
2nd Reading
December 27, 2005 17:42 WSPC/117-ijseke 00263

International Journal of Software Engineering
and Knowledge Engineering
Vol. 15, No. 6 (2005) 975–993
c© World Scientific Publishing Company

DOCUMENT-ORIENTED DEVELOPMENT OF

CONTENT-INTENSIVE APPLICATIONS

JOSÉ LUIS SIERRA∗, BALTASAR FERNÁNDEZ-MANJÓN†,
ALFREDO FERNÁNDEZ-VALMAYOR‡ and ANTONIO NAVARRO§

Dpto. Sistemas Informáticos y Programación, Fac. Informática,
Universidad Complutense de Madrid,

C/ Professor José Garćıa Santesmases S/N, 28040 Madrid, Spain
∗jlsierra@sip.ucm.es
†balta@sip.ucm.es

‡alfredo@sip.ucm.es
§anavarro@sip.ucm.es

In this paper we promote a document-oriented approach to the development of content-
intensive applications (i.e., applications that critically depend on the informational con-
tents and on the characterization of the contents’ structure). This approach is the result
of our experience as developers in the educational and in the hypermedia domains, as
well as in the domain of knowledge-based systems. The main reason for choosing the
document-oriented approach is to make it easier for domain experts to comprehend the
elements that represent the main application’s features. Among these elements are: the
application’s contents, the application’s customizable properties including those of its
interface, and the structure of all this information. Therefore, in our approach, these
features are represented by means of a set of application documents, which are marked
up using a suitable descriptive Domain-Specific Markup Language (DSML). If this goal
is fully accomplished, the application itself can be automatically produced by processing
those documents with a suitable processor for the DSML defined. The document-oriented
development enhances the production and maintenance of content-intensive applica-
tions, because the applications’ features are described in the form of human-readable
and editable documents, understandable by domain experts and suitable for automatic
processing. Nevertheless, the main drawbacks of the approach are the planning overload
of the whole production process and the costs of the provision and maintenance of the
DSMLs and their processors. These drawbacks can be palliated by adopting an incre-
mental strategy for the production and maintenance of the applications and also for the
definition and the operationalization of the DSMLs.

Keywords: Comprehensibility; development approach; content-intensive applications;
domain-specific markup languages; maintenance; evolution.

1. Introduction

There are applications (e.g., network-traveling information systems and

educationally-oriented hypermedia applications) that critically depend on the do-

main informational contents and on the explicit representation of the structure

975

2nd Reading
December 27, 2005 17:42 WSPC/117-ijseke 00263

976 J. L. Sierra et al.

of these contents. In our approach these applications are called content-intensive.

The maintenance of these applications typically involves the addition of new con-

tents (e.g., addition of a new stop in a transport network or new exercises and

documents in an educational hypermedia) and the modification of the existing ones

(e.g., temporary disabling of a network’s route or changing the evaluation criteria of

a student’s test), as well as the customization of other relevant features (e.g., usage

and new help information in their user interfaces or the adaptation of a sequence

of exercises or traveling plans to the user’s necessities). This type of maintenance

supposes the active involvement not only of the developers but especially of the

domain experts (e.g., the transport network organizers in the traveling information

domain or teachers in the educational case). The fact is that domain experts are

the owners and/or the authors of the contents and they have a deep knowledge of

the structure of these contents and of the other aspects of the application domain.

In turn, developers have good skills in computer science, but they are not neces-

sarily proficient in that domain. Thus, while strategies in software comprehension

have usually been biased to help developers to understand software artifacts from a

developer’s point of view [1], the maintenance of content-intensive applications also

requires the use of comprehension strategies oriented to helping domain experts

understand the representation of the main application’s features. In our opinion,

this can be done by representing the content and the customizable properties of the

application, as well as the structure of this information, in a formalism that can

easily be understood, modified and even authored by experts.

This paper presents our document-oriented approach to the development of

content-intensive applications. This approach is based on the comprehensibility con-

siderations mentioned above, and also satisfies other complementary requirements

(information processability and reusability). In effect, the document-oriented de-

velopment of an application promotes the representation of their main features by

means of a set of application documents. To enable their automatic processing, these

application documents are marked up with an easy-to-use and easy-to-understand

descriptive Domain-specific Markup Language (DSML), specifically defined, chosen

or adapted for the type of applications at hand. In addition, the application can

be produced from these documents by processing them with a processor specif-

ically built for the DSML defined. Thus, maintenance is largely reduced to the

authoring of familiar application documents by the domain experts. We have suc-

cessfully applied these document-oriented development principles in the production

and maintenance of several educational and hypermedia applications as well as of

knowledge-based systems. These experiences taught us the importance of adopting

incremental approaches for the definition of the DSMLs and their operationaliza-

tion (i.e., the construction of their processors) as this language can evolve during

the successive development iterations to deal with the new markup needs proposed

by domain experts and developers.

The paper is organized as follows: Section 2 enumerates the document-oriented

development principles. Section 3 describes a process model for the document-

2nd Reading
December 27, 2005 17:42 WSPC/117-ijseke 00263

Document-Oriented Development of Content-Intensive Applications 977

oriented development of content-intensive applications. Section 4 describes some

related work. Finally, Sec. 5 details some conclusions and future work. For simplicity,

the different aspects discussed in the paper will be illustrated with the development

of applications for travel recommendations in subway networks.

2. Document-Oriented Development

This section describes and gives an overview of the document-oriented development

of content-intensive applications. Thus, the main difficulties in the production and

maintenance of this kind of applications, which are due to a lack of efficiency in the

communication between domain experts and developers, are analyzed in Sec. 2.1.

Section 2.2 reveals how similar difficulties arise in the domain of the publishing

of electronic documents and how these difficulties are overcome in this domain

with the use of descriptive markup technologies. Finally, Sec. 2.3 shows how these

solutions can be translated to the production and maintenance of content-intensive

applications yielding the document-oriented development approach.

2.1. Production and maintenance of content-intensive applications

The production and maintenance of content-intensive applications are costly tasks.

Exceptions are those applications that, due to their simplicity, can be directly pro-

duced and maintained by domain experts using suitable authoring tools without

further interventions. However, when the applications grow in content complexity

and sophistication of the processing and interaction, this approach is no longer valid.

Therefore, the successful production and maintenance of these sophisticated appli-

cations usually need to involve both domain experts and developers. In fact, the

development process of this kind of applications usually proceeds through several

iterations, where experts provide the contents and developers deliver new versions

of the application, which are in turn evaluated by the experts, notifying developers

of their modifications and/or improvements [2, 3]. Therefore, the typical scenario

for the production and maintenance of content-intensive applications looks like the

one in Fig. 1. For simplicity this scenario can be exemplified in the subway case

study. Here the network organizers (domain experts) can provide the developers

with tables representing the network organization (structure, timing information,

schedules, etc.), and the developers produce an application for travel recommen-

dations in this network. Plausible modifications during maintenance will affect the

encoding of the network’s information as well as other customizable features (e.g.,

information messages in the user interface).

The efficiency of communication between domain experts and developers in sce-

narios such as the one depicted in Fig. 1, and thus the costs of the overall process,

strongly depends on how domain experts provide the contents and notify devel-

opers of the modifications. In turn, it depends on how the contents and the other

modifiable elements are encoded inside the application. In many situations these en-

codings are in application-dependent and processing-oriented formats, hardly com-

2nd Reading
December 27, 2005 17:42 WSPC/117-ijseke 00263

978 J. L. Sierra et al.

Domain
experts

XXX

Developers

…
…

Application

Modifications

Contents

Fig. 1. Collaboration between domain experts and developers during the production and main-
tenance of a content-intensive application.

prehensible by domain experts. In addition, during production, developers must

translate contents into internal representations, translation usually being a manual

process. The consequence of the process described above is the lack of an appropri-

ate communication channel between experts and developers to be used during the

production and maintenance stages. Effectively, in applications that manage high

volumes of contents and exhibit complex interactions with the user, domain experts

can be in the need of annotating their modifications directly onto snapshots of the

applications’ screens [4]. To take into account these annotations, developers analyze

them in order to correct the application.

Therefore, there is the practical need to represent the main features of the

content-intensive applications in a formalism meeting the following three require-

ments:

• Comprehensibility. The formalism must be comprehensible to domain experts,

who must be able to author representations using this formalism. This way, the

explicit notification of modifications would be avoided, because domain experts

would be able to comprehend how the different customizable attributes of the

application are represented and they could directly modify these attributes.

• Processability. The formalism must be machine-processable to let developers au-

tomate its translation into more convenient processing-oriented formats (e.g.,

translation from the description of a subway network into a weighted directed

graph).

• Reusability. The formalism must facilitate the reuse of the representations both in

future evolutions of the application and in other new ones (e.g., the representation

of the subway networks in the travelling recommendation application could be

reused in the development of a Geographical Information System).

2nd Reading
December 27, 2005 17:42 WSPC/117-ijseke 00263

Document-Oriented Development of Content-Intensive Applications 979

Our chosen representation formalism is motivated by the techniques used in

modern electronic publishing outlined in the next section.

2.2. Publishing of electronic documents

The publishing of electronic documents exhibits strong similarities with the produc-

tion and maintenance of content-intensive applications.These similarities are em-

phasized in Fig. 2(a), where a simplified traditional publishing scenario is depicted.

According to this, the publishing process also implies two kinds of participants with

very different skills: the authors of the originals to be published, and the publishers.

In Fig. 2(a) an original is produced by an author. Then, this original is processed

by a publisher, who delivers a first printout of it. The printout is examined by the

author who indicates the corrections. On the basis of these corrections the pub-

lisher produces new corrected printouts, leading to a situation analogous to that

depicted in Fig. 1. Nevertheless, in modern electronic publishing environments there

are well-established procedures for speeding up this process.

X

Author Publisher

Printout

Corrections

Original Marked
Document

Author Publisher

Document
grammar

Printout

(a) (b)

Fig. 2. (a) Collaboration between an author and a publisher during the publishing of an original,
(b) improving the process with descriptive markup languages.

Descriptive markup languages are extensively used in electronic publishing to

improve the publishing process [5–7]. Figure 2(b) summarizes the improved pro-

cess. Here the publisher provides the author with a descriptive markup language

defined in a document grammar (e.g. a DTD — Document Type Definition [7]; see

Fig. 3(a) for a small example). Being descriptive, this markup is oriented to repre-

senting the logical structure of the documents instead of how these documents will

be subsequently processed (Fig. 3(b)). Therefore, the author is able to comprehend

this language and to use it to represent the structure of its original by marking

it up. In addition, the author is able to check the correctness of the markup by

validating the marked original against the document grammar. Once the original

is validated, the publisher processes it to produce the printout. Because the doc-

ument conforms the markup language, the defects that remain in the printouts

are due to misunderstandings either in the contents or in the intentional, although

2nd Reading
December 27, 2005 17:42 WSPC/117-ijseke 00263

980 J. L. Sierra et al.

Bucolic
By Begoña Pocavista

<!ELEMENT Poem (Title,Author,Body)>

<!ATTLIST Poem style (normal|naif) "normal">

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Author (#PCDATA)>

<!ELEMENT Body (Verse)+>
<!ELEMENT Verse (#PCDATA)>

<Poem style="naif">

 <Title>Bucolic</Title>

 <Author>Begoña Pocavista</Author>

 <Body>

 <Verse>In the top of the hill</Verse>

 <Verse>in the depth of the forest</Verse>

 <Verse>there is a lonely tree</Verse>

 <Verse>and this is the story</Verse>

 </Body>
</Poem>

In the top of the hill

in the depth of the forest

there is a lonely tree

and this is the story.

(a) (b)

(c) Processor

Fig. 3. (a) A simple DTD for marking up poems, (b) a document conforming the DTD in (a),
(c) the document in (b) can be processed with a suitable processor to obtain printouts.

grammatically correct, use of the markup. Both types of defects can be directly

solved by the author on the marked document, letting the publisher produce new

printouts at no cost. Actually these printouts can be produced automatically, pro-

cessing the documents with a processor for the markup language used (Fig. 3(c)).

Notice that the descriptive markup-based formalism complies with the compre-

hensibility, processability and reusability requirements when they are restricted to

the publishing domain [6]. Descriptive markup is easy to understand by authors,

who can use this either directly or with the help of a specialized WYSIWYGa editor.

In addition, descriptive markup is formalized with a document grammar and there-

fore the processing of the marked documents can be automated. Finally, by changing

the processor (i.e., by attributing a different presentation meaning to the markup

language) a descriptively marked document can be used for different purposes and

on different devices (e.g., a web-based presentation versus a postscript file for a

printer). Thus we consider it a natural step to generalize this publishing process to

the development of content-intensive applications. The resulting document-oriented

development approach is detailed in the next section.

2.3. Document-oriented development approach of

content-intensive applications

The document-oriented development of a content-intensive application promotes

the use of documents to describe the contents and other customizable features of

aWhat You See Is What You Get.

2nd Reading
December 27, 2005 17:42 WSPC/117-ijseke 00263

Document-Oriented Development of Content-Intensive Applications 981

Domain
experts

Developers

Application

Marked
application
documents

Grammar for
the DSML

Fig. 4. Document-oriented development of content-intensive applications: a first approximation.

the application together with the structure of this information. Therefore, different

facets of the application will be described by means of a set of documents that will

be marked up with an application-specific descriptive DSML. Because these docu-

ments (and hence the DSML used in their markup) are specific to the application

domain, they can be understood, produced and maintained by the domain experts.

Moreover, the markup makes it possible for the automatic processing of these doc-

uments to rebuild the application when they change. Thus, the approach achieves a

reasonable trade-off between the comprehensibility and the processability require-

ments. In addition, while the documentation of the customizable features is usually

application-specific, descriptive markup facilitates the reusability of contents for

other purposes.

In Fig. 4 a first approach to a document-oriented development scenario is de-

picted. This is parallel to the use of descriptive markup languages in the publishing

domain given in Fig. 2(b). Here the documents are not restricted to textual prose,

but they do enclose application contents and other customizable aspects of the ap-

plication. As described before, these application documents are marked up with an

application DSML that is specific for (and varies with) each type or family of ap-

plications. Finally, running applications are automatically produced by processing

these marked documents with suitable processors like printouts are produced using

the marked original documents in Fig. 2(b). Note that not only experts but also

developers play an active role in the authoring of the application documents. Devel-

opers can document an initial minimal body of contents as well as other features in

order to produce a first application prototype and to provide domain experts with

initial document templates. In addition they also can help experts with the use of

the DSML.

The document-oriented development can be exemplified in the subway case

study. The main features of a traveling recommendation application for a city’s

2nd Reading
December 27, 2005 17:42 WSPC/117-ijseke 00263

982 J. L. Sierra et al.

<!ELEMENT Subway (Network,UserInterface)>

<!ELEMENT Network (Structure,Dynamics)>

<!ELEMENT Structure (Stations,Lines)>

<!ELEMENT Stations (Station)+>

<!ELEMENT Station (#PCDATA)>

<!ATTLIST Station id ID #REQUIRED>

...

<!ELEMENT UserInterface (Title,ExitButton,

 ResetButton,...,

 Map,Coordinates)>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT ExitButton (#PCDATA)>

...

<!ELEMENT Map EMPTY>

<!ATTLIST Map loc CDATA REQUIRED>

<!ELEMENT Coordinates (Coordinate)+>

<!ATTLIST Coordinate station IDREF #REQUIRED

 x NMTOKEN #REQUIRED

 y NMTOKEN #REQUIRED>

Processor

(a) (b)

<Subway>

 <Network>

 <Structure>

 <Stations>

 <Station id="CONGOSTO">Congosto</Station>

 <Station id="VVALLECAS">Villa de Vallecas</Station>

 ...

 </Stations>

 <Lines>

 ...

 </Lines>

 </Structure>

 <Dynamics>

 ...

 </Dynamics>

 </Network>

 <UserInterface>

 <Title>Subway of Madrid</Title>

 <ExitButton>Exit</ExitButton>

 <ResetButton>Reset Application</ResetButton>

 ...

 <Map loc="madrid.jpg"/>

 ...

 <Coordinates>

 <Coordinate station="CONGOSTO" x="690" y="406"/>

 ...

 </Coordinates>

 </UserInterface>

</Subway>

(c)

Fig. 5. (a) Fragment of the DTD for the subway’s DSML, (b) fragment for the Madrid’s applica-
tion document, (c) customization of the travel recommendation application for the city of Madrid
produced by processing the document in (b) with a suitable processor.

subway can be given in a single document containing the description of the subway

network (its structural and dynamical aspects), and also the customizable proper-

ties of its user interface (e.g., names of buttons and labels, informative messages, a

pointer to the image with the map and the coordinates of the stations in this im-

age). Based on these considerations, developers can provide a DSML for marking

up all these aspects. In Fig. 5(a) a fragment for the DTD of this DSML is depicted.

Note that the markup vocabulary and the structure for this DSML are chosen to be

understandable by the domain experts (in this case, the network organizers). Thus,

with the help of developers, network organizers can author the application docu-

ment. In Fig. 5(b) a fragment for the document concerning the application for the

city of Madrid (Spain) is outlined. This document can be automatically processed

to generate the associated travel recommendation application (Fig. 5(c)).

The document-oriented development approach meets the comprehensibility, pro-

cessability and reusability requirements stated above. Nevertheless, the approach

2nd Reading
December 27, 2005 17:42 WSPC/117-ijseke 00263

Document-Oriented Development of Content-Intensive Applications 983

has important initial costs, due to the need for a more explicit planning of the appli-

cation development process and of the explicit formulation and operationalization

of DSMLs. These costs can be amortized along the whole development process if an

incremental strategy is carried out. Instead of being conceived as an immovable en-

tity, the DSML for an application domain must be considered as a dynamic object

that evolves with the application along the software development cycle, integrating

the markup needs of domain experts and developers as they are discovered. This

evolution not only affects the descriptive nature of the DSML, but also its opera-

tional aspects (i.e., its processor). Therefore, the success of the approach strongly

depends on an appropriate management of the incremental provision of DSMLs

and the incremental development of their processors. All these considerations are

reflected in the process model for the document-oriented development approach

proposed in the next section.

3. A Process Model for the Document-Oriented Development

This section details our process model for the document-oriented approach to the

development of content-intensive applications. This process model is based on the

work described in [8], its main goal being to enhance the comprehension of the

elements that represent the main applications’ features for the domain experts.

The model also devotes special attention to the maintainability and reusability as-

pects, and encourages an iterative and incremental strategy for the production and

maintenance of the applications and of the DSMLs and their associated processors.

This is presented from three different perspectives. There is a perspective for the

activities contemplated in the process and the products produced and consumed by

these activities, which is presented in Sec. 3.1. Section 3.2 details the perspective

of the sequencing of the activities, analyzing the iterative and incremental behavior

of the model. Finally, in Sec. 3.3 the model is discussed from the perspective of

the actors involved in the development and their roles in the different activities.

Note that, this being a process model, the model does not compromise itself with

concrete procedures for carrying out the activities nor with concrete technologies

for getting the products. Nevertheless, sometimes we will give some hints about

these aspects. More technical and in-depth expositions can be found in [8].

3.1. Activities and products

The activities and products involved in the document-oriented approach for the

development of applications according to our process model are depicted in Fig. 6.

Next we detail all these aspects and illustrate them using the subway case study.

The goal of the DSML provision activity is to obtain the application DSML

that will be used to mark up the documents that describe the application’s main

features. This application DSML will be defined declaratively with a document

grammar expressed in an appropriate formalism (e.g., DTDs or any other schema

language [9]). This definition can be facilitated by reusing DSMLs previously defined

2nd Reading
December 27, 2005 17:42 WSPC/117-ijseke 00263

984 J. L. Sierra et al.

Application
Documents

Repository of
DSMLs

Application
DSML

Operationalization

DSML
provision

Application
Documentation

Application

Processor
Application
Production

Fig. 6. Activities and products for a document-oriented development of content-intensive appli-
cations.

and stored in a repository of DSMLs. During this activity special attention must

be paid to the comprehensibility requirement. Thus, the markup vocabulary must

be close to the application domain and the markup structure must mirror the

structure of the actual documentation used by the domain experts. In addition,

the adhesion to a common markup metalanguage (e.g., SGML [7, 10], the Standard

Generalized Markup Language or XML [11], the eXtensible Markup Language) can

contribute to increasing this comprehensibility, because all the DSMLs will share

a common syntax, helping domain experts avoid the assimilation of a new syntax

with each new DSML. Finally, each particular DSML must be also appropriately

documented to facilitate its comprehension by domain experts. In our experiences

with the approach we have realized that, while SGML allows greater economy in

the markup than XML, XML’s simpler productions are more easily comprehended

by domain experts [4]. In addition, we have successfully based the definition and the

documentation of our DSMLs on SGML and XML DTDs [4, 12]. Although DTDs

are simpler than other schema languages, according to our experience working with

domain experts, we have realized that DTDs are simpler to use and is a more

understandable formalism for these experts.

During Documentation the main application’s features are described by means

of a set of application documents. These documents will be marked up with the

DSML provided during the DSML Provision activity. As presented above, this

activity is facilitated by the documental nature of the representation and also by

the descriptive and application-oriented nature of the DSML. Actually, domain

experts are able to comprehend this representation and to author it. Although the

use of markup-oriented or even DSML-oriented editors can contribute to making

2nd Reading
December 27, 2005 17:42 WSPC/117-ijseke 00263

Document-Oriented Development of Content-Intensive Applications 985

Application

Document

Repository of

DSMLs

DSML for subway’s travel

recommendation applications

Operacionalization

DSML

provision
Application

Documentation

Travel recommendation

Application for the

Subway of Madrid

Processor for the generation

of travel recommendation

applications

Application

Production

<Subway>

 <Network>

 <Structure>

 <Stations>

 <Station id="CONGOSTO">Congosto</Station>

 <Station id="VVALLECAS">

 Villa de Vallecas</Station>

 ...

<!ELEMENT Subway (Network,UserInterface)>

<!ELEMENT Network (Structure,Dynamics)>

<!ELEMENT Structure (Stations,Lines)>

<!ELEMENT Stations (Station)+>

<!ELEMENT Station (#PCDATA)>

<!ATTLIST Station id ID #REQUIRED>

...

Fig. 7. Exemplification of the activities and products in the development of the travel recom-
mendation application for the subway of Madrid (Spain).

this task easier for experts, we have realized that in some domains they are able to

do it without any specific edition support [4]. This is a direct consequence of the

commitment to the comprehensibility requirement.

The goal of Operationalization is to provide an appropriate processor for the

application DSML. This processor will be used to produce the application from the

application documents during the Application Production activity.

In Fig. 7, the activities and products for the development of the travel rec-

ommendation application for the subway of Madrid are illustrated. Therefore, the

DSML provision activity yields the DSML for subway’s travel recommendation

applications defined by the DTD of Fig. 5(a). In this DSML several potentially

reusable sublanguages can be identified (e.g., the DSML for describing subway net-

works, and, within this, the smaller DSMLs for describing the network’s structure

and dynamics). All these sublanguages can be stored in the repository of DSMLs

and reused in the development of other applications in this domain. In turn, the

Documentation activity produces an application document like the one outlined in

Fig. 5(b). During the Operationalization activity a processor for the subway’s DSML

2nd Reading
December 27, 2005 17:42 WSPC/117-ijseke 00263

986 J. L. Sierra et al.

is built, and the application itself is produced during the Application Production

activity by processing the application document with this processor.

3.2. Sequencing of the activities

The development of content-intensive applications is iterative and incremental in

nature, as we have shown in Sec. 2. In effect, during the application’s life cycle

new contents can be added, the existing contents can be refined, and the other

applications’ features can be fine-tuned. In these iterations new markup needs for

the application documents that are not contemplated in the application DSML can

be discovered. Thus, this DSML must evolve to accommodate these new markup

needs. In turn, this evolution must also be mirrored in an evolution of its associated

processor.

DSML
Provision

[needs for changes
in the DSML]

Documentation

Operationalization [document
ready to be
processed]

[application
acepted]

[needs for
application
modification]

Application
Production

Fig. 8. Sequencing of the document-oriented development activities.

The iterative and incremental nature of the document-oriented development is

made explicit in Fig. 8, where the sequencing of the activities identified in Sec. 3.1 is

represented. The process starts with the provision of the application DSML. Then,

the initial documentation of the main application’s features and the processor for

the DSML is provided, and an initial version of the application is delivered. Next

the development proceeds iteratively until a satisfactory application is achieved.

Iterations can typically be (Fig. 9):

• Maintenance iterations (Fig. 9(a)). These iterations involve the production of an

application which is evaluated by domain experts. Consequently these experts can

discover different aspects to be improved and/or completed. Then they proceed

to refine the application documents. As a result a new enhanced application

is produced. For instance, in the subway example, a preliminary subset of the

subway network can be initially documented, in order to provide a first working

2nd Reading
December 27, 2005 17:42 WSPC/117-ijseke 00263

Document-Oriented Development of Content-Intensive Applications 987

DocumentationApplication
Production

Application
Production

OperationalizationApplication
Production

Application
Production

Documentation

Operationalitation

Application
Production

(a)

(b)

DocumentationApplication
Production

DSML
Provision

(c)

Fig. 9. (a) A maintenance iteration, (b) a corrective iteration, (c) an evolutive iteration.

prototype of the final application. Next, this documentation can be completed

to deal with the overall network, and, then, in a third iteration the properties

of the user interface can be fine-tuned. New maintenance iterations may arise

during application exploitation when the network changes (for instance, due to

the addition of a new station or a new line).

• Corrective iterations (Fig. 9(b)). During application production an unexpected

behavior can be discovered in the application that cannot be attributed to its

documentation. This manifests a bug or an aspect to be improved in the DSML’s

processor that must be corrected by developers. Once the bug is fixed, the ap-

plication can be produced again. For instance, when the travel recommendation

application for a real-size network is produced, extremely long response times

for the route calculations might be observed. These response times may demand

the definition of a better search strategy that could be integrated in a corrective

iteration.

• Evolutive iterations (Fig. 9(c)). These iterations involve evolutions of the

application DSML and its associated processor. During the running of the

Documentation activity in a usual maintenance iteration new markup needs not

covered by the current DSML can be discovered. Such needs may be due to a

refinement in the structure of an application document, or the inclusion of new

elements into these documents to take new features into account. Consequently,

the DSML must be extended in order to contemplate the new markup needs (i.e.,

the DSML evolves). Next the application documents can be refined using the new

markup, and also the processor must be extended to deal with this markup. In

the subway example, the DSML can evolve to include new structural elements

in the networks (e.g., corridors) together with their associated dynamics. An-

other example of evolution is the inclusion of different user interface styles (e.g.,

evolution from a simple console-based user interface to a graphic one).

Therefore, in the document-oriented development, not only the application doc-

uments, but also the application DSML and the DSML’s processor are objects of

2nd Reading
December 27, 2005 17:42 WSPC/117-ijseke 00263

988 J. L. Sierra et al.

produce and
maintain the
documents

DSML Provision

Developers

provide the
DSML

Documentation

Operationalization
Domain
experts

help

- produce the initial
documents
- help domain experts
- identify new markup

needs

provide the
processor

Application
Production

evaluate evaluate

help

Fig. 10. Actors in the document-oriented development and their roles in the activities.

evolution. The evolutionary nature of DSMLs palliates the high initial costs of their

formulation and operationalization. Besides, these costs can pay off along the de-

velopment of new related applications. More importantly, this also improves the

comprehensibility of these DSMLs, because the inclusion of very general or sophis-

ticated descriptive artifacts in the languages is avoided. Nevertheless, the evolution

of the DSMLs and their processors must be adequately managed. This can be done

by adopting standard techniques for the systematic definition of languages and

their processors [13–15] as well as for the modular construction of these processors

[16–18]. For this purpose, we have used a modularization technique for the definition

of DTDs in the style of that described in [19]. The details can be found in [20]. We

have also formulated an operationalization model for the incremental construction

of processors that is also described in [20].b

3.3. Actors and their role in the activities

The document-oriented development of content-intensive applications actively in-

volves both domain experts and developers as indicated in Sec. 2. These actors

collaborate in the whole process to produce the different products contemplated

in Sec. 3.1. Therefore, they participate in all the activities, playing different roles.

This participation, which is depicted in Fig. 10, can be summarized as follows:

• During the DSML provision activity the main role of the developers is to formalize

the DSML as a document grammar. In this task, they are advised by the domain

bAn earlier version can be found in [8] and a more updated summary in [21].

2nd Reading
December 27, 2005 17:42 WSPC/117-ijseke 00263

Document-Oriented Development of Content-Intensive Applications 989

experts. The comprehensibility of the final DSML will strongly depend on this

advice. Since domain experts know the application domain, they can present to

the developers the kind of documents managed in this domain, and they can help

them in the elicitation of the structure of these documents and of the terms used

to refer to this structure (i.e., of the markup vocabulary).

• A similar scenario occurs during the Operationalization activity. This time the

developers construct a processor for the DSML (i.e., they formalize a suitable

operational meaning added to the descriptive markup). This processor will entail

operations regarding the application domain that, in turn, will be clarified by the

domain experts. Thus, participation of domain experts during Operationalization

is also mandatory.

• During the Documentation activity, domain experts and developers collaborate in

describing the application’s features by creating and marking up the application

documents. Drafts of these documents can be initially produced and marked up

by the developers, but due to the comprehensibility of the application DSML,

these can be subsequently understood and modified by domain experts. In addi-

tion, developers can help domain experts in understanding and using this DSML.

Finally, they can also detect the new markup needs manifested by experts. The

consequence of this detection is a new evolutive iteration.

• During Application production both experts and developers evaluate the ap-

plication produced. While domain experts are able to validate the application

against the functional requirements, developers can judge its adequacy to the

non-functional ones (e.g., a bad response time in path calculation). The defects

detected by domain experts usually start maintenance iterations, while those

detected by developers lead to corrective ones.

4. Related Work

Our document-oriented development shares some features with literate

programming [22, 23]. The literate programming paradigm, originally proposed by

Knuth [22], enhances the comprehensibility of the programs by identifying these

with their documentation. In literate programming, a hypertextual representation

of the program code is promoted, which is interleaved with its documentation. The

result (a web) is a narration of the program, in the same way that the program

would be presented in a programming textbook. These documents are marked up

for enabling both the assembling of working programs (tangling) and the production

of documentation printouts (webbing). The ideas described in this paper differ from

those of literate programming, because in our approach only the high level aspects

of the main applications’ features, but not the code of the programs implement-

ing these applications, are documented and marked up. In our document-oriented

approach documents are to be comprehended and authored by domain experts in-

stead of by developers. The code itself is implicitly contained in the processor for

the DSML used in the markup, in the same way that the assembler code for the

2nd Reading
December 27, 2005 17:42 WSPC/117-ijseke 00263

990 J. L. Sierra et al.

programs in a high-level programming language is contained in the compiler for

this language. Because of this, in our work, suitable DSMLs are provided for each

application domain or family of applications instead of using a fixed markup lan-

guage, as in literate programming. Notice that processors themselves could be doc-

umented to enhance their comprehensibility by developers. In [8] we propose an

initiative in this direction, where processors are documented following an elucida-

tive style [24].

HyTime [25], an SGML extension for the description of hypermedia applica-

tions, demonstrated that in some domains, descriptive markup languages could be

used for describing applications in terms of documents, and the applications de-

scribed could be generated by processing these documents. XML and its related

technologies have generalized the use of descriptive markup languages as a stan-

dard way of information interchange between applications and for many other uses.

Whilst in almost all these approaches markup languages are pre-established, we

have adopted a more dynamic approach, where markup languages are designed and

evolve according to the markup needs of domain experts and developers.

Our work also shares many features with the approach to software development

based on Domain-Specific Languages (DSLs [26, 27]). A pioneering work in the ap-

plication of SGML/XML for the definition of DSLs is [28]. In [29] the relationships

between markup languages and the DSL approach are highlighted. In [30] a com-

prehensive work about using XML technologies to implement the DSL approach is

detailed. Although these works recognize the potentiality of markup metalanguages

as a vehicle for defining DSLs, the stress is put on their use to formalize abstract

syntax, instead of on their use as descriptive markup (meta) languages. The Jargons

approach [31, 32] is similar to our work. In Jargons, DSLs are directly formulated,

and even operationalized (using a scripting language), by domain experts. While

the conception of this author-driven design of DSLs is consistent with our work,

we consider it unrealistic to assign language design and operationalization respon-

sibilities to domain experts. Instead, a community of developers is involved for this

purpose. Generative programming [33] in general, and DSLs in particular, have been

identified in [34] as complementary to program comprehension [1]. In [35] DSLs are

proposed as a natural choice to express the result of the comprehension process.

The document-oriented development described in this paper was formerly sug-

gested in [36, 37] as a vehicle to improve the production and maintenance of ed-

ucational applications, and was consolidated after several experiences in the de-

velopment of content-intensive applications in different domains. The work in [4]

provides information about the application of the approach in the development of

educational applications for the comprehension of texts written in a foreign lan-

guage similar to that of the student’s mother tongue. In [12, 38] a naive version

of the approach is used in the broader field of hypermedia domain. In [39] the

approach is proposed for the development of knowledge-based systems. The pro-

cess model for the document-oriented development described in this paper is based

on [8].

2nd Reading
December 27, 2005 17:42 WSPC/117-ijseke 00263

Document-Oriented Development of Content-Intensive Applications 991

5. Conclusions and Future Work

This paper proposes to improve the production and maintenance of content-

intensive applications using a document-oriented development approach. According

to this approach, the main features of these applications are described by means

of documents marked with application-specific DSMLs. Using these languages, do-

main experts can comprehend, produce and maintain the representations of the

main features of content-intensive applications. In addition, in our approach, ap-

plications are produced by processing these marked documents with processors for

the DSMLs used. We have successfully applied this approach in the development

of educational and hypermedia applications, and also in the development of knowl-

edge based systems. In this paper we systematize and generalize the approach with

the formulation of a process model that promotes the iterative and incremental

provision of both the applications and of the DSMLs and their processors.

Document-oriented development facilitates the maintenance and tuning up of

content-intensive applications, because their main features can be described in

terms of readable and editable documents, comprehensible by domain experts and

developers. The approach also facilitates the reuse of the contents, because well-

known markup standards (e.g., XML) can be used in the production of the docu-

ments describing them. This facet is especially relevant for content-intensive appli-

cations, where the representation of the contents in portable and standard formats

is critical in order to extend their life cycles.

Our process model promotes an incremental formulation and operationalization

of DSMLs. This helps to palliate the costs associated with these activities, because

these costs can pay off during the development of more than one application in

a given domain. This also provides the flexibility required by the development

of complex applications, because the DSMLs can be extended when new markup

needs are discovered. Finally, this feature also enhances the comprehensibility of

the DSMLs by domain experts, because it avoids the inclusion of very general or

complex markup structures.

Current work is oriented towards improving the pragmatic applicability of our

document-oriented development process model by using it on several projects in the

domain of distributed e-learning systems. With this work we hope to achieve further

refinements and improvements in our approach. In addition, we are interested in a

better characterization of the authoring problems in this process model, not only

in the Documentation activity, but also in all the others. Finally, as future work, we

are considering the experimentation with ways to enhance the comprehensibility of

DSMLs’ processors by developers in order to improve their production and main-

tenance. For this purpose we want to experiment with the definition of the DSMLs

and their processors using object-oriented attributed grammars [15].

Acknowledgements

The Spanish Committee of Science and Technology (TIC2001-1462, TIC2002-

04067-C03-02 and TIN2004-08367-C02-02) has supported this work.

2nd Reading
December 27, 2005 17:42 WSPC/117-ijseke 00263

992 J. L. Sierra et al.

References

1. A. von Mayrhauser and A. M. Vans, Program understanding: models and experiments,
Advances in Computers 40 (1995) 1–38.

2. P. Fraternali, Tools and approaches for developing data intensive web applications: A
survey, ACM Computing Surveys 3 (1999) 227–263.

3. N. Juristo and J. Pazos, Towards a joint life cycle for software and knowledge engi-
neering, IFIP Transactions A-27 (1993) 119–138.

4. A. Fernández-Valmayor, C. López-Alonso, A. Séré, and B. Fernández-Manjón,
Integrating an interactive learning paradigm for foreign language text comprehen-
sion into a flexible hypermedia system, in Proc. International Working Conference on

Building University Electronic Educational Environments, IFIP WG3.2 and WG 3.6,
Irvine, CA, 1999.

5. C. F. Goldfarb, A generalized approach to document markup, ACM SIGPLAN Notices

16(6) (1981) 68–73.
6. J. H. Coombs, A. H. Renear, and S. J. DeRose, Markup systems and the future of

scholarly text processing, Commun. ACM 30(11) (1987) 933–947.
7. C. F. Goldfarb, The SGML Handbook (Oxford University Press, Oxford, UK, 1990).
8. J. L. Sierra, A. Fernández-Valmayor, B. Fernández-Manjón, and A. Navarro, ADDS:

A document-oriented approach for application development, Journal of Universal

Computer Science 10(9) (2004) 1302–1324.
9. D. Lee and W. W. Chu, Comparative analysis of six XML schema languages, ACM

SIGMOD Record 29(3) (2000).
10. International Standards Organization ISO, Standard Generalized Markup Language

(SGML) (ISO/IEC IS 8879, 1986).
11. T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler (eds.), Extensible Markup

Language (XML) 1.0 (Second Edition) (W3C Recommendation, 2000).
12. A. Navarro, B. Fernández-Manjón, A. Fernández-Valmayor, and J. L. Sierra, The

plumbingXJ approach for fast prototyping of web applications, Journal of Digital

Information 5(2) (2004).
13. D. E. Knuth, Semantics of context-free languages, Mathematical Systems Theory 2(2)

(1968) 127–145.
14. A. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques and Tools

(Addison-Wesley, MA, 1986).
15. J. Paakki, Attribute grammar paradigms — A high-level methodology in language

implementation, ACM Computing Surveys 27(2) (1995) 196–255.
16. U. Kastens and W. M. Waite, Modularity and reusability in attribute grammars, Acta

Informatica 31(7) (1994) 601–627.
17. S. Liang, P. Hudak, and M. P. Jones, Monad transformers and modular interpreters, in

Proc. 22nd ACM Symposium on Principles of Programming Languages, San Francisco,
CA, 1995.

18. D. Duggan, A mixing-based semantics-based approach to reusing domain-specific
programming languages, in Proc. 14th European Conference on Object-Oriented

Programming (ECOOP’2000), Cannes, France, 2000.
19. M. Altheim, F. Boumphrey, S. Dooley, S. McCarron, S. Schnitzenbaumer, and

T. Wugofski (eds.), Modularization of XHTML (W3C Recommendation, 2001).
20. J. L. Sierra, Towards a Document-Oriented Paradigm for Application Development

(PhD Thesis — in Spanish, Universidad Complutense, Madrid, Spain, 2004).
21. J. L. Sierra, B. Fernández-Manjón, A. Fernández-Valmayor, and A. Navarro,

Document-oriented software construction based on domain-specific markup languages,
in Proc. International Conference on Information Technology: Computing and Coding

2nd Reading
December 27, 2005 17:42 WSPC/117-ijseke 00263

Document-Oriented Development of Content-Intensive Applications 993

(ITCC’05), Las Vegas, 2005.
22. D. E. Knuth, Literate programming, Computer Journal 27(1) (1984) 97–111.
23. D. Cordes and M. Brown, The literate programming paradigm, IEEE Computer 24(6)

(1991) 52–61.
24. K. Nømark, Requirements for an elucidative programming environment, in Proc.

8th International IEEE Workshop on Program Comprehension IWPC’00, Limerick,
Ireland, 2000.

25. International Standards Organization ISO, Hypermedia/Time-based Structuring
Language (HyTime) – 2nd Edition (ISO/IEC 10744, 1997).

26. P. Hudak, Domain-specific languages, in Handbook of Programming Languages

Vol. III: Little Languages and Tools, ed. P. H. Salus (Macmillan Technical Publishing,
Indianapolis, 1998), pp. 39–60.

27. A. van Deursen, P. Klint, and J. Visser, Domain-specific languages: An annotated

bibliography, ACM SIGPLAN Notices 35(6) (2000) 26–36.
28. M. Fuchs, Domain specific languages for ad hoc distributed applications, in Proc.

First USENIX Conference on Domain Specific Languages, USENIX, Santa Barbara,
1997.

29. P. Wadler, The next 700 markup languages, Invited Talk at the Second USENIX

Conference on Domain Specific Languages, USENIX, Austin, Texas, USA, 1999.
30. J. C. Cleaveland, Program Generators with XML and Java (Prentice-Hall, Englewood

Cliffs, 2001).
31. L. H. Nakatani and M. Jones, Jargons and infocentrism, in Proc. First ACM

SIGPLAN Workshop on Domain-Specific Languages (DSL’97), Paris, France, 1997.
32. L. H. Nakatani, M. A. Ardis, R. G. Olsen, and P. M. Pontrelli, Jargons for domain engi-

neering, in Proc. First USENIX Conference on Domain Specific Languages, USENIX,
Santa Barbara, 1997.

33. K. Czarnecki and U. Eisenecker, Generative Programming: Methods, Techniques and

Applications (Addison-Wesley, New York, 2000).
34. D. Batory, Program comprehension in generative programming: A history of grand

challenges, in Proc. 12th IEEE International Workshop on Program Comprehension

(IWPC’04), Bari, Italy, 2004.
35. T. Bull, Comprehension of safety-critical systems using domain-specific languages,

in Proc. 4th IEEE International Workshop on Program Comprehension (IWPC’96),
Berlin, Germany, 1996.

36. B. Fernández-Manjón, A. Fernández-Valmayor, and A. Navarro, Extending web
educational applications via SGML structuring and content-based capabilities, in
Proc. IFIP Internatinal Conference the Virtual Campus: Trends for Higher Education

and Training, Madrid, Spain, 1997.
37. B. Fernández-Manjón and A. Fernández-Valmayor, Improving world wide web educa-

tional uses promoting hypertext and standard general markup languages, Education

and Information Technologies 2(3) (1997) 193–206.
38. A. Navarro, A. Fernández-Valmayor, B. Fernández-Manjón, and J. L. Sierra,

Conceptualization prototyping and process of hypermedia applications, Int. J. Soft-

ware Engineering and Knowledge Engineering 14(6) (2004) 565–602.
39. J. L. Sierra, B. Fernández-Manjón, A. Fernández-Valmayor, and A. Navarro, A

document-oriented approach to the development of knowledge-based systems, in Cur-

rent Topics in Artificial Intelligence, eds. R. Conejo, M. Urretavizcaya and J. L.
Pérez-de-la-Cruz, LNAI 2040 (Springer, Berlin, 2004), pp. 16–25.

