
Simplifying location-based serious game authoring

Pérez-Colado Víctor Manuel
Dept. of Software Engineering and AI,

Facultad de Informática,
Universidad Complutense de Madrid

Madrid, Spain
victormp@ucm.es

Pérez-Colado Iván José
Dept. of Software Engineering and AI,

Facultad de Informática,
Universidad Complutense de Madrid

Madrid, Spain
ivanjper@ucm.es

Martínez-Ortiz Iván
Dept. of Software Engineering and AI,

Facultad de Informática,
Universidad Complutense de Madrid

Madrid, Spain
imartinez@ucm.es

 Freire-Morán Manuel
Dept. of Software Engineering and AI,

Facultad de Informática,
Universidad Complutense de Madrid

Madrid, Spain
mfreire@ucm.es

Fernández-Manjón Baltasar
Dept. of Software Engineering and AI,

Facultad de Informática,
Universidad Complutense de Madrid

Madrid, Spain
balta@ucm.es

ABSTRACT
Pervasive gaming has been a field of exploration for the gaming
industry the recent years. With the exceptional success of
Pokémon GO and some others such as Ingress users are more than
ever ready to experiment with games that are more focused into
their actions and their playing contexts. In the serious game
industry, the implementation of pervasive games is a very
promising way to improve students learning process with a more
cohesive and realistic experience. To take advantage of this
opportunity we have developed a model for location-based serious
games intended to be used along with other game genres such the
adventure one. We have implemented this model in the
uAdventure (uA) authoring tool, allowing non-experts for the
simple creation for location-based adventure games without
programming or complex geopositioning knowledge
requirements. With uA we address to simplify the creation of
gymkhanas, tours or guided visits with the added value of the
adventure games. Finally, to improve the quality of the games, we
have incorporated learning analytics into the system and tested
the platform with a small experiment that showed promising
results.

Keywords
Serious games; location-based; augmented map; GPS; augmented
reality; ubiquity; pervasive; xAPI; learning analytics;

1 INTRODUCTION
Serious games market is expected to reach $5,448.82 Million by
2020 [19]. One of the crucial factors is the consolidation and
constant grow of mobile technologies; accentuated by the usage
of BYOD (bring your own device) in education and companies.
Serious games applications are diverse; using serious games in
schools is an innovative way to improve engagement of students;
on the company side, serious games can be applied in the
instructive and formative stage, being excellent to simulate
corporate processes. For this reason, serious games may come in
different formats and genres, focusing more into visuals,
storytelling or in-game mechanics depending on the game
purpose [5].

1 http://www.pokemongo.com

2 http://expandedramblings.com/index.php/pokemon-go-statistics/

Mobile technologies allow for videogames and serious games to
use novel mechanics and features; those involve using the context
sources from the built-in sensors such as camera, radio sensors,
GPS, accelerometer or compass; exploiting the players’ ubiquity
present in mobile. These capacities have impacted the growth of
Augmented Reality (AR), now available for every smartphone
user. Pervasive games defined as games that blends its in-game
world with the physical world [12] is the super category of AR
games and highlights the categories of location-based games,
mixed reality games and affective games (games that involve
user’s physical responses).

Videogames in 2016, and especially pervasive games, have been
highlighted by the global Pokémon GO1 release by Niantic. The
impact of Pokémon GO has been relevant in young people; it has
had more than 650 million downloads and still has 65 million
monthly active users by June 20172. One of the most direct impacts
has been detected in players heath [1]. Other case of success has
been Ingress, the previous game of Niantic. Hence, Pokémon GO’s
(and Niantic games in general) success gives the community the
chance to start developing other kind of games in the Pokémon
GO format having more chances to be socially accepted [10].

Pokémon GO is well-known as a AR game; however, it fits even
better in the location-based games as its AR factor has been
revealed not as its crucial mechanic (many player have
deactivated it) being the augmented map (AM) the most important
feature. The key difference between AR and AM is that, both focus
into overlaying in-game elements in real-world, but the AR
focuses in live images from the phone camera, while AM focuses
on map information (that comes also from reality). While the AM
is a typical feature of the location-based games, AR can be fitted
into several categories (location-based, mixed reality, etc.)
depending on the end use of the AR inside of the game. For
instance, if the game mixes a specific real world location like a
park or a museum with AR, it can fit in the location-based, but, if
the game uses AR as game environment (like in Playstation’s
Invizimals3) it fits better in the mixed-reality.

Location-based games AM is the in-game main view or scenario
based on a map that includes virtual elements on it. The map itself
may come in different forms depending on the source: physical

3 https://www.playstation.com/en-gb/games/invizimals-psp/

http://www.pokemongo.com/
http://expandedramblings.com/index.php/pokemon-go-statistics/
https://www.playstation.com/en-gb/games/invizimals-psp/

maps, based on satellite images and can be increased with height
information to create more realistic maps (i.e. Mapbox4 SDK);
schematic maps, based on an abstraction of the real world
information, creating more simple figures and shapes, and often
including real world information (such as names, places or POIs);
vector maps (in the middle between physical and schematic)
include information about landforms, paths, buildings, parks, etc.,
stored as vector instead of as an image. In addition to the map,
there are the in-game elements generally placed in the map, and
may be linked to a point or zone.

The AM normally shows an avatar in the center of the map to
represent the player; located using satellite. GPS (Global
Positioning System), GLONASS and Galileo are positioning
systems is based on radio signals emitted by satellites. They can
achieve a precision of a few centimeters but it commonly works
with a few meters accuracy, decreasing when the signals are not
in line of sight (i.e. indoors); and it can provide measures of
movement speed, direction and altitude. However, other
approaches are possible without using satellites. Close range radio
devices such as Wi-Fi’s and Beacons can be used to locate the
player too [2, 23], and the augmented map might be just a support
tool for orientation or might not be present at all. The benefits of
this kind of positioning is that works the same indoors and
outdoors. In addition, it may be implemented by using QR codes
that are cheap and accessible for independent developers.

Developing location-based videogames can be achieved in two
ways: (i) creating tailored games that fit exactly the needs using
SDK’s (i.e. Mapbox, Google Maps, etc.) or game engines (Unity,
Unreal, etc.) but require high level knowledge, time, and invest or
(ii), using an specific platform for this purpose, intended to
simplify the process by providing templates of all the possible
tasks this games involve.

There are several platforms in the market available such as
DiscoveryAgents5, ActionBound6 or GooseChase among others.
With them, developers can easily create location-based
experiences (e.g. gymkhanas, tours, treasure hunts, visits) by
including mechanics that require the player to interact with the
environment (e.g. reach locations, take pictures or videos, scan QR
codes). In general, the experience includes several customizable
tasks (normally sequential) the player must perform during the
play. Despite the differences elements they may or not include,
most of the platforms include analytics that allow the game
developer to track players, inspect their responses and see
leaderboards.

All these platforms fit in the serious game market, but there are
some specifically developed for teaching, such as
DiscoveryAgents, MIT’s MITAR and eAdventure for Android.
DiscoveryAgents aims to teach players about public parks and
natural reserves. An experiment in the Calgary park evaluated
with tests reported more fun and better emotions than the players
that didn’t use the app; and in terms of knowledge they reported
similar results to the students that visited the park with the park
guide [6]. MITAR platform was developed in 2008 [8, 13] by using
AM with PDAs (Personal Digital Assistants) and highly involving
narrative content. MITAR has been applied in the learning process
in two ways: (i) using its output games; and (ii) using the platform
for learners to create games themselves. In the first players had to

4 https://www.mapbox.com/

5 https://www.discoveryagents.net/

6 https://en.actionbound.com/

interact with the playground through their PDAs to acquire
information about the environment, talking to virtual characters
our using simulated sensors; this helped to achieve a more
connected and authentic learning, highlighting players’
engagement. In the second approach students had to choose a
topic and create a game that their classmates were going to play
in the end of the experiment; conclusions shown that students
tend to get deeper knowledge to explain it in the game, and they
need to experiment themselves the playground to replicate that in
the game.

The previous examples revealed that using location-based serious
games helps users to better settle down the subject by
complementing deducing and experimenting in the real world
with the in-game content [4]. In addition, AM also provide an
interactive way to teach learners about cartography, orientation
and investigation.

As seen in the previous examples, we expect that including more
narrative content in location-based content will result in richer
and more interesting serious games. eAdventure (eA)7, developed
as Open Source in Java, was launched in 2007 and allowed the
creation of serious 2D point-and-click adventure games eA [21].
A test version was developed for Android intended to use
location-based features such as scene loading depending on
player’s location and QR code but, due to Java issues and project
discrepancies, the branch was discarded and the project has been
reimplemented in Unity as uAdventure (uA) [16], offering new
possibilities for multiplatform. For this purpose, we propose using
uA platform as the perfect target to introduce location-based
mechanics into it, such as AM. The resulting games will not only
fit in the location-based category, but also in the adventure
category, resulting in a new game genre we call the location-
based-adventure or located-adventure.

In this paper, we propose a generic model for located-adventures
and location-based games, exposing all the AM elements,
interactions and different positioning methods and provide an
example implementation. In addition, editors for these features
will simplify the task of creation this format of games. Finally, an
analytics model will be proposed for all the new interactions to be
merged with the already existing analytics xAPI model present in
uA.

2 A GENERIC LOCATION-BASED MODEL
FOR UADVENTURE
This section exposes the location-based game model as a generic
approach to be used by game engines and editors and, in this case,
by uA. As location-based games may be approached through
different ways (i.e. Wi-Fi or Beacons), this paper will expose
models for GPS and QR code location-based.

2.1 Positioning outdoors: GPS based
model
Location-based key element is the AM and indeed, is the most
important feature while playing outdoors as it both guides the
player and provides information.

This AM can be included from an external library (i.e. Google
Maps, OpenStreetMaps8, Mapbox, etc.) or be self-implemented.
Due to maps contain big amounts of data, normally this

7 http://e-adventure.e-ucm.es/

8 https://www.openstreetmap.org/

https://www.mapbox.com/
https://www.discoveryagents.net/
https://en.actionbound.com/
http://e-adventure.e-ucm.es/
https://www.openstreetmap.org/

information is segmented into tiles (regions) of different sizes
(levels of detail) based on the zoom property. This segmentation
is specified in the TMS (tile map service) specification [7, 20] and
transforms tile coordinates to world coordinates; and so the world
coordinates are expressed in meters that can be used in most a
game engines. For self-implementation cases, we recommend to
translate and scale world coordinates to local coordinates to avoid
the overflow of the meters, by translating the map center to the
world origin and then, use the scaled meters from the center to
locate the elements over the map using coordinates. Once the map
is ready, to augment it, it is necessary to include game elements.
As maps mainly based on coordinates, the most useful
classification for AM elements is whether the element is fully
based on coordinates or is just an external element with location-
based metadata.

Based on this classification, we propose a hybrid model using
map-native elements fully based on coordinates (from standards
GML and GeoJSON) and game-native external elements extended
with location-based features. By combining both types it is
possible to create gymkhanas, city tours, treasure hunts, etc. with
rich visuals, ensuring engagement and a better cohesive learning.
For instance, a city tour has a set of coordinates -map-native
elements- connected via navigation with information attached,
and a set of graphical elements -game-native elements- in the map
representing features.

2.1.1 Map-native elements. Map-native elements are designed to
be used inside of a map and are based on coordinates. These
elements, from now on called GeoElements, rely on a set of
latitude and longitude tuples to be represented in the map and are
based in different standard definitions such as Geo-JSON or GML
that also uses a set of coordinates to define map elements. Since
these standards are very complex to implement due to the wide
range of geometries [3, 14], we determine three essential
geometries that are enough to implement several use cases for
serious games: POIs (Points Of Interest), Zones and Paths:

1. The POI is a single coordinate element in the map of
interest or where the player has to perform an action.
Since POIs are just a single coordinate, an influence
radius is added for more flexibility about the POIs’ range
of influence.

2. The Zone is a range of ordered coordinates that
determine an area. In-game, a zone is a special ambit
where the player could be contextualized; being in or
crossing the border of a specific area may be the trigger
for an in-game event. Essentially, a zone is a polygon
and the GML standard suggests defining them by a
single exterior polygon and a set of interior polygons to
be subtracted from the original polygon; in turn, being
defined in two possible ways, by a linear or shapely ring.
For simplicity, we consider the exterior polygon to be
enough in most cases. However, a simpler way to
determine a polygon roundness is to establish a generic
influence radius, being unified with POI’s definition.

3. The Path is a range of coordinates, like a Zone except
that paths are not filled. Because of this, the path has a
starting point and an ending point, determined by its
order. In-game, Paths can determine barriers the player
should not cross; routes the player must follow; or just
informative routes for the player to know (e.g.
suggested gravel paths, bike paths or rivers to avoid).
The standard GML offers two ways to define Paths:

9 https://docs.unity3d.com/Manual/class-GameObject.html

linearly, as LineString, or shapely, as Curves. Due to
curves editing complexity, we consider LineStrings are
enough. As in the previous cases, Paths also should have
an influence area to determine if the player is inside the
path or has left it.

All three elements, then, have a geometry and an influence area.
Based on these features, we have determined four different actions
the player can perform with these elements: enter, exit, look-to
and inspect:

1. The enter action is performed when the player crosses
the limit of the influence area towards the inside of the
geometry, coming from the outside (as the player could
be inside at the start of the game).

2. The exit action is performed as the player leaves the
influence area (where the player was before).

3. The look-to is an action that involves the use of a
compass to determine if the player is facing an specific
direction. This action can be performed with elements
(i.e. if the player must face a game element such as the
center of a polygon or path) or directions (i.e. if the
player must look from a location to a desired direction
such as a building’s side). For the latest, a vector
specifying the direction is used. This action can be also
configured to be limited to the element influence area.

4. The inspect action is an action to be performed
interacting with the element on-screen. This way, a
click performed to the element can be used to trigger an
event (for instance, clicking into a POI can display
information or pictures).

This set of actions allows the connection of geographic elements
with an interactive game experience fitting location-based game’s
needs. Nevertheless, the game native elements are also crucial for
a better game experience. In the next subsection, we explore their
characteristics and potential actions.

2.1.2 Game-native elements. Game-native elements are objects
that already exist in the game engine meant to be used in virtual
worlds, without any constraint for the gaming context; they
include positioning configuration, physical information (for the
physics engine) and behaviors to define aspects for each object.
For instance, Unity uses GameObjects9 with Components to
represent any game element. Hence, since the augmented map
uses its own positioning system based on coordinates, these
elements need to be transformed to be used adapting the virtual
world position to this coordinates-based position.
The transformations of game-native elements mainly involve
translating, scaling and rotating towards their desired position
into the AM. Depending on the in-game purpose of the object,
these transformations will vary with the possible user
interactions. For example, in this AM environment, the elements
are fixed in the map, by default, but also there could be other
elements such as screen buttons, arrows or indications depending
on the user position.

Therefore, we define three different positioning systems: map
positioned, based purely in coordinates; radial positioned, based
on other element position and other physical measures; and
screen positioned, that does not depend on the map:

1. The map based positioning adapts the world coordinate
to the AM local position including a scale factor (that
works accordingly to the map zoom) and a rotation. To

https://docs.unity3d.com/Manual/class-GameObject.html

control the interaction, by using the player’s distance to
the object we can allow or disallow it. In addition, this
distance limit can be used to hide and show the element
whenever the player is in-range or not, such as
Pokémon GO does. We identify this maximum
interaction distance as the object influence, being
represented radially.

2. The radial based positioning adapts the position of an
element nested to another element in the map (e.g. the
player avatar). For this, we use three parameters for:
distance, angle and an additional “rotate around”
parameter (to rotate the element as the player rotates
and make the elements completely relative to the parent
object). In this case, it is not necessary to block the
interaction depending on the influence area as objects
are mostly visual or utilities (navigation arrows,
pointers, particles, etc.).

3. The screen based positioning adapts the world position
to the viewport position. There are two ways to
approach this: (i) by reverting the map transformation
process, for which it is only necessary to reverse the
process described by the TMS, and (ii) by totally
avoiding nesting the object inside of the map, and with
that, avoid the parent transformations, which for the
mainstream game engines, just requires the object to be
set independent, and move with the camera.

The interaction with these elements is made through bypassing
the user interaction to them from the map, resulting in these
objects acting as they do naturally. For instance, in adventures the
elements will provide their look, use, grab, etc. native actions.

Since the nature or behavior of the native object to adapt for the
map is a priori unknown, we suggest to create an object wrapper
that converts the original object coordinates to each of these map
coordinates, avoiding to adapt each object individually.

2.1.3 Nested scene launching. Mixing other serious game genres
mechanics with the location-based scheme could improve the
learning process by taking the best of each genre. Using game-
native elements in the AM is the minimum approach; however, a
bigger visual change might be useful for cases where there is a
complex task to do in a certain location that may require using a
better visual representation of the concepts (e.g. a mini-game,
adventure-like or AR scenes).
To do this we propose do nested scene launching; that may
happen because of any interaction (location-based or not). As the
scene is launched, the game changes its appearance leaving the
AM and the player interaction; even so, location-based mechanics
may be present in a standard-game scene. For this, we propose
that launching a nested scene could be linked to a specific map-
native element that retains the scene while the player is in the
element and, when the player leaves, the scene switches back to
the AM scene.

2.1.4 Navigation. Most native maps include a navigation system
for the user to know the best route to reach the destination. This
navigation system may come handy for games which purpose
may not require the player to know how to navigate or find a
location. Since the game author might not want to take care of
each navigation point we suggest using game elements as route
points.
To launch the navigation system, it requires set of elements to
travel and one traveling order. We suggest two different orders:
linearly, one by one; or by distance, the closest first (potentially
reducing the game playing time). This order is clearly useful for

gymkhanas where challenges do not need to be accomplished in a
specific order. Also, since each step might involve a task to
complete, each element needs indicate if the element is completed
as the player reaches it or if it requires a manual completion
managed by in-game mechanics. This requirement is especially
notable in gymkhanas or treasure hunts, where the player must
resolve a clue or complete a challenge to step ahead to the next
point.

The navigation system, then, must implement a public interface
allowing other game components to configure and control the
navigation present in the game. To select or step the current
destination, its interface should provide public methods, so each
game-element determines if the task has been completed.

There are several ways to approach the navigation system,
depending on the game purpose. For instance, games in parks
have freeway so the navigation only needs a single arrow to
determine the direction; however, games in cities may use a street
based navigation with distances, turns, etc.

2.2 Positioning indoors: QR code based
model
Since location-based games are ubiquitous, they might happen
indoors too. However, satellite oriented positioning systems are
not so effective in this context [12, 17, 18]. There are several
alternatives to achieve a positioning system indoors such as IMU
based, optical-based or radio-based. Field tests with QR codes are
sustained on the arguments that is an easy, simple and efficient
way to determine the players location [11, 12]. In fact, the QR code
positioning system is widely used in location-based games as it
could be used outdoors or even in combination with GPS to create
a better user experience (i.e. hidden clues in treasure hunts).

This model approaches location by assuming that scanning a QR
code requires the player to be physically located in the same
position as the QR. Since scanning the QR code is part of the game
sequence, either (i) the game has to be programmed to expect a
QR code at a certain point and continue the sequence after it; or
(ii) the QR is able to include the in-game consequences inside the
code for the game sequence to advance (i.e. mechanics such as
dialogs, image show, or just game state changes). For linear games,
the first approach might be easier to design and implement, but,
for location-based games, where the game sequence might involve
freely affordable challenges, the second approach is better as it
allows to implement this nonlinear game sequences as well as the
linear sequences that may happen inside of each challenge.

In order to protect the game content associated to the QR code, as
well as the linearity required in some cases, we suggest to use
identifiers as QR content. This way, the game acts as a mediator
to access the content, and can even protect the linearity by only
allowing the content access if certain conditions are satisfied (i.e.
if the player has passed all the previous tasks inside the challenge).

The other key piece of a QR code model is the QR scanner; there
are two possible implementations for it: (i) using an external app
and launch the game passing the content to the game; or (ii) using
a embed scanner inside of the game.

Using an external scanner app is the easiest approach but it breaks
the gameplay as the player has to exit the game to be able to scan
the QR. To implement it, it is necessary to define a URI based
namespace that tells the OS to launch the proper application and
embed it into the QR code content. For instance: an uA URI for QR
could be “uA://qr/random-id”). This protocol must be registered
into each OS the game is targeted for, ending up making the
process not so easy in the end.

Using an internal scanner (by using a library, for example)
requires more effort to implement with derived costs of money
and time. Nevertheless, users will not have to exit the game to use
it, avoiding to reload the game or restarting the services (GPS,
accelerometer, etc.). Furthermore, the scanner can be limited to
the moments that is necessary, simplifying the gameplay; and can
be restricted to scan the QR codes the situation involve.

2.3 Implementing location-based
adventures in uAdventure
The described location-based model has been implemented in uA
extending its model. A runtime infrastructure that is able to parse
the stored model in xml and creates all the requirements for the
location-based games has also been implemented.

uA’s key elements for authoring are the condition system, that
allows to control the game behavior based on the global game
state; and the effect system, that allows to visual program the
consequences of the user interaction.

2.3.1 Outdoors positioning. The uA game platform has been
extended by adding a new scene named MapScene to store all the
configuration for the AM and all the elements, being those
GeoElements or native elements (NPCs, Items or Atrezzos). Both
MapScenes and GeoElements can be configured by using the Map
module implemented for the Unity Editor that can represent
polygons, areas, points and images, and handle the clicks for
creating points or selecting, and the drags to move points or
elements.
As uA is a Point and click adventures game engine [16], by
extending it with AM it will generate location-based adventures.
Hence, the process of creating location-based games based on AM
in uA first start with the creation of the native elements (and its
possible interactions) that will be added to the MapScene. These
elements then, can be added to the MapScene in the MapScene tab
(Figure 1); and configured with a specific positioning method
(world, radial or screen), that determines how the element is
placed, and some of its interaction constraints (such as the
influence area).

Figure 1: MapScene editor tab, displaying three native
elements with all the possible positioning systems.

Secondly, the zones, points and routes, along with their location-
based actions (enter, exit, etc.), must be created before added to
the AM. To create them, the GeoElement tab (Figure 3) allows

creating the different polygons and configuring their influence
area.

Figure 2: GeoElements main tab. An editor map as the one
present in Figure 1 and 4 is present below the “edit” button.

For each GeoElement selected this tab geo-actions section (Figure

3) manages the different location-based actions associated to it.
Each action will have a set of conditions to determine its access
and a set of effects to determine the consequences.

Figure 3: GeoElement editor tab. Top shows the geometry
attributes. Bottom shows a set up of all possible location-
based actions.

Once all the elements for a specific MapScene are prepared, they
can be added into it by selecting them in the MapScene tab (Figure

4). The map scene view shows the editor map, where the elements
can be configured. Both map and native elements are stored as a
reference with a set of conditions that can be used to show or hide
the elements depending on the game state. For instance: there
could be a character used to teach the player how to play, but after
the tutorial is finished, the character can be hidden by activating
a flag after finishing the tutorial. Native elements will also store
their positioning information in the reference.

Figure 4: Location-based geometries. The red is POI, the
blue is polygon and the purple is a path.

At the runtime stage, once a MapScene is loaded we instance a
map based in tiles (Figure 5) based in the open source AM for
Unity project of Baran Kahyaoğlu10. This AM has the potential to
work with tile maps based in both graphical and vector
information and can be customized depending on each game
requirements. However, this map has been modified to include
factories for uA elements (both native and location-based) that are
instanced in the corresponding tiles using the TMS
transformation.

In the map view, the map-elements are displayed by using
polygons of different colors with a tooltip with the name above it:
POIs are represented with spheres; Paths are horizontally
extended and rounded; and polygons are just transformed into
meshes using triangulation.

Figure 5: Correspondence of a set of elements in the editor
view with the runtime view. Native element on top of the
avatar is displaying the discover leaf-based effect.

On the other hand, the uA native-elements are wrapped runtime
and positioned depending of the selected positioning system. It is
especially remarkable that the implementation of the map-based
positioning includes the hide and show mechanic based on the
player closeness. A special effect using particles with the shape of
leaves is displayed once the object is shown, similarly to the
Pokémon GO discovery effect.

Scene nesting discussed in the model has been also implemented
for map-elements. At the editing stage, a special variant of the
trigger scene effect named trigger geolocated scene effect has to
be configured by setting the desired GeoElement the scene will be
nested to. Once the player leaves the scene runtime, the nested
scene is closed and the player is switched back to the previous
AM.

Navigation system also described in the model has been
implemented inside of the effect system (Figure 6). The navigate
effect is used to configure the navigation controller with the
desired steps and the order of processing (being by list order or by
closeness order). Secondly, for those steps that require specific
conditions to be completed, the navigation control effect makes
the navigator controller change its current target. At runtime, the
navigator has been implemented simply by using a straight arrow
that indicates the direction of the destination (Figure 6). Future
versions will probably implement the usage of a route system for
cities.

10 https://github.com/brnkhy/MapzenGo

Figure 6: Navigation. In the left, the effect to set up and
control the navigation. On the right, the runtime
visualization of the navigation arrow.

2.3.2 Indoors positioning. As the model described, positioning
based on GPS provides a good positioning quality outdoors but is
not such convenient for using indoors. uA approaches to solve
this by using QRs as described in the model.
The QR tab (Figure 7) inside the uA editor manages the creation
and content of each code. Once selected, the tab allows to define
the QR content formed by: a line of text that is shown after the
code is scanned; the list of effects that will determine the
consequences of scanning it; and the set of conditions that
restricts the QR scanning that could break the game linearity. This
content is explained hereunder.

The sequence of actions that happens after a QR is scanned
determines how the game progress after the player scans it. For
this, the model showed two approaches for linear and nonlinear
situations. In this case, we considered that to afford nonlinear
solutions (when needed), each QR contains the in-game effects
(provided by the uA effect system) of scanning the code that
controls the game progress.

On the other hand, to guarantee that the linear parts inside of the
game are locked until the player reaches the point we used the uA
condition system. This way, each QR contains the restrictions to
be scanned. With this, the QR is ready to be used in the game.

Finally, the QR tab also allows for saving and printing the QR
codes from the uA editor, simplifying the QR exporting and
reducing the game setup times.

Figure 7: QR code editor tab.

As the model showed, the other key piece to work with QRs is the
scanner. As uA is a gaming authoring tool, and we want to provide
the best in-game experience and the easiest setup we decided that
using an integrated QR scanner was the best choice. This
integrated scanner can be opened in-game by launching a QR
prompt effect (Figure 8), that contains a message to show to the

https://github.com/brnkhy/MapzenGo

player, and the desired limitations for that scanning session. Since
it is an effect, it can be linked to an on-screen button,
conversation, or whatever the game designer requires.

In-game, the QR scanner shows the message in the top and opens
any of the available cameras (preferring the back camera) showing
an animated screen reminding a barcode scanner.

Figure 8: QR scanner. In the left, scanner prompt effect
configured with a white list of possible codes. In the right,
the in-game view of the scanner with the message on top.

3 LEARNING ANALYTICS IN LOCATION-
BASED GAMES
Fitting a serious game in the learning process usually requires an
assessment or evaluation process to verify the game has been
effective. This can be approached different ways but new trends
afford learning analytics (LA) as the next generation move since
they can both cover traditional assessment, and be applied to more
complex analysis techniques (i.e. datamining) that allows authors
and teachers for a better understanding of the learning process.

There are several possible approaches for its implementation,
highlighting xAPI11 over all [9, 22]. For clarification, xAPI is a
standard for traces that represent what actions or events are
happening real-time, in a high-level language, identifying actors,
verbs and outcomes. Hence, traces are easy to read and have direct
value for LA.

uA implements the xAPI for serious games profile [15] from
which are implemented four categories of events: (i) Completable,
intended for tracing game progress, tracking each task in the game
based on a group of milestones or steps; (ii) Accessible, for tracing
the player in-game movement, such as stage changes; (iii)
GameObject, for tracing the user’s actions with in game elements;
and (iv) Alternative, for tracing the player decisions, that are
especially valuable for assessment.

In the location-based games ambit, however, the xAPI for Serious
Games profile is insufficient as the verbs, terms and extensions
are oriented to track in-game elements, missing aspects from the
real-world environment actions (movement, looking, access, etc.).
Hence hereunder we present the draft of what is going to be a new
xAPI profile or location-based applications.

In location-based games we identify two different ambits for
actions: (i) player’s Position related, that include real-world
coordinates information and contextualization about the area
where the player is; and (ii) player’s Direction related, that include
the different choices the player makes while traveling. An
example of the Position ambit could be a trace where the player
has Moved to an Urban-Area with the ID Madrid, and with exact
coordinates as a Location extension. On the other hand, for the
Direction ambit, when the navigation system of the game decides
a route that links the starting point with the next point-of-interest,

11 https://www.adlnet.gov/xAPI

traces could identify whether the player has follow those
directions, or has chosen his own path.

Once the system has been integrated with this model the traces
must be collected and analyzed. For this purpose, uA uses the
RAGE Analytics system designed to work with xAPI traces. In this
system, a location-based traces analysis is done to finally generate
a set of map-based visualizations, especially useful to rapidly
understand how players perform location-based actions.

A more exhaustive analysis of the visualizations can help the
teacher to determine, for example, (i) using a heatmap, which of
the designed missions are misleading the students to an undesired
location, or (ii) using a route-map, if a student has gone straight
to the point-of-interest, or he has got confused for a period, and
reached the destination with a delay.

4 FIELD TRIAL EXPERIMENT
With the purpose of validating the new uA upgrade for location-
based games, we developed a test game that uses most of the
features implemented. The experiment purpose is to explain the
sport facilities and the usage of the registry in the Moncloa UCM
campus having four parts: (i) tutorial for using compass and a
navigation to one of the multiple sport facilities; (ii) game of
gathering hidden balls in the different fields; (iii) explanation of
the swimming pool facility (inside) with QR scan; and (iv)
simulation of a document delivery at a registry with QR scan.

The methodology of the experiment was performed in a three-step
process: (i) pre-test of knowledge; (ii) game play and analytics
collection; and (iii) post-test of knowledge and satisfaction. The
development of the game, materials and setup was made in less
than a week, including testing.

The trial involved four people and they decided the game together
as a single team; in a session that lasted for 51 minutes. As a
summary of the results, we detected an improvement on the
response rate from a 29% to an 86% of correctness.

In the analytics report we could explore the players’ movement,
actions and behaviors in the location-based heatmap analytics
(Figure 9); and time measures of each task completion, whose
results concluded a bad ratio of navigation/challenge time that
players also reported in the satisfaction test.

Figure 9: Heatmaps analytics reports. Left shows players
route during gameplay. Right shows points where location-
based actions were performed.

From the satisfaction test the experience got an overall 7.2/10
score. The players’ comments in the positive side highlighted the
ball collection part, as they enjoyed having to deduce where the
balls could be. On the negative side, they highlighted the long

https://www.adlnet.gov/xAPI

navigation periods without anything clear to do, that could be
filled with some task about gathering random elements; and
absence of a competitive leaderboard.

5 DISCUSSION
Location-based gaming market is growing enormously, specially
highlighting Pokémon GO success, creating opportunities to the
serious game market to move along and benefit from it. However,
as this paper has discussed, there are no platforms oriented to
create location-based games adequate for the low-cost serious
games. In addition, these platforms also miss the opportunities
arising from mixing up aspects from different game genres to
better focus the objective of each learning situation (i.e.
navigation vs simulation).

In this paper, we present a location-based model designed to be
integrated in other serious game authoring tools supporting other
game genres; or it also can be used as a model for location-based
serious games themselves. This model, that is based on well-
known standards aims to be compatible with existing map models,
but also creates a layer of interaction especially valuable in
location-based serious games (e.g. enter, exit, look-at). Secondly
but not less important, this model aims to mix game genres and
therefore it allows for the integration of native elements into the
map and even nested launch other genre’s scenes. Because of this,
we’ve exposed different positioning techniques and behaviors
mixed elements should use. Complementing the map
representation, navigation systems helps the player to move in the
maps and teaches players about orientation and navigation.

This model aims to work both outdoors and indoors, so we
showed different approaches highlighting a possible
implementation based on QR codes. By the usage of QR codes it is
possible to complement the system and provide better game
experience. Future work for the uA platform will involve the
implementation or location based in Beacons or Wi-Fis too.

Narrative serious game is the genre we attempt to integrate
location-based model into. Our authoring tool, uA has been
extended to include several tools for authors to easily create map-
based elements and mechanics and to integrate the adventure
game elements into the location-based model. In fact, the editing
tools provide nice visual representations of the AM design and
tools such as reverse geocoding services to avoid dealing straight
with coordinates.

Finally, to improve the serious game life-cycle, assessment is made
by using the novel approach of integrating learning analytics.
We’ve drafted a location-based xAPI profile that can be used for
any kind of location-based applications and we’ve created the
proper visualizations for non-experts to understand and evaluate
players.

As a conclusion, with our small field test involving real users in a
simple game context, we’ve obtained promising learning results
(in terms of knowledge and engagement) and nice receptions from
the player’s side. Soon, we expect to test this model and provide
more realistic conclusions comparing different learning
methodologies. However, at this moment, the uA platform is still
in early stage, needing a huge push in terms of robustness and
usability, but still we hope this paper will impulse better learning
experiences for students, more connected with the real-world and,
in the end, more authentic.

6 ACKNOWLEDGMENTS
We want to specially acknowledge Baran Kahyaoğlu for his open
source MapzenGO project. This research has been partially
financed by the Regional Government of Madrid [eMadrid
S2013/ICE-2715], by the Ministry of Education [TIN2013-46149-
C2-1-R] and by the European Commission [RAGE H2020-ICT-
2014-1-644187, BEACONING H2020ICT-2015-687676].

7 REFERENCES
[1] Althoff, T. et al. 2016. Influence of Pokémon Go on Physical Activity: Study and

Implications. Journal of Medical Internet Research. 18, 12 (Dec. 2016), e315.
DOI:https://doi.org/10.2196/jmir.6759.

[2] Brassil, J. 2014. Improving Indoor Positioning Accuracy with Dense,
Cooperating Beacons. Procedia Computer Science. 40, C (2014), 1–8.
DOI:https://doi.org/10.1016/j.procs.2014.10.025.

[3] Butler, H. et al. 2016. The GeoJSON Format.

[4] Coulter, B. and Klopfer, E. 2016. Discovering Familiar Places: Learning through
Mobile Place-Based Games. Games, Learning, and Society: Learning and Leading
in the Digital Age. (2016), 327–354.
DOI:https://doi.org/10.1017/CBO9781139031127.025.

[5] Dickey, M.D. 2006. Game Design Narrative for Learning: Appropiating
Adventure Game Design Narrative Devices of Interactive Learning
Environment. Educational Technology Research and Development. 54, 3 (2006),
245–263. DOI:https://doi.org/10.1007/s11423-006-8806-y.

[6] DiscoveryAgents 2016. Calgary Parks and the Agents of Nature App.

[7] EPSG:3857: 2010. http://wiki.openstreetmap.org/wiki/EPSG:3857.

[8] Falconi, R.F. 2010. Usability and game design : improving the MITAR Game
Editor ; Improving the MITAR Game Editor ; Usability and game design :
improving the Massachusetts Institute of Technology Augmented Reality Game
Editor. MIT. (2010).

[9] Freire, M. et al. 2016. Game learning analytics: Learning analytics for serious
games.

[10] Hobbs, T. 2016. Why Pokémon Go is a game changer for augmented reality and
marketers.

[11] Ilkovičová, Ľ. et al. 2014. Positioning in Indoor Environment using QR Codes.
(2014), 117–122.

[12] Kasapakis, V. 2015. Pervasive gaming: Status, trends and design principles.
Journal of Network and Computer Applications. 55 SRC-, (2015), 213–236.
DOI:https://doi.org/http://dx.doi.org/10.1016/j.jnca.2015.05.009.

[13] Klopfer, E. 2008. Augmented Learning: Research and Design of Mobile Educational
Games.

[14] Open Geospatial Consortium 2010. gml:AbstractGeometry.

[15] Perez-colado, I.J. et al. 2017. Integrating learning analytics into a game authoring
tool. International Conference on Web-based Learning (2017).

[16] Perez-Colado, I.J. et al. 2017. uAdventure: The eAdventure reboot. IEEE
Education Engineering EDUCON 2017 Conference (en prensa) (Athenas, 2017).

[17] PETERSON, B. et al. 2001. Measuring GPS signals indoors. Proceedings of the
Institute of Navigation’s ION GPS-2001. (2001), 615–624.

[18] Schneider, D. 2013. New indoor navigation technologies work where gps can’t.
ieee spectrum.

[19] Serious Game Market worth $5,448.82 Million by 2020: 2014.
http://www.marketsandmarkets.com/PressReleases/serious-game.asp.

[20] Tile Map Service Specification: 2012.
http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification.

[21] Torrente, J. et al. 2010. <e-Adventure>: Introducing educational games in the
learning process. IEEE EDUCON 2010 Conference (Apr. 2010), 1121–1126.

[22] Velicanu, A. et al. 2013. INTEGRATING SERIOUS GAMES INTO E-LEARNING
PLATFORMS: PRESENT AND FUTURE. The 9th International Scientific
Conference eLearning and software for Education Bucharest, April 25-26, 2013. i
(2013), 380–386.

[23] Yang, C. and Shao, H. 2015. WiFi-based indoor positioning. IEEE
Communications Magazine. 53, 3 (Mar. 2015), 150–157.
DOI:https://doi.org/10.1109/MCOM.2015.7060497.

