to the three domains of

Open Hypermedia Systems [31]. Open hypermedia is concerned with producing a

January 7, 2005 17:34 WSPC/117-ijseke 00174

Conceptualization, Prototyping and Process of Hypermedia Applications 571

protocol which allows components of heterogeneous hypermedia systems to commu-

nicate with each other. Although the FOHM scope is limited to this involvement,

it presents an interesting characterization of the hypertext state using an abstract

machine. The Pipe model uses a similar characterization of the hypertext state,

but without worries about hypertext interoperability.

2.2. Process models

The need for a design model is just a part of the problem. A constant concern in

software engineering is the presence of a process model that structures the software

development process. Despite this fact, there are few process models specifically

designed for hypermedia development [32]. In particular, we can find those provided

by Fraternali [4], Nanard [5] and Ginige [16]. Other authors like Lowe [33] introduce

reference process models that are used to evaluate the process models.

Although there are valuable process models in generic software engineering

(e.g. [34], [35]) in addition to the reasons explained in the introduction that justify

the need for specific hypermedia modeling techniques, there are other causes that

lead to the specialization of the generic process models [13].

The process model presented by Fraternali [4] collects the key ideas of

several process models. It is formed by two development loops. The first on

conceptualization-prototyping, and the second is focused on design-development.

This process model is the one chosen in our approach where the Pipe model directs

the conceptualization stage. This (more specific) process model is called Plumb-

ing, and also shows the influence of the Ginige-Lowe process model [16] (which in

turn is very similar to Fraternali’s process). We have chosen Fraternali’s approach

instead of Nanard’s [5], another iterative process model, because, in our opinion,

Nanard’s process is very dependent on the implementation techniques. We present

Fraternali’s process model in the description of the Plumbing process model.

Regarding prototyping, the ideal case is to generate prototypes automatically

by using the structures provided by the hypermedia-oriented model. This is only

possible if the hypermedia-oriented model provides a default browsing semantics (as

Pipe does). By specializing the Plumbing process model with XML and Java pro-

totyping techniques, we obtain PlumbingXJ, a more specific process model, closer

to a methodology than to a classic process model.

In our process models, there are no specific design-development techniques. We

think that nowadays it is not reasonable to provide a closed solution to these stages,

and approaches like [36] are more realistic.

2.3. Markup languages

Today, the use of markup languages is a common approach for developing a hyper-

media application. In the approach presented in this paper, XML is the formalism

offered to authors to define customized languages appropriate for describing the

structure of the static contents and relationships of its application domain. In our

January 7, 2005 17:34 WSPC/117-ijseke 00174

572 A. Navarro et al.

approach the navigational schema of such applications is also described using an

XML-based language. This is possible because XML, as a tool for defining lan-

guages, can provide authors with all the flexibility and expressiveness needed to

describe the structure of most application domains. If the structure of the domain

is not the main issue, an HTML-like DTD can be defined. On the contrary, if the

elements in the domain have some structure that is not suitable to be described us-

ing a relational schema (i.e. educational or literary work) an XML-based language

can be the most appropriate formalism to structure such a domain [37]. In this

section we briefly review some of the most relevant markup languages related to

the hypermedia domain, in order to contrast our approach.

The HyperText Markup Language (HTML) [38] used for Web development is

one of the most widely used markup languages in history. Our XML solution in

PlumbingXJ benefits from the expressive power and flexibility of XML-based lan-

guages and at the same time tries to maintain the HTML simplicity in order to

achieve a greater applicability.

In contrast to this approach, the set of Architectural Forms of Hypermedia/

Time-based Structuring Language (HyTime) [39] was a powerful way to introduce

hypermedia structure via markup languages, but never had the success that it

deserved. The lack of a clear browsing semantics in the scheduling and presentation

modules, and the huge size of HyTime handicapped its success. The Pipe browsing

semantics and the limited complexity of the XML representations try to prevent

these drawbacks.

The greatest shortcoming of the Synchronized Multimedia Integration Language

(SMIL) [40], a multimedia markup language, is the need to define the links of the

application within the description of the user interface of the application. This char-

acteristic could lead to reusability problems with the contents and their navigational

interpretation.

The use of XML made in PlumbingXJ is similar to WebML [22], which is based

on the work of [41]. WebML defines a markup language that generates hypermedia

applications using XML descriptions of relational hypermedia applications. The

main differences between WebML and the PlumbingXJ approach derive from the

different application domains where they are applied.

Finally other approaches like XML User Interface Markup Language (XUL)

[42] and User Interface Markup Language (UIML) [43] are closer to the GUI design

of a generic software application, and require a serious effort to be customized in

hypermedia development.

3. The Pipe Model

The Pipe model [44] formalizes our vision of a hypermedia application as a two-

layer structure, where the contents and their semantic relationships [18] are mapped

to an abstract representation of the GUI by means of the so-called canalization

functions. The Pipe model characterizes a hypermedia application by means of

January 7, 2005 17:34 WSPC/117-ijseke 00174

Conceptualization, Prototyping and Process of Hypermedia Applications 573

five components:

— CG is the Contents Graph. It models the content elements and their relationships

in the application with total independence of its navigational treatment.

— NS is the Navigational Schema. It models the elements of the GUI and the

navigational relationships established between them.

— CF are the Canalization Functions. They relate the contents graph and the

navigational schema.

— BS is the Browsing Semantics. It provides a browsing semantics to the general

structures obtained when relating a contents graph and a navigational schema

via canalization functions.

— PS is the Presentation Semantics. It is similar to the BS, but includes a function

that provides information on the style characteristics (position, font, color, etc.).

Consequently, according to the Pipe model, a hypermedia application is charac-

terized by a tuple 〈CG, NS, CF 〉, whilst the BS and PS are common to all the ap-

plications. We will see in detail the components of the model, which have (slightly)

evolved since [44]. We omit the specific formalization of the model and provide the

associated graphical notation insteadb.

3.1. Contents Graph (CG)

The Contents Graph, CG, is the representation of the content elements and their

relationships (or links) in a hypermedia application. Let C and L be the set of all

the contents and all the links that can appear in a hypermedia application. Then

CG is a tuple 〈CA, LA〉, where:

— CA ⊆ C is the set of Contents of the application. These contents include the sub-

ordinate processes, small applications that are executed inside the hypermedia

applications, but without affecting navigational behavior.

— LA ⊆ L is the set of Links (or relationships) of the application. This set rep-

resents all the intrinsic semantic relationships between contents relevant to the

application. First we will define it for the static case, and later we will extend

the definition to the dynamic case.

3.1.1. Static linking

Let N and H be the set of Natural numbers, and the set of all the anchors that can

appear in a hypermedia application. Then in (1) we define the Static links, L0, of

a hypermedia application.

L0 ⊆ C0 × H0 × N × C0 × H0 (1)

bThe complete formal presentation of the Pipe model would require the inclusion of a mathematical
apparatus not absolutely necessary for its understanding. Therefore some expressions may appear
simplified.

January 7, 2005 17:34 WSPC/117-ijseke 00174

574 A. Navarro et al.

where

— C0 ⊆ C is the set of static contents of the hypermedia application.

— H0 ⊆ H is the set of anchors of the hypermedia application.

A tuple (s, sa, n, d, da) ∈ L0 represents a source content (s), a source anchor

(sa), a link number (n), a destination content (d) and a destination anchor (da).

The link number serves to characterize n-ary links. Thus a binary link between the

source content A and the destination contents B and C can be represented using the

links (A, toBC, 1, B, total), (A, toBC, 2, C, total), total being a distinguished anchor

that represents the whole content. This link number is needed in order to define

the formal browsing semantics because the selection of anchor toBC in content A

activates all the links (A, toBC, , ,).

The previous definition of set L0 is too generic. Ultimately, this set must denote a

binary relationship between pairs of source content and anchor with the destination

content and anchor. To obtain a simpler characterization of the browsing semantics,

and to permit the characterization of dynamic contents, we are going to split the

links into their source part (content, anchor and link number) and their destination

part (content and anchor). In this way, set L0 can be expressed as a relationship.

This relationship is characterized by the relationship function r, which in the static

case is described in (2) by the expressionc r0.

r0 : C0 × H0 × N → C0 × H0 (2)

In (3) we use r0 to define the set of links of the application.

L0 = {(s, sa, n, r0(s, sa, n))|(s, sa, n) ∈ C0 × H0 × N} (3)

In this way the linking between contents can be characterized as pairs of source

content and anchor with a link number ((s, sa, n)), and a destination content and

anchor (r0(s, sa, n)). Note that in Pipe, the property of being source or destination

anchor is not intrinsic to the anchor definition, but is provided by the link definition

that assigns this role. Our approach is similar to those presented in Labyrinth [7]

and Dexter [8].

If the application only has static components, then CA = C0, and LA = L0.

3.1.2. Example. Static case

Galatea is an educational hypermedia application for the comprehension of

Romance languages [45]. The contextual dictionary is one of Galatea’s modules and

is going to be our case study throughout the paper. In this contextual dictionary

the learner can select any sentence from a text to check the contextual meaning

of any word in that sentence, including the relationships with surrounding words.

cThe relationship function r is defined in both the static and dynamic case. The expression r
0

characterizes this function in the static case.

January 7, 2005 17:34 WSPC/117-ijseke 00174

Conceptualization, Prototyping and Process of Hypermedia Applications 575�

����

�����������

�����	�
��	�

��	����

�����

�����	����

������������������

�����������

��	������

����	�

�	�	������	��	�

�	�	�������

�������

���	������

���	������

Fig. 1. Static contents graph for the article from the contextual dictionary.

In addition, the text is also linked to a short description of the text. This short

description is linked to a detailed description. Both descriptions are linked to the

original text. For the sake of conciseness, the example is focussed on a text from

the dictionary, specifically, an article about a fire in an apartment. Figure 1 depicts

the contents graph for the example.

Although this contents graph was manually generated, our idea is to use the

CASE support that we are developing, called PlumbingMatic, to generate it together

with other Pipe structures. This information is used in the prototyping phase, and

it is reused in the design and development stages. Regarding the contents graph, the

envisioned PlumbingMatic tool takes care of the definition of the nodes, anchors and

links from a diagrammatic point of view. Moreover it facilitates the identification

of these nodes in the XML representation of the contents of the application via the

overmarkup technique, which is explained in Sec. 5.1 and Sec. 5.2.

Note that during the use of Pipe in conceptualization, the true nature of the

contents, or the actual contents themselves, are not relevant. The contents graph

only characterizes their existence, and the presence of several anchors for defining

links between them.

3.1.3. Dynamic linking and relationships

The use of the relationship function r in the definition of the set of links of the

application, LA, simplifies the definition of the browsing semantics by hiding the

real nature of the content link (static or dynamic). With static links we will be

able to provide an extensional definition of function r. With dynamic links we will

January 7, 2005 17:34 WSPC/117-ijseke 00174

576 A. Navarro et al.

need to provide an intensional definition of function r in terms of the generation

function g, whose signature is defined in (4).

g : C × H × N → C × H × 2H×N × 2H (4)

This function acts as an interface that dynamically builds the destination con-

tent and anchor, and two sets with all the source and destination anchors required

by the generated content. In this way g(s, sa, n) = (d, da, GAS, GAD) represents

the generated destination content (d), generated destination anchor (da), gener-

ated anchors used as source (GAS) and generated anchors used as destination

(GAD) after the activation of the link with source (s, sa, n). The distinction between

GAS and GAD is necessary for a new application of function g on the generated

content d.

We now use the generation function to extend the definition of the relationship

function for covering both the static and dynamic cases. This extension is shown in

(5) (Πi represents the projection on the ith coordinate in a tuple, i.e. Π12 represents

the first and second coordinates in a tuple).

r : C × H × N → C × H

(s, sa, n) → r0(s, sa, n), if (s, sa, n) ∈ C0 × H0 × N

(s, sa, n) → Π12g(s, sa, n), otherwise.

(5)

In this way, function r acts as a black box that hides the nature of the content

links (static or dynamic) from the browsing semantics. For static links function

r will have an extensional definition (in terms of function r0). For dynamic links

function r will have an intensional definition (in terms of function g). There are

several functions and sets that must be defined in order to provide Pipe with its

complete characteristics, but their description is outside the scope of this paper.

Thus, if we have an application with static and dynamic contents, (6) defines

the contents and links in the application.

CA = C0 ∪ genCont(g)

LA = L0 ∪ genLink(g)
(6)

The expressions genCont(g) and genLink(g) denote the contents and links gen-

erated by the generation function g, respectively. Again we have omitted its com-

plete characterization.

3.1.4. Example. Dynamic case

In Galatea, dynamic content and anchors are generated when a student looks up a

term in the general dictionary. Galatea’s general dictionary contains all the words

and expressions in the static contextual dictionary of each text. The definition of

every word is obtained by filtering the definitions and grammatical descriptions

of the words that are used in similar frame sentences with the same semantic or

January 7, 2005 17:34 WSPC/117-ijseke 00174

Conceptualization, Prototyping and Process of Hypermedia Applications 577

à

..........

avoir donne

A

General

Dictionary

y

Yvelines

Y

.................

..........

dynamic link

dynamic content Z

Fig. 2. Dynamic contents for the Galatea General Dictionary.

functional value. The first page of the general dictionary has an index (in this case

static) with all the letters of the alphabet. Every letter is linked to a page that

contains all the words beginning with the selected letter in the static index. As we

have explained, these pages with the words beginning with the same letter are dy-

namically generated by processing and filtering all the static contextual dictionaries

associated with texts that have been incorporated into the Galatea application up

to the moment. Finally, the general meaning of a word appears when such a word

is selected. Figure 2 depicts the contents graph for the general dictionary.

The Pipe model only defines the signature of the generation function, and every

concrete model for a concrete application must provide the definition of this function

(in our case, the function that looks up and filters the contextual dictionary of

texts). In this way, the generation function acts as an interface in the object-oriented

sense: only the description of the behavior is provided, while the concrete behavior

of the function is defined in every case. A formalism for defining this function is

not provided by the Pipe model. Standard mechanisms such as UML activity and

interaction diagrams [46] can be used. This approach is similar to the one proposed

in [7], but because the Pipe model is used at the conceptualization stage, it is no

longer necessary to provide the explicit function code.

The management (or naming) of dynamic contents in the Pipe model is made

via some selected functions that deal with the dynamically generated information.

Basically, these functions describe the contents and links generated after several

interactions, in the same way as the termd sn = sn−1 + sn−2 characterizes the nth

number of the Fibonacci recurrence although the actual value of sn is unknown.

The full description of the Pipe model and these functions are outside the scope of

this paper.

dFor n ≥ 2.

January 7, 2005 17:34 WSPC/117-ijseke 00174

578 A. Navarro et al.

Note also that notwithstanding the existence of several texts, a non relational

approach was chosen. The need for a well-defined educational approach subjacent to

the whole application made it necessary to include a formalism that is able to struc-

ture and define the educational contents, thus making the conceptualization and

design in terms of E-R diagrams not very suitable. Indeed, at the implementation

level, an XML DTD structures the educational contents. Specifically, Pipe captures

the semantic relationships among the contents of Galatea without worrying about

their inner structure (an XML structure, in fact).

3.2. Navigational Schema NS

The Navigational Schema NS is an abstraction of the main elements of the appli-

cation GUI (i.e. screens, panes, buttons) and the navigational paths established

between and by them. It is formalized as a tuple 〈N, A〉 where,

— N is the set of Nodes of the application. This set represents the elements of the

user interface.

— A is the set of Arcs of the application. This set represents the structural and tim-

ing relationships established by and between the elements of the user interface.

The navigation is not exactly the same as the interface, but in the end, the

navigation has to be represented in a user interface. For example, OOHDM uses

a navigation chart to describe the behavior of the nodes when a link is traversed,

Amsterdam uses the notion of context for defining the behavior of the components

when a link is traversed, the Trellis model uses the simultaneously active states

in a Petri net for characterizing the behavior of the hypertext when it is being

browsed. In the end, the simultaneous contents that are being displayed and the

navigational transformations that occur while traversing links have to be repre-

sented in a graphical user interface. Precisely, the Pipe navigational schema defines

the minimum elements of a user interface, and the canalization functions relate

contents with their navigational access. This is very similar to the OOHDM navi-

gation chart. The main difference is that in OOHDM a context schema and context

classes are needed because the access between objects may vary depending on the

relationships and the classes accessed, and in Pipe the only existent relationship is

the navigational relationship between elements.

3.2.1. The set of nodes N

The Nodes N of the navigational schema represent the elements of the user interface

(whilst in other approaches the term node is used to name the members of the set

CA). In (7) we define this set.

N = Nx ∪ Nc ∪ Na (7)

The nexus nodes (Nx) represent the “windows” of the applications. They work

as glue for the container nodes (Nc). The container nodes represent the “panes”

January 7, 2005 17:34 WSPC/117-ijseke 00174

Conceptualization, Prototyping and Process of Hypermedia Applications 579

(concrete or virtual, in the context sense of the Amsterdam model [9]) inside the

“windows”. Container nodes work as the content holders (i.e. text, images, subor-

dinate processes, etc.) of the application. Finally, there are nexus activator nodes

(Na) that represent “buttons” inside “windows”.

3.2.2. The set of arcs A

The elements of this set play two different roles in the abstraction of a GUI: (i) they

indicate the basic elements (panes and buttons) that compose a window of the GUI,

and (ii) they show the navigational paths that the user can follow between these

elements. Formally, let Y , Ys and R be Y = {connection, path} types of arcs be-

tween nodes, Ys = {sConnection, sPath} types of synchronization arcs between

nodes, and R the set of Real numbers. Then in (8) we define the arcs of the navi-

gational schema A, which represent the structural and timing connections between

the elements of the navigational schema (i.e. the nodes).

A ⊆ (N × N × Y) ∪ (N × N × Ys × R) (8)

Y connections represent structural relationships between nexus and container

nodes; Y paths represent navigational paths between nexus and container nodes;

Ys sConnections and sPaths represent connections and paths that are time acti-

vated, with R characterizing the time information attached. Note that these sets can

be understood as a typed graph, which we denominate extended graph. Figure 3

shows the allowed relationships between the elements of the navigational schema

using these arcs.

 xi
t

xj
synchro path
between nexus nodes

xi

cj

connection between
a nexus node and a
container node

xi

cj

synchro connection
between a nexus node
and a container node

t

xi
connection between
a nexus node and a
nexus activator node aj

cj ci ck

paths between
container nodes
(pipes)

ai

xj path between nexus
activator and nexus
node

nexus node

container node

nexus activator node

connection

path

synchro connection

synchro path
t

t

Fig. 3. Permissible relationships between nodes in the navigational schema.

January 7, 2005 17:34 WSPC/117-ijseke 00174

580 A. Navarro et al.

The set of navigational paths between container nodes is called Pipes, denoted

by P and expressed in (9).

P = {(ci, cj , path) ∈ A|ci ∈ Nc, cj ∈ Nc} (9)

We call them pipes because they are responsible for canalizing (interpreting)

the links (semantic relationships) between contents (i.e. the elements of the set LA)

into the navigational level (i.e. in terms of the set A).

Regarding synchronization, the Pipe approach is similar to that presented in

[11], where the basic structural and piping information is decorated with timing

information (hence the presence of sConnections and sPaths). Moreover, the timing

information can be calculated in terms of elements of the navigational schema using

four functions that synchronize the playing of the contents assigned to a container

node based on other container nodes. We have depicted the functions in (10).

atBeginning : Nc → R

atEnd : Nc → R

afterBeginning : Nc × R → R

beforeEnd : Nc × R → R

(10)

These functions permit the playing of a container or nexus node at the beginning

of the playing of (the content assigned to) a container node, at the end of the playing

of a container node, an amount of time after the beginning of a container node,

and an amount of time before the end of playing a container node. Note that the

expressive power of this approach is similar to the one provided in [9].

3.2.3. Example

In the example of the contextual dictionary, the article, sentences and words ap-

pear in a window (the nexus node x1), and the descriptions of the article appear

in another window (the nexus node x2). The first window (x1) has three panes

(the container nodes c1.1, c1.2 and c1.3) and two buttons that activate two different

buttons (the nexus activators a1.1 and a1.2). The first pane (c1.1) has a naviga-

tional path (or pipe) with the second one (c1.2), and the second pane has another

navigational path with the last one (c1.3). The second window has two panes (the

container nodes c2.1 and c2.2) and two buttons (the nexus activators a2.1 and a2.2).

Moreover the first pane of the first window (c1.1) has a navigational path with the

first pane of the second window (c2.1), and both panes in the second window (c2.1

and c2.2) have a navigational path with the first pane of the first window (c1.1).

Finally, the first pane of the second window (c2.1) has a navigational path with the

second pane of the second window (c2.2). Figure 4 depicts this navigational schema,

and Fig. 5 depicts the actual user interface.

Again this schema has been manually constructed, but the PlumbingMatic tool

will support its development. Note that in the hypermedia-oriented models studied,

January 7, 2005 17:34 WSPC/117-ijseke 00174

Conceptualization, Prototyping and Process of Hypermedia Applications 581

�

���

����� ����� �����

����� �����

���

�����

����� �����

�����

Fig. 4. Navigational schema for the Galatea Contextual Dictionary.

�

�

��� ���

����� ����� ����� ����� �����

�����

�����

�����

�����

Fig. 5. User interface for the navigational schema for the Galatea Contextual Dictionary. Dashed
arrows represent the pipes.

only Labyrinth and OOHDM consider an explicit representation of the GUI. In these

cases they are design notations without a formal browsing semantics. Our approach

is similar to WebML, but in Pipe, the graphs-based notation is more closely related

to the browsing semantics than in WebML. Therefore Pipe’s navigational schema

allows for the definition of the browsing semantics using the graph structure, whilst

WebML needs an external formalism (statecharts, which in turn, is a graph) to

provide its browsing semantics.

3.3. Canalization Functions CF

These functions are the third and fundamental element of Pipe, and provide it with

most of its flexibility. Using canalization functions the same contents graph can

be mapped (adapted) to different navigational schemas, and the same navigational

schema can be used with different contents graphs. Formally, the Canalization Func-

tions CF relate the navigational schema with the contents graph assigned to it. It

is a tuple 〈d, l, p〉 where,

— d is the content assignation function. This function relates the contents of the

application with the navigational schema (i.e. the GUI).

— l is the canalization function. This function interprets the semantic relationships

January 7, 2005 17:34 WSPC/117-ijseke 00174

582 A. Navarro et al.

between contents (content links) into the navigational schema. In this way, the

semantic relationships can be considered or ignored at the navigational level.

— p is the presentation function. This function provides specific presentation in-

formation (e.g. color, font, etc.).

3.3.1. Content assignation function

This function assigns a default content to every container node (null value, if there

is no default content), and the set of contents that is going to appear inside this node

in the same way as [11]. In (11) the signature of the content assignation function d

is presented.

d : Nc → (C0 ∪ {null})× 2C (11)

Note that only static contents (or the null value that represents no content)

can be assigned as default content, whilst the rest of the contents that appear in a

container node can be static or dynamic.

3.3.2. Canalization function

This function assigns a pipe to a set of content links, capturing the idea of nav-

igational interpretation of content links. In (12) we can find the signature of the

canalization function l.

l : P → 2L (12)

Function l presents several restrictions to guarantee the consistent assignation of

content links into a navigational level. These restrictions are extremely important

when applying browsing semantics. For the sake of conciseness, the details have

been omitted. Regarding the graphical representation of the canalization functions,

colors and patterns can be used.

3.3.3. Presentation function

This function assigns presentation specifications to nodes and contents. It is exten-

sively used by the presentation semantics. In (13) the signature of the presentation

function p for both nodes and contents is given.

p : N → PS

p : C → CPS
(13)

PS is the set of Presentation Specifications that can be assigned to a specific node,

while CPS is the set of Content Presentation Specifications that can be assigned

to a specific content.

January 7, 2005 17:34 WSPC/117-ijseke 00174

Conceptualization, Prototyping and Process of Hypermedia Applications 583

3.3.4. Example

Continuing with the Galatea static example, and as previously mentioned, the nav-

igational schema is composed of two windows (x1, x2) with several panes (c1.1, c1.2,

c1.3, c2.1 and c2.2) and nexus activators (a1.1, a1.2, a2.1 and a2.2). The content assig-

nation function states that the content article is the default content (that is, the

content shown when the window is activated) for the first pane (c1.1) of the first

window. The sentences selected from this article will appear in the second pane

(c1.2). Hence the canalization of these content links by the pipe between c1.1 and

c1.2. The contextual meaning of every word selected from a sentence will appear

in the third pane (c1.3). Hence the canalization of these content links by the pipe

between c1.2 and c1.3. When the user selects the short description of the article, it

appears in the first pane of the second window (c2.1). Hence the canalization of the

content link by the pipe between c1.1 and c2.1. When the user selects the extended

description, it appears in the second pane of the second window (c2.2). Hence the

canalization of the content link by the pipe that connects (c2.1) and (c2.2). Finally

if the user selects some of the back links from the descriptions to the article, the

article appears in the first pane of the first window (c1.1). Hence these returning

content links are canalized by the pipes that connect the panes in the second win-

dow (c2.1, c2.2) with the first pane in the first window (c1.1). Nexus activator nodes

provide access to other windows that we are not going to consider for the moment.

Figure 6 shows the relationships between the navigational schema and the contents

graph (omitting some information).

�

� ����������	
���
���
����
�������
�

���

����� ����� �����

����� �����

���

�����

����� �����

�����

	
��

�����������

��������
��

�������

��	��

�������
�

������������������

�����������

����
����

�����

��
��
����

��
��
��
�

Fig. 6. Relationships between the navigational schema and the contents graph.

January 7, 2005 17:34 WSPC/117-ijseke 00174

584 A. Navarro et al.

Note how the colors and patterns denote the canalization. The patterns denote

the assignation of contents to container nodes, while colors provide information

about the canalization of links by pipes. The figure was manually built, but again,

the PlumbingMatic tool will be able to construct both graphs and to relate them.

Note that in this example we have chosen the static dictionary, but the use of

the general dictionary has the same complexitye due to the definition of the Pipe

browsing semantics.

None of the hypermedia-oriented models previously analyzed provide a

functional characterization of the relationships between contents/links with its

navigational representation, explicitly characterized by means of an abstract GUI.

This is one of the most relevant characteristics of the Pipe model, and hence its

name. Only WebML presents a similar approach, but it is restricted to relational

domains.

3.4. Browsing semantics

The Browsing Semantics BS represents the dynamic appearance of the application,

according to interaction with the user. It is a tuple 〈a, f〉 where

— a is the activation function. This function provides information on the applica-

tion behavior after the activation of a nexus node (i.e. a window).

— f is the link activation function. This function basically provides information

on the application behavior after the activation of a content link.

These functions act on nodes and anchors providing the state of the application,

which is described by the following sets.

— Actives ⊆ V =definition N ∪ (N × R). This set presents the set of active nodes

with their associated timing information.

— Show ⊆ S =definition (Nc × {C ∪ {null}})∪ (Nc × {C ∪ {null}}× R). This set

represents the contents that every container node shows (or plays) with their

associated timing information. null represents no content.

In (14) we can find the signature of function a.

a : Nx → 2V × 2S (14)

The details regarding the definition of functions a and f are omitted, preferring

to give an idea of their functionality instead. Function a describes the behavior of the

system after the activation of a nexus node (a window). All the nodes connected to

the activated nexus node are trigged according to their attached timing information.

Moreover, the container nodes show their default content.

The signature of function f appears in (15).

f : ((C × H) ∪ {⊥})× N × 2V × 2S → 2V × 2S (15)

eOnce some auxiliary functions have been introduced.

January 7, 2005 17:34 WSPC/117-ijseke 00174

Conceptualization, Prototyping and Process of Hypermedia Applications 585

This function acts on a content and an anchor inside the content that is being

displayed in a container node, or on a navigational path (symbol ⊥ represents

nexus activator and time activated paths) in a nexus node, changing the state of

the application (i.e. the sets Actives and Show). The definition of the function

takes into account four main cases.

a. Function f is activated by the selection of an anchor that activates a content

link.

b. Function f is activated by the triggering of a synchro path established between

two nexus nodes.

c. Function f is activated by the selection of a nexus activator node belonging to

the navigational schema.

d. Other situations.

Consequently, we define function f according to the enumerated cases.

a. Function f is activated by the selection of an anchor that activates a content

link. Then, the source is in a container node, and the destination contents

are in other container nodes. There are two options depending on whether

the source and container nodes are not connected to the same nexus node

(i.e. they are panes of different windows) or they are connected to the same

nexus node (i.e. they are panes of the same window).

a.1. The destination content nodes are in another nexus node. In this case, the

nexus node where the link originated is deactivated. Then the nexus node

connected to the container nodes, which are the destination of the pipes, is

activated. Next, all the container nodes show their default content, except

those nodes that are the destination of the pipes. These destination nodes show

the content that is the end of every content link. Due to the characterization

of static and dynamic linking via the relationship function r the actual nature

of the link (static or dynamic) is hidden from the browsing semantics.

a.2. The destination content nodes are in the same nexus node. In this case, every

destination container node of a pipe that canalizes an activated link shows

the content (static or dynamic) accessed by the link and it stops showing the

previous content.

b. Function f is activated by the triggering of a synchro path established between

two nexus nodes (note that there is no source anchor, and the element ⊥ is

used instead). In this case, the destination nexus node is activated according

to the timing information attached, and the source nexus node is deactivated.

c. Function f is activated by the selection of a nexus activator node belonging

to the navigational schema (note that again, in this case, there is no source

anchor, and the element ⊥ is used instead). In this case, the destination nexus

node is activated, and the nexus node where the source nexus activator node

is placed is deactivated.

d. In other situations, function f acts as the identity function.

January 7, 2005 17:34 WSPC/117-ijseke 00174

586 A. Navarro et al.��

���

����� ����� �����

����� �����

���

�����

����� �����

�����

���

����� ����� �����

����� �����

���

�����

����� �����

�����

���

����� ����� �����

����� �����

���

�����

����� �����

�����

���

����� ����� �����

����� �����

���

�����

����� �����

�����

���

����� ����� �����

����� �����

���

�����

����� �����

�����

���

����� ����� �����

����� �����

���

�����

����� �����

�����

�	
���� �	
���� ��
����

���	
�
�	
���� ���

���	
�

�
����

�	
����

	�
� 	�
�

	�
�	�
�

	
�	�
�

��
����

Fig. 7. An example of the browsing semantics.

We are aware that this browsing semantics (and its mathematical representa-

tion) is too complicated to be clearly understood by a broad audience, but this

is not our main aim. The Pipe browsing semantics is used to define a tool that

can handle a hypermedia application by using Pipe structures. In other words, this

browsing semantics is the kernel of a CASE tool for the development of hypermedia

applications.

Concerning graphical notation, the activated nodes are represented by a dot

inside the node or by putting its name in bold letters (as in this paper).

3.4.1. Example

Let us look at a trace of execution as described by BS. Figure 7 shows the behavior

described by the BS. In (a) we begin the navigation by activating the nexus node

x1. Then the container node c1.1 shows its default content, the article. In (b) we

January 7, 2005 17:34 WSPC/117-ijseke 00174

Conceptualization, Prototyping and Process of Hypermedia Applications 587

��������	
	���	����	����	����	����	�����	

�����	
	������	��������	�����	�����	�����	������	

����

��������	
	��������	
�����	
	������	��������������	����������	�����	������	

���	
��������	
	��������	
�����	
	������	�����	�����	����������	�����	�����	

����	

��������	
	���	����	����	����	�����	
�����	
	������	������	�����	������	

����	
��������	
	��������	
�����	
	������	������	�����	����������	

���	

������� 	
	���	����	����	����	����	�����	

���� 	
	������	��������	�����	�����	�����	������	

�	�	

	
Fig. 8. State of the application in every case.

�
Fig. 9. Navigation in the Galatea Contextual Dictionary. In this example these two windows are
never simultaneously shown.

can see what happens if the user selects the first sentence from the article. As the

pipe between c1.1 and c1.2 canalizes such links, the sentence appears in node c1.2

(case a.2 of the BS). The same behavior occurs if the user selects the first word in

the sentence, but using the pipe between c1.2 and c1.3 (c). If the user selects the

link between the article and the short description, this description appears in the

first pane of the second window because the content link is canalized by the pipe

between c1.1 and c2.1 as (d) depicts (case a.1 of the BS). (e) depicts the situation

when the link between descriptions is traversed (case a.2 of the BS). Finally (f)

depicts the situation after the link between the extended description and the article

is traversed (case a.1 of the BS). Note that traversing the link between the short

description and the article produces the same result.

The canalization functions are responsible for interpreting the content links at a

navigational level. In the previous example, case (f) is obtained because the content

link between the extended description and the article is canalized by the pipe that

connects the nodes c2.2 and c1.1. Otherwise, the link is ignored because case d of

the link activation function is selected.

The state of the application in every case is described in Fig. 8.

Finally, Fig. 9 depicts the two windows of the example.

From a conceptual viewpoint this semantics is very similar to that presented

in FOHM, whilst graphically it is closer to those provided by the HAM or

Trellis approach. Note that the Pipe model does not support the Model-View-

Controller architecture feature supported by models such as OOHDM. In this way a

January 7, 2005 17:34 WSPC/117-ijseke 00174

588 A. Navarro et al.

default built-in browsing semantics can be provided with less effort (like in HDM or

WebML). This browsing semantics is the key for the development of prototypes, and

in our opinion, the possibility of obtaining early prototypes at the conceptualization-

prototyping stage is more important than being able to capture all the characteris-

tics of the hypermedia applications. As Fraternali states [4], a prototype is typically

built prior to design and with a simplified architecture, e.g. as a set of manually

implanted pages containing samples of the application content, which emulate the

desired appearance and behavior. This is the reason for initially choosing a two-layer

architecture. Of course, in design more advanced architectures than the simplified

architectures used in conceptualization-prototyping can be used.

According to the default browsing semantics, every time that a window is left,

all the computational processes that are running inside it are stopped. In turn,

subordinate processes implement a Java interface with a stop() method that stops

any computational activity that the subordinate process may be running. A more

advanced browsing semantics could be provided, but this would complicate its

definition.

3.5. Presentation Semantics PS

The Presentation Semantics PS is similar to the browsing semantics, but functions

a and f include presentational information via function p. In (16), the modifications

in set S, which includes this information, are shown.

S = (Nc × {C ∪ {null}}× PS × CPS) ∪ (Nc × {C ∪ {null}}

× R × PS × CPS) (16)

Note that this minimum variation in this set represents very little change in

the browsing semantics, and introduces specific information about the style in the

application.

4. Plumbing Process Model

In this section we describe the Plumbing process model, an evolution of the process

model proposed by Fraternali [4] with some influences of the model proposed by

Ginige and Lowe [16].

4.1. Fraternali/Ginige-Lowe process model

Figure 10 shows the Fraternali/Ginige-Lowe process model, an evolutive model with

two loops.

The first loop begins with a requirements analysis, where developers determine

the mission of the software application identifying prospective users and defining

the nature of its information base. Later, in conceptualization the application is

represented through a set of abstract models (Pipe in the case of Plumbing) that

January 7, 2005 17:34 WSPC/117-ijseke 00174

Conceptualization, Prototyping and Process of Hypermedia Applications 589

�
�����������	

����	�	

��	���� ��������������

�����������

���

���������

��	�����

����������

�����������������
 ����������
���

����������

Fig. 10. Fraternali/Ginige-Lowe process model.

characterize the main features of the application: structure, navigation and presen-

tation. In the hypermedia context, conceptualization differs from the same activity

in the classic analysis, since the main interest is to identify the contents, links

and navigational schema, instead of the specific software requirements and their

software representation. In prototyping and validation the user evaluates reduced

versions of the application using a prototype which simplifies the architecture of the

solution. The user’s evaluation provides valuable information prior to design. In our

opinion, in the case of hypermedia applications, the prototyping has more relevance

than in traditional software development because the complexity and relevance of

the contents and the GUI are greater, and need to be evaluated in detail by the

user.

At the design stage, developers transform the abstract schemas provided by the

conceptualization phase into low level representations, closer to the demands of the

implementation. Also, at this point developers determine the architecture of the

solution, for example using patterns like those provided by [36]. Developers build

the application and provide the contents at the implementation stage. Naturally,

the contents must be represented according to the selected architecture. Finally,

in evolution and maintenance developers modify the application in response to

changes in software requirements, and solve the bugs and problems that might

eventually appear in the application. These changes may force modifications in the

structure, navigation or presentation of the application, and for that reason an

iterative enacting of the process model is the best way to manage them.

4.2. Plumbing

This section analyzes the Plumbing process model [44] a specialization of Fraternali’s

model where Pipe is used to guide the conceptualization and prototyping stages. As

previously mentioned, Plumbing is not concerned with the design and development

stages. Figure 11 depicts the conceptualization and prototyping phases in Plumbing.

January 7, 2005 17:34 WSPC/117-ijseke 00174

590 A. Navarro et al.

�

���������	
���
���

����������

�	
���

�����

����

�����������������

��������������

�
���
����
��

�����
�

����

�
�
���
�����

����������

��������

��������
���������	
���
���

����
���
����

����

����
�� ���!�

���	�!
!�

���	�����
��������

����
�����
�����

����
�������	�����

��	����	�����������

���������

���������
������ ��

�������
�����
�����

����
�������	�����

��	����	�����������

�
���
����
�����!�

�
���
����
��

�����
��������

�����
�����

����
�������	�

	��
��������������

����
���
�����

"	��������

Fig. 11. Conceptualization and prototyping in the Plumbing process model.

4.2.1. Requirements analysis and conceptualization

The requirements analysis phase does not differ from Fraternali’s, but in Plumbing

the conceptualization stage is totally directed by Pipe. In traditional software ap-

plications, the requirements analysis produces a software requirements specification

that guides the design of the application. In hypermedia applications this specifica-

tion must facilitate the design without compromising it, and the conceptualization

stage offers the solution to this problem. This stage needs mechanisms with the

capacity to express the contents, links and navigational schema of a hypermedia

application in an abstract way. In our approach, Pipe provides all the mechanisms

for representing this information.

According to Plumbing, at the conceptualization stage developers must identify

the contents graph of the application, that is, they must determine the sets of

contents CA and links LA of the specific application.

Once the contents and their relationships are defined, developers must specify

the navigational schema of the application, that is, the sets of nodes N and arcs

A. After specifying the navigational schema, developers must relate the contents

graph with the navigational schema by defining the canalization functions and,

optionally, the presentation function (functions d, l and p, respectively). They can

choose to define these functions at the same stage as the navigational schema, or

at an independent stage. To obtain a more general approach, Fig. 11 shows them

as independent activities.

At the end of the conceptualization stage we have a complete Pipe represen-

tation of the application. It is important to note that although we have given a

formal flavor to the Pipe model, we realize that a manual specification of the sets

January 7, 2005 17:34 WSPC/117-ijseke 00174

Conceptualization, Prototyping and Process of Hypermedia Applications 591

and functions (CA, LA, N, A, d, l, p) is a tedious task. For that reason we are build-

ing the PlumbingMatic CASE tool to reduce this problem. In conceptualization,

PlumbingMatic must provide a view for the definition of the nodes and links of

the contents graph as well as another view for the definition of the navigational

schema. Using both graphical views of the application, canalization functions could

be specified making drag and drop of contents and links.

4.2.2. Prototyping and validation

At this stage the user must validate the application that is being developed. The

idea is to reuse the Pipe representation defined in the previous phase. Therefore,

several languages or formalisms capable of expressing all the Pipe structures are

needed. The first one must be capable of structuring the contents graph of the

application, and the second one its navigational schema. With these two formalisms

available, all the contents, links and abstracts features of the application GUI can

be described. Finally, a third formalism must be used to relate both aspects of the

application (as canalization functions do), obtaining the description of the whole

application.

This description of the application must be capable of being processed by a

program that implements the Pipe browsing semantics, providing a prototype of

the final application. This program should be integrated into a CASE tool able

to generate the navigational schema and its relationships with the contents graph.

Of course, the formalisms used must be in tune with the design and development

phase, or must be flexible enough to be employed in a wide range of domains. In

any case, a first ultra-fast prototype can be deployed using the Pipe representation

of the application. In this prototype the structural information provided by the

contents graph (name of the content, number of anchors and content links) can be

used as an abstract representation of the actual contents of the application. This

helps in defining the hypermedia structure of the contents and their navigational

behavior.

Users evaluate the prototype developed at the final stage, and the loop iterates if

changes are required. The presence of the Pipe representation and the prototyping

engine facilitates the iteration until the prototype needs no further changes.

For the prototyping phase, the Plumbing process model does not set any specific

structuring language or formalism, and consequently does not imply any technology

in the generation of prototypes. Although this is the true nature of a process model,

we are going to set up some mechanisms and languages to make the Plumbing

process model more functional.

5. PlumbingXJ Process Model

PlumbingXJ [44] is a specialization of Plumbing where XML is the selected

mechanism for structuring the contents graph and the navigational schema of the

January 7, 2005 17:34 WSPC/117-ijseke 00174

592 A. Navarro et al.

CONCEPTUALIZATION

Contents
Graph
CA, LA

Pipe
representation of
the application

Navigational
Schema

N, A

Canalization
Functions

d, l, p

Contents DTD

Contents document

Application DTD

Application
document

Overmarkup

PROTOTYPING AND VALIDATION

APG
a, f

XPath

Prototype

REQUIREMENTS
ANALYSIS

Fig. 12. Conceptualization and prototyping in PlumbingXJ process model.

application, and where Java is the selected mechanism for defining the subordi-

nated process and for defining the tool that automatically generates the prototypes

(hence the XJ). Figure 12 describes the conceptualization and prototyping stages

in PlumbingXJ.

As this figure depicts, the only changes between Plumbing and PlumbingXJ

appear at the prototyping and validation stage. Now XML defined languages are

used to describe the Pipe structures. There are two reasons for choosing this lan-

guage: today XML is accepted as a universal interchange format [47], [48], and it

provides a great structuring capacity [49]. Both characteristics make XML a perfect

choice for the characterization of hypermedia applications [37].

5.1. Contents DTD

The contents DTD (Document Type Definition) structures the contents and links

of the hypermedia application. Due to the heterogeneous structure of the contents

that can appear in a hypermedia application it is specific for every case. There are

almost no restrictions on this type of DTD, although it provides a tree structure,

and a (Pipe) graph structure must be obtained. The graph structure is built from

the tree by using a few specific attributes (that basically define the anchors) and

via the overmarkup technique described later.

The contents document is an instance of the contents DTD. It can include text

and non XML data like images or subordinate processes. Subordinate processes

implement a specific Java interface that allows the hypermedia applications to load

January 7, 2005 17:34 WSPC/117-ijseke 00174

Conceptualization, Prototyping and Process of Hypermedia Applications 593

<?xml ver si on=" 1. 0" encodi ng=" I SO- 8859- 1" ?>
<! DOCTYPE cont ent s SYSTEM " cLEF. dt d" >
<cont ent s>
 <ar t i c l e i mage=" c: \ pl umbi ngXJ\ GAP\ document s\ f i r e. j pg" >
 <anchor hr ef =" s1" coor ds=" 0, 0, 315, 0, 315, 55, 0, 55, 0, 0" / >
 <anchor hr ef =" s2" coor ds=" 0, 55, 315, 55, 315, 100, 0, 100, 0, 55" / >
 .
 <anchor i dLi nk=" l 1" hr ef =" shor t " coor ds=" 0, 600, 150, 600, 150, 630, 0, 650, 0, 600" / >
 </ ar t i c l e>
 <sent ences>
 <sent ence i d=" s1" >
 <wor d hr ef =" une1" >Une </ wor d>
 <wor d hr ef =" f ami l l e1" >f ami l l e </ wor d>
 <wor d hr ef =" deci mee1" >déci mée </ wor d>
 <wor d hr ef =" par 1" >par </ wor d>
 <wor d hr ef =" l 1" >l ' </ wor d>
 <wor d hr ef =" i ncendi e1" >i ncendi e </ wor d>
 <wor d hr ef =" d1" >d' </ wor d>
 <wor d hr ef =" un1" >un </ wor d>
 <wor d hr ef =" appar t ement 1" >appar t ement </ wor d>
 </ sent ence>
 .

Fig. 13. Fragment of the contents document for the Galatea contextual dictionary.

them dynamically when they are referenced. These subordinate processes can im-

plement any functionality with the only constraint that they cannot interfere with

the navigational behavior. Otherwise, the browsing semantics would be much more

complicated. At present we are not able to manage the dynamic contents at the

prototyping stage, and a static simulation is the only available solution. However we

are working on a method, similar to the one provided for the subordinate processes.

Figure 13 illustrates part of the contents document for the Galatea contextual

dictionary.

Note that the article identified in the Pipe contents graph (Fig. 1) is represented

at the prototyping stage by a jpg file. This is irrelevant for the Pipe characterization.

Moreover, we have chosen href attributes, which are similar to those of HTML,

but this choice is not relevant to our approach. Indeed the inline inclusion of the

anchors is an implementation decision that can be (effortlessly) replaced by external

XLink [50] links.

Using XML representations in the definition of the contents graph introduces

a problem: in the XML representation the nodes of the contents graph are not

identified because they are embedded in the XML-tree structure. The identification

of these nodes is made using XPath [51] expressions. These expressions cut the

tree, obtaining the nodes of the contents graph. The PlumbingMatic tool can help

in this task, allowing a graphical identification of these nodes and automatically

defining the XPath expressions. In addition, this tool can help in the identification

of the nodes, anchors and links of the contents graph in the XML document. In this

way, the canalization functions are automatically defined because they have been

defined at the conceptualization stage, and only the actual contents and links of the

application need to be provided. As presented in the next section, this information

is included in the description of the application GUI, where the actual elements

January 7, 2005 17:34 WSPC/117-ijseke 00174

594 A. Navarro et al.

of this GUI reference the nodes of the contents graph using the XPath references.

This is what we call overmarkup. Moreover, information about the contents link

canalization is also included.

5.2. Application DTD

The application DTD structures the navigational schema of the hypermedia appli-

cations. It is unique for all types of applications and uses a closer GUI terminology

instead of the Pipe vocabulary. This approach is similar to the one presented in

XUL and UIML, but restricted to the hypermedia domain and the Pipe browsing

semantics. Consequently there is no need to explicitly express the behavior of the

application beyond the anchor selection, which is encoded in the Java engine that

builds the prototypes.

The application document is an instance of this DTD and not only provides

the elements of the GUI and their navigational relationships, but also encodes

the canalization functions. The transition from the Pipe Navigational Schema

to the application document is direct and can be directly accomplished by the

PlumbingMatic tool. Notice that Fig. 4 depicts the windows, panes and buttons

of the application, and this structure is directly representable in XML. The over-

markup technique and specific attributes are responsible for the encoding of the

canalization.

A default content link canalization is made. A default pipe is defined for every

container node. This pipe canalizes the content links that have this container node

as source. If there is any other content link not assigned to this default pipe, its

explicit canalization must be provided. The PlumbingMatic tool will permit the

graphical selection of contents and links, and its drag and drop assignation to the

navigational schema.

Figure 14 depicts a fragment of the application document for the Galatea ex-

ample (bold text represents overmarkup). The href attributes in the contents

document (Fig. 13) represent the destination of the links, and the information

about the link canalization is included in the application document (Fig. 14) via

linksDestination element (in italics). The attribute pane of this element charac-

terizes the destination container node of the default pipe, whilst the attribute pane

of the element specific denotes the destination container node of any link not

canalized by the default pipe. In the example, in the first pane of the first window

(p1.1), pane p1.2 is the destination of the default pipe, and the content link that

connects the article with its short description (link l1) is explicitly canalized by

the pipe whose destination container node is p2.1. In this way, the canalization

functions depicted in Fig. 6 are represented in XML format.

The Java application Automatic Prototypes Generator (APG) processes the ap-

plication document and produces the desired prototype. In turn, Fig. 9 depicts the

prototype generated using APG.

The navigational schema of the application is generated by the APG. This

schema is a Java Swing [52] skeleton that supports the GUI of the application. The

January 7, 2005 17:34 WSPC/117-ijseke 00174

Conceptualization, Prototyping and Process of Hypermedia Applications 595

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE application SYSTEM "application.dtd">
<application id="app4">
 <window id="w1">
 <name>window 1</name>
 <pane id="p1.1">
 <paneContent>
 <defaultContent>/contents/article</defaultContent>
 </paneContent>
 <linksDestination pane="p1.2">

 <specific idLink="l1" pane="p2.1"/>
 </linksDestination>
 </pane>
 <pane id="p1.2">
 <paneContent>
 <groupContent>/contents/sentences</groupContent>
 </paneContent>
 <linksDestination pane="p1.3"/>
 </pane>
 ..

Fig. 14. Fragment of the application document for the Galatea contextual dictionary.

�
���������	
��	���
��

�������
�

�	
��
����	���
��

���������
�

������

����
�

��
�����	
�	��

�������	
���������
�

�������
����
����
������
�������

�

�

��
�����	
�	�� !"#�

������
�

�

����
��

�$#!����
��	����	
�
��

$%�
��
�������	
���������

$%�
�� &�����
'#����
����
�

 !"#�������

(())()(

)()()()

())())(
)()(()(

))()()(

*������������
�

+�����
��

������������
����
��

�����������
����
�

�

������������
����
��

�����������
����
�

 &�����������������	
�
�

Fig. 15. Description of the APG operation.

contents that appear in this Java Swing skeleton are HTML pages generated by the

APG from the contents document and the XPath expressions that appear in the

application document. An XSLT transformation [53] produces the transition from

XML to HTML. This transformation is always the same and uses the hypermedia

structure encoded in the contents document via some selected attributes (e.g. href

attribute). In this way the contents document can be structured in any desired way

January 7, 2005 17:34 WSPC/117-ijseke 00174

596 A. Navarro et al.

because the XSLT only needs a few attributes to produce the HTML pages. This

is similar to the concept of Architectural Form processing presented by HyTime

[39]. Finally, the behavior of the application is provided by an event controller that

implements Pipe browsing semantics via a Java Swing HyperlinkListener. APG

processing is described in Fig. 15.

Naturally non XML data, like figures and subordinate processes, can be

referenced from the contents document. In particular, subordinate processes are

implemented by Java classes that are dynamically loaded by the application. The

resulting HTML pages can contain everything that a Swing JEditorPane can dis-

play, which in Java 1.4.1 are HTML and RTF documents. Now the support of

Web-datatypes is restricted to the support that the Swing JEditorPanes provide

(that in Java 1.4.1 is HTML 3.2).

Moreover, the generated application can be an HTML-pure one, where there is

no need for a Java running application. We have begun with the “Java solution”

because it was clearer in the identification of the characteristics of the application

represented by the Pipe structures.

The separation of layers in the application (like those applications that run in

hypertext systems according to the Dexter model) allows for a fast generation of

prototypes where changes in the navigational schema have no effect at the content

level, or changes at the content level (maintaining the structure referenced by XPath

expressions) have no effect on the navigational schema.

The construction of the navigational schema and its relationships with the

contents (according to Pipe structures) can be done manually, or via a CASE tool

(like PlumbingMatic). The PlumbingMatic tool can help in the assimilation of the

XML contents and their relationships into the contents graph identified at the

conceptualization stage. As previously mentioned, the overmarkup technique and

direct assignation of anchors and links are responsible for this assimilation.

At the last stage, the customers evaluate the prototype, and when the hyper-

media structure is stable enough, the design stage begins. The use of XML in the

structuring of the document offers an easy transition to HTML (or another format)

using XSLT transformations. This approach is preferable to the direct use of HTML

in prototyping due to the flexibility and structuring power provided by XML [49].

Regarding design-implementation, PlumbingXJ does not fit any technology. For

example, if Java Server Pages [54] are used, an adequate design formalism should be

used and at the implementation level the XML documents produced in prototyping

should be (totally or in part) reused.

5.3. Galatea example

There are no specific implementation techniques tied to PlumbingXJ, thus any

method that uses the XML encoded information can be applied. For example, the

work of Sierra [55] can be a natural implementation technique. This is not the case

of Galatea because there was an original implementation designed for CD-ROM

January 7, 2005 17:34 WSPC/117-ijseke 00174

Conceptualization, Prototyping and Process of Hypermedia Applications 597

Fig. 16. Web version of the Galatea contextual dictionary.

deployment. This version was based on markup technologies [45], and currently we

are working on its Web translation. The first results can be found at [56]. Figure 16

shows the final application corresponding to the prototype automatically generated

in Fig. 9.

The existence of the Pipe representation of the application, and the prototypes

previously generated simplified the development of this application as the Fraternali

process model had anticipated. Of course, there were final changes, but the main

hypermedia structure remained unchanged.

Although the example included in this paper is not a web application, the ex-

pressive power of Pipe allows it to characterize a great number of Web sites. For

example, Sun’s Java website [54], which is mainly static, can be fully modelled

using the Pipe approach. A moderately dynamic website like Apple’s site [57] can

also be modelled without problems. Highly dynamic websites like Amazon [58] can

be modelled, but in this last case, the Pipe structures only identify the skeleton

of the application in terms of the contents graph. The characterization of the dy-

namic components in Amazon must be represented in terms of the formalism used

to describe the generation function (e.g. UML). This is because Amazon is nearer

to a Computational Hypermedia Application [25] than to a non-Computational

Hypermedia Application.

6. Conclusions

Nowadays, developers can choose between several fine hypermedia-oriented models

to characterize the design of hypermedia applications. All these models present

significant advantages and our work does not seek to replace the array of tools that

designers have at their disposition, but rather to expand this array.

January 7, 2005 17:34 WSPC/117-ijseke 00174

598 A. Navarro et al.

There are several distinctive features in the Pipe model. The first, and most

important, is the flexibility and high level of abstraction provided by its two-graph

representation of hypermedia applications and by the set of functions responsible

for the mapping between both graphs. The second one is its ability to represent

dynamic applications at this abstract level. In addition, Pipe is a model that has a

browsing semantics that allows for the automatic generation of prototypes.

All these features refer to the expressive power of Pipe, however, one of the

major advantages provided by this model is found in its use. Most hypermedia-

oriented models are intended for design, but Pipe is intended for conceptualization,

its goal being to assist in the design process rather than solving it. This is possible

due to the abstraction level of the model, which enables an easy transition from

model representation to final application.

Plumbing is the name of the process model that integrates the Pipe model in

the conceptualization prototyping loop. The Plumbing process model is a special-

ization of Fraternali’s well-known process model and it benefits from both Pipe

and Fraternali’s most relevant features. As has been repeatedly observed, during

the development of hypermedia applications the major number of iterations appear

at the conceptualization and prototyping stages, which are less expensive than the

design and development stages. Moreover, in that first loop, interaction between

customers and developers play a decisive role and during this stage customers can

be isolated from implementation details. Furthermore, Plumbing is abstract enough

to be open to different implementation instances.

PlumbingXJ is one of these instances where XML documents support the

representation of Pipe graphs and functions, Java subordinate processes represent

the non-hypermedia behavior of the application, and a Java application implements

the Pipe browsing semantics. PlumbingXJ presents several distinctive features. In

the first place the prototyping stage is directed by the Pipe structures provided at

the conceptualization phase. In this way, Pipe features allow for the automatic gen-

eration of prototypes, and for independent changes in the navigational schema or in

the structure and relations of the content elements of the application. In addition,

the use of XML-based languages to structure the contents domain (via the contents

DTD) provides a great readability level. XML syntax also provides a universal inter-

change format, and the provision of high-level application development techniques,

easier to use than direct coding (but less flexible, on the other hand). Finally the

combination of XML and Java present the advantage of platform independence.

At present, we are working on the APG finalization in order to deal with the

full expressive power of Pipe. Solving how to include dynamic contents is our main

goal. At this stage we are using implementation techniques similar to those used

for the inclusion of subordinate processes.

We are also studying the instance of Plumbing where content elements or data

are stored in a relational database. This implies the substitution of PlumbingXJ

XPath expressions by SQL queries in the application document. We have to analyze

the consequences of this substitution at formal and practical levels.

January 7, 2005 17:34 WSPC/117-ijseke 00174

Conceptualization, Prototyping and Process of Hypermedia Applications 599

The APG is the kernel of the PlumbingMatic application. The existence of a

CASE tool that integrates the Pipe structures and the automatic generation of

prototypes will simplify the PlumbingXJ process model and will solve one of the

principal shortcomings of hypermedia-oriented models.

Finally, we are applying PlumbingXJ to several applications that we are cre-

ating to test different ways of integrating our conceptualization and prototyping

techniques with the process of design and development, our goal being to define a

specific methodology combining both stages in a way similar to the combination of

the Amsterdam model and the SMIL language.

Acknowledgements

The Spanish Committee of Science and Technology (TIC2001-1462 and TIC2002-

04067-C03-02) has supported this work. We would also like to thank the anonymous

reviewers for their very useful comments.

References

1. V. Bush, As We May Think, The Atlantic Monthly 176 (1945) 101–108.
2. F. Garzotto, P. Paolini and D. Schwabe, HDM: A model-based approach to hypertext

application design, ACM Transactions on Information Systems 1 (1993) 1–26.
3. P. D́ıaz, I. Aedo and F. Panetsos, Labyrinth, an abstract model for hypermedia ap-

plications. Description of its static components. Information Systems 4 (1994) 33–45.
4. P. Fraternali, Tools and Approaches for Developing Data-Intensive Web Applications:

A Survey, ACM Computing Surveys 3 (1999) 227–263.
5. J. Nanard and M. Nanard, Hypertext design environments and the hypertext design

process, in Communications of the ACM 8 (1995) 49–56.
6. J. Rumbaugh, I. Jacobson and G. Booch, The Unified Modeling Language. Reference

Manual (Addison-Wesley, 1999).
7. P. Díaz, I. Aedo and F. Panetsos, Modelling the dynamic behaviour of hypermedia

applications, IEEE Transactions on Software Engineering 6 (2001) 550–572.
8. F. Halasz and M. Schwartz, The Dexter Hypertext Reference Model, Communications

of the ACM 2 (1994) 30–39.
9. L. Hardman, D. C. A. Bulterman and G. van Rossum, The Amsterdam Hypermedia

Model: Adding Time and Context to the Dexter Model, Communications of the ACM
2 (1994) 50–62.

10. B. Campbell and J. M. Goodman, HAM: A general purpose hypertext abstract
machine, Communications of the ACM 7 (1988) 856–861.

11. P. D. Stotts, R. Furuta, Petri-Net-Based Hypertext: Document Structure with Brows-
ing Semantics, ACM Transactions on Office Information Systems 1 (1989) 3–29.

12. F. Tompa, A Data Model for Flexible Hypertext Database Systems, ACM Transac-
tions on Office Information Systems 1 (1989) 85–100.

13. T. Isakowitz, E. A. Stohr and P. Balasubramanian, RMM: A methodology of struc-
tured hypermedia design, Communications of the ACM 8 (1995) 34–43.

14. D. Schwabe, G. Rossi and S. D. J. Barbosa, Systematic Hypermedia Application
Design with OOHDM, in Proc. 7th ACM Conference on Hypertext, Washington D.C,
(March 1996).

15. C. Barry and M. A. Lang, A Survey of Multimedia and Web Development Techniques
and Methodology Usage, IEEE Multimedia 3 (2001) 52–60.

January 7, 2005 17:34 WSPC/117-ijseke 00174

600 A. Navarro et al.

16. G. B. Wills, R. M. Crowder, I. Heath and W. Hall, Industrial Hypermedia Design
(Southampton University, M98-2 4, 1998).

17. V. Balasubramanian, A. Bashian and D. Porcher, A Large-scale Hypermedia Appli-
cation Using Document Management and Web Technologies, in Proc. Hypertext 97,
Southhampton (April 1997).

18. M. Thüring, J. Haake and J. Hannemann, What’s Eliza doing in the Chinese Room?
Incoherent hyperdocuments and how to avoid them, in Proc. Hypertext 91, San
Antonio (December 1991).

19. M. Thüring, J. Hannemann and J. M. Haake. Hypermedia and Coginition: Designing
for Comprehension, Comunications of the ACM 8 (1995) 57–66.

20. N. Koch, A. Kraus and R. Hennicker, The Authoring Process of the UML-based
Web Engineering Approach (Case study), in it Proc. First International Workshop on
Web-Oriented Software Technology, Valencia (June 2001).

21. R. Bodner and M. Chignell, Dynamic Hypertext: Querying and Linking, ACM
Computing Surveys 4 (1999).

22. S. Ceri, P. Fraternali and A. Bongio, Web Modeling Language (WebML): A Modeling
Language for Designing Web Sites, in Proc. www9 Conference, Amsterdam (May
2000).

23. World Wide Web Consortium, Extensible Markup Language (XML) 1.0. (http://
www.w3.org/TR/REC-xml, 1998).

24. P. Chen, The Entity-Relationship Approach: toward a unifed view of data, ACM
Transactions on Database Systems 1 (1976).

25. G. Rossi, D. Schwabe and A. Garrido, Designing Computational Hypermedia Appli-
cations, Journal of Digital Information 4 (1999) 1–15.

26. O. M. F. De Troyer and C. J. Leune, WSDM: A user centered design method for Web
sites, in Proc. First International Workshop on Web-Oriented Software Technology,
Valencia (June 2001).

27. J. Gómez, C. Cachero and O. Pastor, Conceptual Modeling of Device-independent
Web Applications, IEEE Multimedia 2 (2001) 26–39.

28. O. Pastor, S. Abrahao and J. Fons, An Object-Oriented Approach to Automate
Web Applications Development. Electronic Commerce and Web Technologies, Inter-
national Conference, EC-Web 2001 Munich, Germany (September 2001).

29. F. Frasincar, G.-J. Houben and R. Vdovjak, Specification Framework for Engineering
Adaptive Web Applications. The Eleventh International World Wide Web Conference,
Honolulu, Hawaii (May 2002).

30. D. E. Millard, L. Moreau, H. C. Davis and S. Reich, FOHM: A Fundamental Open
Hypertext Model of Investigating Interoperability between Hypertext Domains, in
Proc. 11th ACM Conference on Hypertext and Hypermedia, San Antonio (may 2000)
pp. 93–102.

31. D. Millard, H. Davis and L. Moreau, Standardizing Hypertext: Where Next for OHP,
in OHS/SC 2000, eds. S. Reich and K.M. Anderson (Springer-Verlag, LNCS, Berlin
Heidelberg, 2000) pp. 1–11.

32. L. Olsina, Functional View of the Hypermedia Process Model, in Proc. 5th Interna-
tional Workshop on Engineering Hypertext Functionality at ICSE’98, Kyoto (April
1998).

33. D. B. Lowe, A.J. Bucknell and R. G. Webby, Improving Hypermedia Development: A
Reference Model-Based Process Assessment Method, in Proc. 10th ACM Conference
on Hypertext and Hypermedia, Darmstadt (1999).

34. R. S. Pressman, Software Engineering: A Practitioner’s Approach, 5th Edition
(McGraw-Hill, 2001).

January 7, 2005 17:34 WSPC/117-ijseke 00174

Conceptualization, Prototyping and Process of Hypermedia Applications 601

35. I. Jacobson, G. Booch and J. Rumbaugh, The Unified Software Development Process
(Addison-Wesley, 1999).

36. G. Rossi, D. Schwabe and F. Lyardet, Designing Hypermedia Applications with
Objects and Patterns, in International Journal of Software Engineering and Knowl-
edge Engineering 6 (1999) 745–766.

37. A. Navarro, A. Fernández-Valmayor, B. Fernández-Manjón and J.L. Sierra, Using
Analysis, Design and Development of Hypermedia Applications in the Educational
Domain, in Computers and Education: Towards an Interconnected Society, eds.
M. Ortega and J. Bravo (Kluwer Academic Publishers, The Netherlands, 2001)
pp. 251–260.

38. World Wide Web Consortium, HTML 4.01 Specification (http://www.w3.org/
TR/html4/, 1999).

39. International Standards Organization, Hypermedia/Time-based Structuring Language
(HyTime) (ISO/IEC IS 10744.1992, 1992).

40. World Wide Web Consortium, Synchronized Multimedia Integration Language (SMIL
2.0) (http://www.w3.org/TR/smil20/, 2001).

41. P. Fraternali and P. Paolini, Model-Driven Development of Web Applications: the
Autoweb System, ACM Transactions on Information Systems 4 (2000) 323–382.

42. N. Deakin, XUL Tutorial. Version 11.17.02 (http://www.xulplanet.com/tutorials/
xultu/, 2002).

43. Harmonia, Inc, User Interface Markup Language (UIML) 3.0 Draft Specification.
Document Version 02.12.2002. (http://www.uiml.org/specs/index.htm, 2002).

44. A. Navarro, B. Fernández-Manjón, A Fernández-Valmayor and J. L. Sierra, Formal-
Driven Conceptualization and Prototyping of Hypermedia Applications, in Funda-
mentals Approaches to Software Engineering 2002, Proc. European Joint Conferences
on Theory and Practice of Software 2002, eds. R. D. Kutsche and H. Weber (Springer-
Verlag, LNCS, Berlin, 2002), pp. 308–322.

45. A. Fernández-Valmayor, C. López-Alonso, B. Fernández-Manjón and A. Sere, Inte-
grating an Interactive Learning Paradigm for Foreign Language Text Comprehension
into a Flexible Hypermedia System, in Proc. International Working Conference on
Building University Electronic Educational Environments. IFIP WG3.2 and WG 3.6
Joint Conference, California, (August 1999).

46. G. Booch, J. Rumbaugh and I. Jacobson, The Unified Modeling Language User Guide
(Addison-Wesley, 1999).

47. M. Bryan, Guidelines for Using XML for Electronic Data Interchange (http://www.
xmledi-group.rog/xmledigroup/guide.htm, 1998)

48. B. Peat and D. Webber, Introducing XML/EDI (http://www.xmledi-group.rog/
xmledigroup/start.html, 1997)

49. C. M. Sperberg-McQueen and C. M. Goldstein, HTML to the Max A Man-
ifesto for Adding SGML Intelligence to the World-Wide Web, in Proc. 2nd
World Wide Web Conference ’94: Mosaic and the Web, Chicago (October 1994).

50. World Wide Web Consortium, XML Linking Language (XLink) Version 1.0.
(http://www.w3.org/TR/2001/REC-xlink-20010627, 2001).

51. World Wide Web Consortium, XML Path Language (XPath). Version 1.0.
(http://www.w3.org/TR/xpath, 1999).

52. K. Walrath and M. Campione, The JFC Swing Tutorial. A Guide to Constructing
GUIs (Addison-Wesley, 1998).

53. World Wide Web Consortium, World Wide Web Consortium. XSL Transformations
(XSLT). Version 1.0. (http://www.w3.org/TR/xslt, 1999).

54. Sun Java website, http://java.sun.com

January 7, 2005 17:34 WSPC/117-ijseke 00174

602 A. Navarro et al.

55. J. L. Sierra, A. Fernández-Valmayor, B. Fernández-Manjón and A. Navarro, Opera-
tionalizing Application Descriptions in DTC: Building Applications with Generalized
Markup Technologies, in Proc. 13th International Conference on Software Engineering
and Knowledge Engineering, Buenos Aires (June 2001), pp. 379–386.

56. Galatea website, http://www.simba.vsf.es/IndiceProyectos.htm
57. Apple USA website, http://www.apple.com
58. Amazon USA website, http://www.amazon.com

