
Integrating learning analytics

into a game authoring tool
Ivan J. Perez-Colado, Victor M. Perez-Colado, Manuel Freire-Moran,

Ivan Martinez-Ortiz, Baltasar Fernandez-Manjon

Dept. of Software Engineering and Artificial Intelligence, Facultad de Informática,

Universidad Complutense de Madrid Madrid, Spain
{ivanjper, victormp}@ucm.es, {manuel.freire, imartinez,

balta}@fdi.ucm.es

Abstract. Educational games can greatly benefit from integrating support for

learning analytics. Game authoring tools that make this integration as easy as

possible are therefore an important step towards improving adoption of

educational games. We describe the process of integrating full support for game

learning analytics into uAdventure, a serious game authoring tool. We argue

that such integrations greatly systematize, simplify and reduce both the cost and

the knowledge required to apply analytics to serious games. In uAdventure, we

have used an analytics model for serious games and its supporting

implementation as a xAPI application. We describe how player interactions are

automatically traced, and provide an interaction-model-trace table with the

general game traces that are generated by the editor. Also, we describe the

custom editors that simplify the task of authoring game-dependant analytics.

Thanks to these integrated analytics, games developed with uAdventure provide

detailed tracking information that can be sent to a cloud analytics server, to be

analyzed and visualized with dashboards that provide game developers and

educators with insights into how games are being played.

Keywords: game learning analytics, analytics, serious games, games authoring,

xAPI

1. Introduction

Game analytics (GA, also called telemetry) is the process of collecting and analyzing

videogame user interactions to generate a better insight of the game experience for

game designers and developers to take decisions in the next project iterations [1]. For

example, such an analysis can reveal which levels are too hard for the average user, or

provide insights on how to increase monetizat ion. Similarly, learn ing analytics (LA) is

the analysis of user’s interactions with educational purposes [2], for instance

providing informat ion that allows educators to better understand how the learners are

applying domain knowledge in an e-learning system, and improve the educational

experience in some way (e.g. evaluate student progress). Game learning analytics

(GLA) is the combination of both GA and LA to allow both game designers and

educators to analyze player/learner interactions to improve the use of the games in

education [3].

Although there are many platforms that provide both LA and GA, however GLA is

still a complex process and there is no generally-accepted approach to apply it to

serious games. For example, games must typically provide data to each analytics

system (e.g. GA, LA) separately, and frequently in different formats. In addition, once

the games are deployed, the GLA results are only available through each specific

analytics system’s proprietary analysis, reports and dashboards. As of this writ ing,

GLA is a complex ad-hoc process specific for each game and each analytics system.

However, we believe that GLA should play a critical role in the lifecycle of serious

games (see Fig. 1), as it is key to allow both game and learning designers to validate

their designs; and can also be used to provide formative and summative evaluation.

The process of applying GLA to educational games would be greatly simplified by

having in-built support within the authoring tools, so that the resulting games can

communicate with analytics services using well-known standards. This integration

would systematize and simplify the usage of analytics by automatically linking the

game model with the analytics model, reducing both the cost and the know-how

barriers that have hampered GLA adoption in small deployments . In the following

sections, we first briefly introduce uAdventure, a game authoring tool into which we

have integrated GLA support. We then describe the analytics model and the

user-interfaces that determine and configure how user gameplay is mapped into

analytics traces. Finally, we present a discussion and conclusions that summarize the

main results of this work, together with future directions for improvement.

2. An Analytics model for uAdventure

uAdventure (uA) is a serious game authoring tool built on top of the Unity game

authoring platform that supports the full development lifecycle for adventure “point

and click” games [4]. It is a reimplementation of eAdventure (eA) [5], which was built

using Java. The use of the Unity platform allows uA games to support a much larger

Fig. 1: Use of Game Learning Analytics in a serious game lifecycle. Use of xAPI provides a

standards-based format for analysis and archival.

range of devices and platforms. The goal of uA is to allow non-expert developers to

create “point and click” educational games, including features such as scenarios,

characters, dialogs, and assessment. While in eA the assessment system was based on

e-learning models (e.g. SCORM), uA now extends it with support for GLA.

uA GLA support is based on a general game analyt ics model that is implemented

according to the emergent specificat ion promoted by ADL and called xAPI

(eXperience API). A game analytics model describes how in-game interactions are

reported to an analytics server, typically as a stream of events, but also sometimes as

fully serialized game-states. The serious games xAPI profile [6] (SG-xAPI for short)

is a general event-based analytics model that builds on the xAPI activ ity stream

standard [7], and is therefore event-based. The main event categories found in

SG-xAPI, strongly inspired by [8], are

 Completables, which describe progress along a particu lar level or task with a start

and an end. Completables can be nested. Examples could be game, game session,

level, quest, or race.

 Alternatives, which reflect in -game choices made by the player. Menus,

questions, paths and dialogue choices are examples of alternatives.

 Meaningful variables, which direct ly echo in-game state changes such as score or

character health. Note that these variables are a very s mall subset of the total

game-state.

 Custom interactions, intended as extension points for actions not covered in the

above categories.

xAPI traces are composed of a subject, a verb, an object, and optional context; for

example, an xAPI trace describ ing that “player Alice used a key” in a g iven game

would include Alices’ identity as subject, “Used” as xAPI verb, the specific in -game

key identifier as an object, and the specific door as context. This output is then passed

on into existing GLA services, such as the open-source RAGE Analytics1 system

which is used in the H2020 RAGE and BEACONING projects.

Integrating GLA into a game requires both the analytics model and the defin ition

of the server-side analyses that process this data into a format suitable for

visualizat ion within dashboards [3]. However, since uA relies on the SG-xAPI defau lt

analyses and visualizations performed in RAGE Analytics and described in [9], this

work focuses exclusively on the mapping between in-game act ions and the SG-xAPI

traces that are sent to the server.

Point and click games are typically composed of multip le scenes woven together

via a supporting narrative, where p layers interact on scene items or characters via

mouse clicks to advance the plot. The following subsections exp lore the areas in

which events have been analyzed and traced, starting from the lowest to the highest

level of abstraction. The following subsections describe i) session management

events; ii) user interactions with game elements inside the scenes; iii) scene changes;

iv) meaningful variable changes; and finally, v) completables, which are h igh-level

tasks related to in-game progress.

1 https://github.com/e-ucm/rage-analytics

https://github.com/e-ucm/rage-analytics

2.1. Session Events

In order to process traces sent from games into sessions, the analytics servers need to

identify p layers. Three options are available: fully logged-in players, pseudonymous

players, and fully anonymous players. When players are fully logged in, the analytics

system can be integrated with an LMS to provide detailed evaluation that is tied to the

player’s true identity [10]. Th is, however, presents certain privacy and confidentiality

concerns, and may not be feasible in an analytics -as-a-service setting. With

pseudonymous login, players are assigned a random pseudonym when they first

connect, which they will continue to use in later sessions. This allows evaluation to be

carried out, without the possibility of tracing the actual identities of the players.

Finally, in a fully anonymous setting, all sessions are independent of each other, and

no evaluation is possible. Th is option is still interesting during initial p ilots to gather

feedback to improve learning and game design (as shown in Figure 1).

While necessary for analytics, authentication and authorization are not part of the

analytics model itself, as they are expected to be handled by the GLA servers before

any actual gameplay data is sent. uAdventure supports login (for non-anonymous use)

by displaying a small login form on game startup, and transparently handles session

startup with the GLA servers specified during game development.

2.2. User Interaction Events

Raw input events such as mouse movements, clicks, and keyboard inputs constitute

the lowest level of abstraction in analytics . These events provide little informat ion on

their own, even when grouped to create higher-level abstractions such as dragging or

double-clicking. For GLA purposes, interactions that are direct ly linked to game

content and/or game progress, such as interactions with scene elements, are much

more valuable. Elements inside scenes include items, characters or areas; and players

can typically interact with them with in-game actions such as “examine” or “use”.

uAdventure automatically sends “Interacted” SG-xAPI t races whenever a player

interacts with an in-game element such as an item or character. The trace will identify

both the object of the interaction and, if applicab le, the type of interaction (such as

“examine” or “eat”). Therefore, tracing such low-level interactions requires zero effo rt

on the part of the game developer, and provides a free stream of information to

perform GA (e.g. interaction heat maps). On the other hand, these events are of little

help to better understand the in-game learn ing process; using Completables (see

section 2.6), which do require a certain configuration, yields much better results.

2.3. Scene and Cutscene changes

Scenes in uAdventure are modeled after their theater counterparts: they provide

backdrops within which the player moves and interacts with items and other

characters. Certain min i-games are also modeled as scenes. Cutscenes are special

scenes that usually imply the visualization of non-interactive content, such as slides or

videos. Tracking scene changes and whether cutscenes are skipped or not provides

valuable context to understand other events that are being reported by a game.

Additionally, the game always knows which scene is currently open, so that

information regarding both is readily available.

uAdventure uses the SG-xAPI “Accessed” verb to track scene changes , and also

allows developers to further describe the scene for analytics purposes (choices include

Screen, Zone, Area and Cutscene). Skipping cutscenes, such as videos, might reduce

the learning value, as the player has only been exposed to a part of the potentially

informative content. uAdventure uses “Skipped” verbs to signal this fact.

While access events are valuable for GA, they are not (with the exception of

Skipped) so useful for LA : game developers can freely connect scenes, and there is no

game-independent way to determine the game progress from these changes [11]. To

infer progress, game developers can specify that scenes should be treated, in addition

to Accessibles, as Alternatives (see section 2.5), where by entering or leaving the

scene the player is making a choice, or as a Completable (see section 2.6) task such as

a minigame, where entering or exit ing the scene should be interpreted as actual

progress.

Fig. 1. Editor shows scene documentation where game designer can change scene

specification, default values are, as shown: class Accessible with type Area

2.4. Meaningful Variables

Game state in uA is represented mainly by variables and flags. uA condition system

uses their values to control content display and behavior execution. Therefore,

changes in variables are usually good candidates for analytics.

However, a game-specific analysis is required to identify the relevance of a

variable (or a set of variables) for the learning process. Even if not all variables are

relevant to LA, to reduce game authoring complexity, all changes in variables and

flags are automatically reported. Once the data is collected, it can be mined to

distinguish the variables with a larger impact on the learning process.

When a player interaction triggers several in-game consequences, so, to preserve

the change context (which would allow for a more precise analysis), it is better to

associate all of them together as the result of an interaction event. This is possible as,

instead of sending an event per variable change, all the variab le changes are stacked

wait ing for the next non-variable event. When the next interaction occurs, the trace

generated will carry all the extensions inside.

2.5. Alternatives

Alternative selections represent a higher level of abstraction, and provide a direct

measure of the student’s knowledge. An alternative can be represented in many ways

(e.g. text response selection, image selection, path selection); but in general,

constitutes a choice where some options can be considered correct and others less so.

Therefore, alternative selection is very valuable for LA and assessment, as well as to

test and verify game design.

The most common types of alternatives in point-and-click games are dialogue

responses for use with non-player characters [11]. uA provides a graph-based dialogue

editor where questions can be identified with a unique id and, using a checkbox,

marked as correct or incorrect (see Fig. 3). In uA questions without a question-id are

considered not relevant for analytics purposes .

To track these events, the SG-xAPI “Selected” verb is used, where question types

include menu, path or question. A result field describes the selected option identifier

as response and the whether it was correct or not.

Fig. 2. Dialog Question editor allowing a game designer to specify a question id and which of

the answers of that question should be considered correct or incorrect (Checkbox)

In addition to dialog responses, as mentioned in subsection 2.3, it is also possible to

interpret scene selection as type of Alternative. In th is case, as depicted in Fig. 4, each

available scene exit is considered a response using the arriving scene name as

response identifier. If the player passes through the exit successfully, the answer was

correct, but otherwise, it was a wrong answer.

Fig. 3. Left: An Alternative scene type Question with correct and incorrect exits. Right: runtime

Alternative Type Question scene from the SG First Aid Game.

2.6. Completables

Completables provide the highest level of abstraction and describe player progress

along the abstract tasks that the user has to complete throughout the game. Tasks are

not limited to representing game progress: they can be used to represent learning

process itself, for instance by establishing a correspondence between progress and

score in a given task (game design) and learning the concepts that it exercises

(learn ing design). Completables are available in the uA editor’s Analytics tab. To

track completables, SG-xAPI includes the verbs “Started”, “Progressed” and

“Finished”.

Inside of a game there could be multiple completables and they may be act ive at

any time, even in parallel. A game with correctly configured completables is much

easier to analyze than one where the underlying triggers have to be decoded from the

underlying game traces (in a server-side game-specific analysis). In order to track

them, the completable system lets the developer freely configure starting milestone

and ending milestones. These milestones can be determined by five different triggers:

i) access to specific scene, ii) interaction with specific item, iii) interaction with

specific character, iv) accomplishment of another completable and v) a boolean

condition as determined by a combination of in-game variables.

Fig. 4. uA Progress editor. i) Top shows main completable editor, defining three cases of the

serious game FirstAidGame. Progress is defined by the number of cases completed. ii) Right

shows individual completable editors, with a list of milestones to be satisfied. Progress is
determined by the max of the milestones reached. iii) Left shows milestone editor options,

letting game designer to choose between a list of options to define what reach this milestone

Completables can be composed of several milestones; the accomplishment of each

milestone defines the progress . To define them, the uA editor provides a progress

editor that lets the user specify all milestones that compose the completable. Progress

can either be calcu lated as the ratio of completed-to-total milestones, or configured for

each specific completable using sliders as illustrated in Fig. 5. Finally, to associate the

score, the user can select the variable that will hold its value.

In addition to the level-specific completables, there is a global game completable,

identified using the “Game” type. When the game starts, it generates a “Started”

event; whenever a completable is completed a “Progressed” trace is launched tracking

the game general progress ; finally, the condition associated with game end will

generate the “Completed” event with the average score of all completables.

3 Mapping game events to SG-xAPI

Table 1 contains a summary of the mapping from game events to xAPI traces

presented in the previous subsections, in increasing order of abstraction; and therefore,

utility from a LA point of v iew: events closer to the interaction with game elements

are less meaningful than the ones that are connected to game progression , such as

alternatives and completables.

Event Cause xAPI Type

xAPI Verb

Target Result
R: response, S: success, Ext: extensions

NPC

Interaction

Player opens NPC

actions menu

Character

Interacted

NPC name Ext: Action name

Item
Interaction

Player opens item
actions menu

Item
Interacted

Item name Ext: Action name

Scene
access

Player enters a scene Accessible
Accessed

Scene id

Cutscene
start

Player starts a cutscene Cutscene
Accessed

Cutscene id

Cutscene

skip

Player presses skip Cutscene

Skipped

Cutscene id Ext: Percent watched

Exit

selection in

alternative

type scenes

Player selects an exit

in current scene, for

menus or visual

choices

(Alternative,

Question

Menu or Path)

Selected

Exit Id R: Arriving scene

S: Based on exit conditions

Dialog

choice

Player selects one

dialog option

Alternative

Selected

Question Id R: Response

S: Correctness

Task start Player reaches a

milestone

Completable

Started

Completable

Id

Task

progress

Player reaches one of

the milestones

Completable

Progressed

Completable

Id

Ext: Milestone progress value

Task finish Player reaches a

milestone or completes
all the steps

Completable

Completed

Completable

Id

R: Score from variable

S: Based on conditions
Ext: Time

Game start Player visits title Game

Started

Game name

Game

progress

Accomplishment of

any of the levels

Game

Progressed

Game name Ext: Progress as percent of

levels (tasks) completed

Game end Milestone or all levels

completed

Game

Completed

Game name R: Avg. score of all levels

S: Based on conditions

Ext: Time

Table 1. Summary of game events traced inside the uAadventure authoring tool

4 Discussion and Conclusions

Serious games have frequently been evaluated by relying exclusively on

(paper-based) learning assessment. In tradit ional e-learn ing, different methods have

been used to connect the serious game outcome (e.g. score) to different learning

systems allowing the use of serious games as any other assessment tool such as online

tests; but this integration focuses on simple outcomes and provide few or no insights

into the process. However, if a game fails to work for a part icular set of p layers ,

knowing the exact steps they have followed inside the game is crucial to determine the

reasons. Tackling this lack of flexib ility requires a transformation from the traditional

assessment model to the new evidence-driven model; and mapping in-game act ions to

events that can be used to analyze and gain insight not only on the results, but also on

the process.

The uAdventure analytics model describes how player interactions are

automatically captured and transformed into events that the LA system can collect and

analyze. The events generated cover a wide range of situations such as scene access,

element interaction and options selection. We also describe how higher-level events

can be authored from within uA. Other tools that wish to integrate GLA into their

games should find this analysis useful when developing their own analytics models

and user interfaces.

The integration of uAdventure with GLA presents multip le benefits to game

developers. First, all games developed with the tool automatically integrate free

support for LA requiring min imum developer effort. Th is greatly reduce the GLA

cost. In addition, thanks to the use of standardized events, developers do not need

handle event encoding, and can automatically take advantage of several generic

analyses and visualizations in xAPI-aware GLA p latforms such as the (open-source

and freely available) RAGE Analytics . For no added effort, uAdventure developers

and users can enjoy basic analytics and assessment information, which can then be

enriched by generating game-dependent events that provide richer information that

links to the relevant learning situations identified in the game learning design .

During the integration, we have also identified multip le areas that can benefit from

further work. For example, changes to game variables are only sent to the server as a

part of future non-variable updates, instead of when they actually occur. This is part of

the standard, but may confuse analyses that expect traces to be sent in the order they

were generated. The uAdventure editor can also benefit from numerous usability

enhancements, such as displaying information about completables directly inside of

the element editors that are used as triggers in the completables’ definit ion; or

integrating game mechanics such as quests or missions that are directly tied to

completables and provide exp licit in -game feedback to allow users to track their own

progress.

We believe that the integration between game authoring tools and game learning

analytics, as described in the present work, is an is an important step towards wider

usage of GLA in serious games.

Acknowledgement

This work has been partially funded by Regional Government of Madrid (eMadrid

S2013/ICE-2715), by the Ministry of Education (TIN2013-46149-C2-1-R) and by the

European Commission (RAGE H2020-ICT-2014-1-644187, BEACONING

H2020-ICT-2015-687676).

References

[1] M. Seif El-Nasr, A. Drachen, and A. Canossa, Game Analytics. London: Springer
London, 2013.

[2] T. Elias, “Learning Analytics : Definitions , Processes and Potential,” Learning, vol.

23, pp. 134–148, 2011.

[3] M. Freire, Á. Serrano-Laguna, B. M. Iglesias, I. Martínez-Ortiz, P. Moreno-Ger, and

B. Fernández-Manjón, “Game Learning Analytics: Learning Analytics for Serious
Games,” in Learning, Design, and Technology, Cham: Springer International

Publishing, 2016, pp. 1–29.

[4] I. Perez Colado, V. Perez Colado, I. Martínez-Ortiz, M. Freire, and B.

Fernandez-Manjon, “uAdventure: The eAdventure reboot - Combining the experience

of commercial gaming tools and tailored educational tools,” IEEE Glob. Eng. Educ.
Conf., no. April, pp. 1754–1761, 2017.

[5] J. Torrente, A. del Blanco, E. J. Marchiori, P. Moreno-Ger, and B. Fernandez-Manjon,

“<e-Adventure>: Introducing educational games in the learning process,” in IEEE

EDUCON 2010 Conference, 2010, pp. 1121–1126.

[6] A. Serrano-Laguna, I. Martinez-Ortiz, J. Haag, D. Regan, A. Johnson, and B.
Fernandez-Manjon, “Applying standards to systematize learning analytics in serious

games,” Comput. Stand. Interfaces, vol. 50, no. September, pp. 116–123, 2016.

[7] “xAPI - ADL Net @ www.adlnet.gov.” .

[8] Á. Serrano-laguna, J. Torrente, P. Moreno-ger, and B. Fernández-manjón, “Tracing a

little for big Improvements : Application of Learning Analytics and Videogames for
Student Assessment,” Procedia Comput. Sci., 2012.

[9] C. Alonso-Fernandez, A. Calvo, M. Freire, I. Martinez-Ortiz, and B.

Fernandez-Manjon, “Systematizing game learning analytics for serious games,” 2017

IEEE Glob. Eng. Educ. Conf., no. April, pp. 1106–1113, 2017.

[10] M. Bienkowski, M. Feng, and B. Means, “Enhancing teaching and learning through
educational data mining and learning analytics: An issue brief,” Washington, DC SRI

Int., pp. 1–57, 2012.

[11] F. Mehm, S. Göbel, and R. Steinmetz, “An Authoring Tool for Educational Adventure

Games,” Int. J. Game-Based Learn., vol. 3, no. 1, pp. 63–79, 2013.

