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Abstract Although serious games are proven to serve as educational tools in many educational
domains, there is a lack of reliable, automated and repeatable methodologies that measure their
effectiveness: what do players know after playing serious games? Do they learn from them?
Previous research shows that the vast majority of serious games are assessed by using question-
naires, which is in stark contrast to current trends in the video game industry. Commercial
videogame developers have been learning from their players through Game Analytics for years
via non-disruptive game tracking. In this paper, we propose a methodology for assessing serious
game effectiveness based on non-disruptive in-game tracking. The methodology involves a
design pattern that structures the delivery of educational goals through a game. This structure
also allows one to infer learning outcomes for each individual player, which, when aggregated,
determine the effectiveness of a serious game. We tested the methodology by having 320
students play a serious game. The proposed methodology allowed us to infer players’ learning
outcomes, to assess the game effectiveness levels and to identify issues in the game design.

Keywords Serious games . Learning analytics . Game design . Learning outcomes analysis .

Educational games

1 Introduction

Serious games are video games designed for purposes beyond pure entertainment [25]. Serious
games aremultimedia tools by nature. As a subfamily of videogames, they combine different forms
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of media (animations, music, text, etc.) to create immersive experiences for players. Their
versatility allows them to be used as tools with many applications in different domains. One of
the main applications is education, whereby they have become proven learning tools: they are used
across several domains with multiple goals and formats, and their acceptance and effectiveness has
almost always proven positive [10, 39]. Traditionally, a large percentage of serious games has been
both developed and deployed by educational researchers, limiting their scope and reach. This trend
is beginning to change. Currently, the widespread use of Virtual Learning Environments (VLE) has
allowed for the application of serious games at unprecedented scales. To reach their full potential,
serious games should apply the latest advances in education and commercial videogames [26].

On-line education has increased exponentially in recent years, and many students now learn
through Internet-connected devices. This has vastly increased the amount of educational data
available for analysis. Disciplines such as Learning Analytics (LA) or Educational Data
Mining (EDM) study patterns of student interactions to better understand underlying learning
processes [7, 16]. This information can be used by different stakeholders for various purposes:
from university administrators calculating dropout rates for each class to teachers identifying
students at risk of course failure [18].

Serious games (and video games in general) are particularly well suited for data analysis.
Their highly interactive nature based on a constant loop of user input followed by game
feedback designates them as rich sources of interaction data. These interactions can be analysed
to explore how users play and in the case of serious games to understand how users learn.

The video game industry has been performing these types of analyses on commercial
games for years via Game Analytics (GA) [17]. One of the main uses of GA is to measure
balance in gameplay: a balanced video game is one that keeps its players in the flow zone, a
state wherein the player feels challenged by the game but is neither bored nor frustrated [8].
GA is used to locate points of gameplay at which players become stuck or quit as well as
moments at which a game’s mechanics or internal rules fall short. GA is also used to identify
clues on ways to fix these problems.

Commercial video games typically non-disruptively collect data from their players through
tracking systems that go unnoticed by players [36]. However, according to the literature [5],
aspects of serious games are typically assessed through questionnaires completed by players.
There is a clear need to combine the emerging disciplines of LA and EDMwith the non-disruptive
techniques of GA to generate reliable, automated and repeatable assessments of serious games.

Serious game assessments can focus on many outcomes, such as usability, engagement or
motivation. However, the learning outcomes are the results most stakeholders wish to obtain
from serious games [1]. Learning outcomes have also been the results most frequently assessed
when examining recently developed serious games [5], and some authors even believe that
such outcomes could be used to replace standardized tests [3]. However, multiple issues with
serious games must first be addressed. One pertains to a lack of methods available to assess
serious game effectiveness [40]: teachers, lecturers and policy-makers need to guarantee that
serious games are effective enough to be used in the classroom. In this regard, the application
of GA techniques to serious games can provide stakeholders with objective and reliable data.

In this paper, we propose a methodology for inferring learning outcomes and serious game
effectiveness based on non-disruptive tracking. The methodology targets two different phases
in the life of a serious game: 1) its design and implementation, for which we propose a game-
design pattern to shape the delivery of educational content throughout a game, and 2) its
validation and deployment, for which we propose an analysis based on the game-design
pattern to infer learning outcomes and game effectiveness levels.
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The paper is structured as follows. Section 2 presents a literature review of serious game
assessment methods. Section 3 presents the methodology proposed, and section 4 describes an
experimental case study in which the methodology was applied. Section 5 presents the results
of the case study, which are then discussed in Section 6. Finally, Section 7 presents our
conclusions, some limitations, and avenues for future work.

2 Serious game assessment

Although questionnaires are most commonly used to assess serious games [5], several authors
have addressed the implications of using non-disruptive tracking methods for this task.
Authors have proposed a set of minimum requirements to enable the automatic assessment
of serious games [32] and have addressed the game design implications of combining learning
analytics with serious games [20]. The ADAGE project [34] is a framework that defines
several Bassessment mechanics^ that capture basic gameplay progression and critical achieve-
ments. Similarly, we have previously proposed a set of universal Btraces^ of particular interest
in the case of serious games that can be emitted through any video game [37].

Other authors have implemented their own ad-hoc analytics, for instance, to analyse
players’ steps taken while completing a math puzzle to predict their movements based on
current game states [24], to assess learning outcomes by analysing answers to quizzes
integrated in a game [15], and to analyse how players progress through learning-language
courses to create rich visualizations for teachers [41].

We note that serious game designers must take into account analytics and assessment
constraints from a game’s inception and throughout the design phase [32]. Many authors have
defined methodologies and guides for designing serious games [3, 11, 12, 14, 30]. However,
this body of research proposes methodologies that are applicable to any analytics-aware video
game, serious or not. In particular, these works do not typically address key serious game
features, such as ways to deliver knowledge and educational content through gameplay or
ways to infer corresponding learning outcomes. Some work has started to explore these issues,
proposing a taxonomy of possible elements that a serious game should include to be more
effective [6].

To summarize, we found research that describes effective analytics-aware serious game
design, but which lacks reference to concrete methodologies for inferring learning outcomes.
On the other hand, some works have proposed ways to analyse serious game learning
outcomes either via general frameworks or ad-hoc analysis, but without addressing the
implications of such assessments for game design. We propose combining both approaches
in defining a methodology that tackles all phases of serious game development: from game
design and implementation to deployment and learning outcome analysis.

3 Proposed methodology

Our methodology pursues two goals: 1) to ease the measurement of serious game learning
outcomes and 2) to provide a systematic way to assess the effectiveness of serious games as a
whole. To achieve these goals, our approach covers the complete lifecycle of a serious game
(Fig. 1). The process starts in the design phase, when the learning goals and target population
forms the basis for creating a learning and game design. The combination of these designs is
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used to create the game, which is then validated through a formative evaluation with a sample
of the target population. This process is repeated until the game is fully validated. The game
can then be used by the target population (deployment). In the following subsections, we
describe each step of the process in greater detail.

3.1 Design and implementation

Within the context of our methodology, we define Blearning design^ as the transformation of
learning goals into game mechanics and learning outcomes observables based on characteris-
tics of the target population.

The chosen game mechanics should fulfil two requirements: 1) they should be appropriate
for the learning goal content based on models, such as that presented in [4], in which learning
mechanics are mapped to game mechanics; 2) gameplay from players should produce learning
outcome observables (also termed events) that attest to the players’ knowledge or level of skill.

During game design, these constraints, along with many other considerations for a given
game (such as art styles, storytelling or technologies) shape the creation of a serious game.
Additionally, during this phase, designers must define how a serious game should scaffold the
delivery of learning goals. Although there are few concrete methodologies that translate
educational theories into game design aspects [23], some authors have proposed models that
describe the learning processes of videogames. For instance, in the serious games domain,
Kiili proposes the experiential gaming model [22] and problem-based learning [23], both of

Fig. 1 Serious game design and deployment process with zlearning outcomes assessment
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which are based on an iterative process through which players form a strategy, experiment in
the game world, receive feedback, and reflect on the results. In the commercial videogames
domain, similar proposals have been made to split experimentation in two sub-steps: exper-
imentation in a Bsafe game environment^, whereby the level of the difficulty of the challenge
to overcome is low and mistakes are not punished, and experimentation in an Bunsafe game
environment^, where the level of the difficulty is higher and mistakes are punished (e.g., losing
game lives, coins, score levels, etc.) [33].

For the purposes of our methodology, we have combined and extended these principles into
a game design pattern that also considers learning outcome observables. Each learning goal is
presented to players throughout 3 phases based on 2 points of non-disruptive measurement
(Fig. 2):

1) Strategy: Players are first introduced to the learning goal. This can involve
knowledge they might need in subsequent steps as well as concrete instructions
on how to interact with the game world (e.g., through non-interactive scenes or
game tutorials). The player receives information on the challenge behind the
learning goal and can start identifying ways to tackle the challenge. The strategy
phase is similar to initial exposition plus exploration behaviours that are very
common of games.

2) Practice: players start to apply the knowledge presented in the previous phase.
This practice must occur in a game environment in which players^ mistakes have
either no consequence at all or only mildly adverse consequences (Bsafe game
environment^). This experimentation must be designed in such a way that players
can make deductions and test hypotheses on both the knowledge presented in the
previous phase and on the game’s mechanics. In this phase, students test and
practice their strategies. Strategies that work better will later be refined by the
player during the mastery phase.

During this phase, players apply knowledge associated with the current learn-
ing goal for the first time. This allows us to collect initial observables from
which their initial knowledge can be estimated.

3) Mastery: players are required to prove that they have acquired the intended knowledge
while facing challenges similar to those presented in the practice phase, but with increas-
ing difficulty and higher in-game consequences (Bunsafe game environment^).

During this phase, players prove the degree to which they have acquired the targeted
skill or knowledge. We can in turn collect final observables that allow us to measure their
final progression towards a learning goal.

Fig. 2 Game design pattern phases. The phases would be repeated for each sub-goal. Observables are emitted
during the practice and mastery phases
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These three phases can be iterated to deliver multiple learning goals or to deliver a single
goal with increasing difficulty while adding a new related concept or skill during each cycle.
Additionally, this game pattern optimizes the period in which players occupy the flow zone [8],
as it alternates phases in which players learn new things in a safe environment (practice) with
phases in which they are challenged to prove their skills (mastery) and through an incremental
approach to prevent frustration.

3.2 Collecting observables

Players perform different interactions to advance in a game: they make choices, resolve
puzzles, beat bosses, and so on. These events are the core observables on which we perform
our learning outcomes analysis. The following principles (many of them shared with general
GA) facilitate this analysis:

1. Observables should result in time-stamped events that describe simple interactions be-
tween the player and the game [37]. These events should be sent to a central server where
all player interactions are stored for later access and analysis.

2. Events sent to the server should be raw interactions rather than opaque scores [37, 38]. For
instance, if the mastery phase involves two puzzles, the events to transmit would be the
interactions performed to resolve the two puzzles rather than a combined score of the final
result. This ensures flexibility, as scores can be later recalculated from interaction data if
the subsequent analysis reveals a need to do so.

3. Data collection should be as non-disruptive as possible during gameplay. Ideally,
game flow should never be interrupted to collect data – players should not be
explicitly asked to stop their play to pass an exam or to answer questions not
integrated in the gameplay.

Once all interaction events are stored in a central location, analysis can begin.

3.3 Learning outcome analysis

We store all gameplay interaction events on a single server. Following our design pattern, each
interaction is associated with a learning phase (strategy, practice or mastery) of a specific
learning goal. Interactions from the strategy phase are not used to infer learning outcomes (as
this phase should only contextualize the learning goal). By analysing interactions from the
other two phases, we can calculate two assessment scores:

1. Initial assessment (IA) using initial observables of the practice phase. IA estimates the
learner’s initial level of knowledge. A high value denotes that the player likely possessed
the targeted knowledge before starting to play while a low value denotes the opposite.

2. Final assessment (FA) using final observables of the mastery phase. FA estimates the
learning outcome. A high value denotes that the player achieved the learning goal while a
low value denotes his or her failure to do so.

The specific steps used to transform events into IA and FAwill be different for each serious
game. However, they can generally be expressed through formulas that combine data from
each interaction. In section 4, we provide details on this process through a real case study.
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We define two assessment thresholds: an initial threshold (IT) associated with the
IA, and a final threshold (FT) associated with the FA. These thresholds are used to
determine whether a phase is successfully accomplished or not. For instance, when
FA’s value ranges from 0 to 1, a possible value for FT could be 0.5, and so we
assume that a player achieving an FA value of equal to or greater than 0.5 has
successfully completed the mastery phase.

For serious games that include multiple learning goals, we can calculate their global IA and
FA values using a weighted average while combining the results of each learning goal: for a
game with N educational goals, each with two assessments (IAi, FAi), two thresholds (ITi, FTi)
and a weight (Wi), we can calculate the global assessment value (A) of the initial and final
assessments as:

A ¼ ∑N
i¼1Ai �Wi

∑N
i¼1Wi

and the global threshold value (T) for the initial and final thresholds as:

T ¼ ∑N
i¼1Ti �Wi

∑N
i¼1Ti

With these values, we can now estimate learning outcomes and assess serious game
effectiveness levels.

3.3.1 Inferring players’ learning outcomes

The analysis of observables or signals provides two measures for each learning goal: FA and
IA. With these values, we can measure two concrete learning outcomes:

& FA as the player’s final score: We can use FA as a score or mark for players when they are
considered as students (essentially scoring what they know after playing the game).
We must avoid using IA to calculate this marker. Although it represents a player^s
level of knowledge, using it to calculate final marks would be unfair, as IA takes
into account mistakes made during the practice phase while a fair grade should
only consider what students know at the end of the game and not what they
initially ignored.

& The difference between accomplishments in the practice and mastery phases as game
effectiveness: If we compare IA and FA to their respective thresholds (IT and FT), we can
determine whether a player has succeeded in the practice and mastery phase. A game is
most effective when players who failed in the practice phase ended up succeeding in the
mastery phase, as this denotes a knowledge gain. This difference forms the base from
which we calculate serious game effectiveness.

3.3.2 Assessing serious game effectiveness

Within the context of our methodology, we assume that a serious game is effective when we
find a positive change in the player’s knowledge level. We can determine this change from IA
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and FA with respect to IT and FT. From these values, we can classify each player into a
different learning category:

& When FA ≥ FT, the players have successfully completed the mastery phase and have
acquired the targeted skill. Depending on the IA value, we can classify players as either:

– Learners, when IA < IT: players committed errors during the practice phase, indicating
that they did not possess the targeted skill or knowledge before playing the game.
However, they ended up being successful in the master phase, suggesting an educa-
tional gain during gameplay.

– Masters, when IA ≥ IT: the players did not commit errors during the practice phase,
indicating that they likely already possessed the skill or knowledge before playing the
game.

& When FA < FT, the players failed the mastery phase and do not possess the targeted skill.
Depending on the IA value, we can classify players into two different categories:

– Non-Learners, when IA < IT: the players also failed the practice phase, indicating that
they struggled throughout the game with potentially little or no benefit.

– Outliers, when IA ≥ IT: the players succeeded during the practice phase but were
unable to apply the acquired knowledge in the mastery phase.

We determine serious game effectiveness by classifying each gameplay session according
to these criteria and by then comparing the total number of players in each category.

When the majority of players are learners, the game is considered highly effective: most
players learned something while playing. When the majority are masters, the game is considered
to have no learning effect, as most of the players had already possessed the targeted knowledge
before playing the game.When the majority are non-learners, the game is considered not effective
at all, as most of the players were unable to achieve success at any phase. Finally, a majority of
outliers denotes that a game and/or the chosen FA and IA formulas likely present design flaws.

It is important to note that most serious games will output different results for different
populations. A serious game could be highly effective for children of 10 to 12 years of age and
not effective at all for children aged 7 to 9 years. The key is to have a well-defined target
population during the design of a serious game and to follow a validation process to ensure that
effectiveness goals are met.

3.4 Validation and deployment

After applying a serious game along with infrastructure to track its observables in relation to a
learning outcomes analysis, we must to validate it.

During the validation phase, domain experts and ideally a sample of the target population
play a serious game and engage in gameplay that is later assessed through a learning outcomes
analysis, yielding preliminary results through a process typically referred to as formative
evaluation [19]. This process is iterative and designed to detect ways to fix, polish, tweak or
improve a serious game that can range from changing the game mechanics of a learning goal
(e.g., when preliminary results suggest low performance) to altering how FA and IA are
calculated (e.g., when experimental results contradict certain game design hypotheses).
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Once a game is validated, it can be used in production for final deployment. In this final
phase, the serious game and its learning outcomes analysis results are used to assess students
that play it (final evaluation).

4 Case study

In the above sections, we presented our methodology for modelling and inferring learning
outcomes and effectiveness in serious games. This section describes a case study that illustrates
how this methodology works when applied. The case study is based on the following research
questions:

RQ1. What are the implications of using our game-design pattern during the design and
implementation of a serious game?

RQ2. What results in regards to learning outcomes and effectiveness levels can be obtained
from a serious game developed and analysed through this methodology?

To answer these questions, we used the proposed methodology to implement and
analyse BThe Foolish Lady ,̂ a serious game1 based on the homonymous theatre play
by Spanish playwright Lope de Vega. In this game, players are presented with several
language-related and literature challenges. Its main learning goal is to teach high
school students about Spanish Golden Century poetry. In the following subsections,
we describe the design and implementation process, the data collection and analysis
process, and the results of an experiment on 320 high school students who played the
game.

4.1 Design and implementation

BThe Foolish Lady^ serious game [27, 28] is an adventure game based on a classical Spanish
play. In the game, players advance through scenes of the play by making decisions that affect
the overall storyline and final scene. Along the way, they are presented with puzzles and mini-
games in which they must apply their knowledge on language and literature. The game is
designed to be completed within 30 to 40 min.

One of its main learning goals is to teach poetry structure and rhymes, in
particular, Bredondilla^, a Spanish poetic composition form that uses a specific
rhyming scheme and verse length. During the learning design phase, we chose to
use point-and-click mini-games as our game mechanic, which relies on drag-and-drop
puzzles and option selection in conversations with non-playable, in-game characters.
This approach is typical of adventure games, a genre with a track record of proven
educational benefits [13]. During the game’s design, we subdivided our goal into the
three phases according to our design pattern. Figures 3, 4, and 5 show in-game screen
captures representing each of the three phases.

Players are first presented with a textual description of rhymes and of the Bredondilla^
structure (Fig. 3). These instructions appear in two non-interactive scenes that can be skipped
(after reading the content or not) with a click. These scenes belong to the strategy phase.

1 Available (in Spanish) at https://play.google.com/store/apps/details?id=es.eucm.androidgames.damaboba.
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Later on, players are presented with a mini-game in which they must complete a poem
composed as a Bredondilla^ (Fig. 4). The poem is missing five words and the players can fill in
the blanks by dragging words from a container on the right side of the screen. Once filled, they
can check the correctness of the poem they have created by clicking a check button. They can
try to do this as many times as they wish until they find the right combination of words: as the
practice phase of the goal, the results of this mini-game are irrelevant to the final score.

Finally, players are presented with two mini-games (Fig. 5). In the first one, players must
fight a knight by exchanging rhyming verses. A player can win this battle if he or she selects
three correct rhyming replies in a row and loses it if he or she fails three times in a row. The
player’s score decreases with each error. In the second and final mini-game, the foolish lady^s
father assesses the protagonist’s suitability as a son-in-law by asking the player a series of
questions on the Bredondilla^ poetic format. Players can answer these questions only once, and
both the score and the game protagonist’s marital prospects decrease when they fail. Both
mini-games belong to the mastery phase of the goal, and therefore the results of these games
affect the final score.

Fig. 3 The game presents basic features of the Bredondilla^ on two screens with textual explanations

Fig. 4 In the first puzzle, players
must apply their knowledge of the
Bredondilla^ format. They can try
to do this as many times as they
wish
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4.2 Collecting observables

To record and analyse the gameplay sessions of all students, we developed a framework
composed of a tracker bundled within the game itself for sending interaction events
(observables) and a collector server for receiving and storing events. The types of events are
fully detailed in [37, 38]; here, we only highlight those events relevant to the learning
outcomes analysis:

& Events resulting from a new attempt to complete the Bredondilla puzzle^. Every
time the player clicks the Bcheck^ button and the result is incorrect, a new attempt
is made.

& Events resulting from a new attempt to beat the Bfight mini-game^. Every time the player
loses the fight and restarts the mini-game, a new attempt is made.

& Answers chosen by the player during the final mini-game.

The game itself does not make any assessment calculation: only raw events are
sent to the server.

4.3 Learning outcomes analysis

All players encounter the 3 mini-games during their playthroughs: the Bredondilla^ puzzle
mini-game in the practice phase, and the fight and test mini-games in the mastery phase. For
each mini-game, we calculate a score of between 0 and 1:

& Redondilla Game score (RG): when A is the observable representing the number of
attempts made to solve the Bredondilla^ puzzle mini-game, RG is computed using
RG = 1 - (MIN (A - 1, AMAX) / AMAX), where AMAX is the reasonable number of
attempts needed to solve the game. The initial assessment result takes a value of 1
when the player beats the puzzle on the first attempt, i.e., A = 1. The initial
assessment result takes a value of 0 if the player does not complete the puzzle on
any attempt or tries over AMAX times.

Fig. 5 In the last mini-games, players must prove their knowledge. In both cases, the player’s score decreases
with each error
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& Fight Game score (FG): if E is the observable representing the number of erroneous
options chosen before completing the fight mini-game, FG is calculated from
FG = MAX (0, 1 - (MIN (E, EMAX) / EMAX)), where EMAX is the maximum number
of reasonable errors needed to beat the game.

& Test Game score (TG): In the test mini-game, each question has four potential answers,
and only one of them is correct. Each answer is given an associated score. The correct
answer always has a score of 0, and the remaining answers have scores that correspond
to their distance relation the truth: 1 for answers that are almost right, 2 for answers
that are wrong, and 3 for answers that, due to their content or formulation, are clearly
listed as jokes. If I is the observable representing the accumulated score of incorrect
answers after finishing the test mini-game, TG = MAX (0, 1 – I / 4), as 4 questions are
posed.

We set AMAX = 3 and EMAX = 6. These values were agreed upon by game designers and
educators in consideration of the educational and game challenges that each mini-game
presents to players. However, as we wish to track raw A and E values, AMAX and EMAX values
can always be changed a posteriori if, after running the validation process, the data suggest that
more appropriate values should be used.

With these values, we can now calculate IA and FA:

& IA =RG, as the Bredondilla^ puzzle mini-game is the only one presented in the practice phase.
& FA = FG × 0.5 + TG × 0.5, as the fight and test mini-games are presented in the mastery

phase, and we decided to give both equal weighting in the final score.

For all mini-games, we set the assessment threshold to 0.5, making the IA andFA thresholds 0.5 as
well.

Table 1 shows possible values for RG, FG, TG, IA and FA used in the analysis of this
experiment.

Table 1 Some illustrative values for IA and for components of FA

Initial Assessment /
Redondilla game
AMAX = 3
IA = RG =
1 – ( MIN( A - 1, AMAX) / AMAX)

Final Assessment (FA)

Fight game
EMAX = 6
FG = 1 – (MIN( E, EMAX) / EMAX)

Test game
TG = MAX
(0, 1 - I/4)

Final assessment
0.5*FG + 0.5*TG

Attempts (A) RG = IA Errors (E) FG Incorrect
score (I)

TG

1 1 0 1 0 1 1
2 .66 1 .83 1 .75 0.8
3 .33 2 .66 2 .5 0.58
4 0 3 .5 3 .25 0.375
5 0 4 0.33 4 0 0.165
6 0 5 0.16 5 0 0.08
7 or more 0 6 or more 0 6 or more 0 0

Initial and final assessments' formulas are presented in italic. Resuls for both assessments are presented in bold
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4.4 Case study

To answer RQ2, we ran an experiment on high school students who played the serious game.

4.4.1 Experimental design

Before the sample of high school students (our target population) played the game, and as part
of the validation process, we first ran a formative evaluation with graduate students [27] and
with the teachers involved in the experiment. The results of this validation allowed us to
address some implementation flaws and to improve the gameplay and overall learning design.
For instance, two questions from the final mini-game were changed to improve their alignment
with the learning goal.

After the validation was conducted, high school students played BThe Foolish
Lady^ for 30 to 40 min on PCs under the supervision of a researcher who did not
provide any assistance (only brief direction on how to start the game). We collected
one gameplay per student (deployment phase). We consider a gameplay session as the
set of traces (interactions with the game) generated from the first screen to the final
screen of the game.

From each gameplay, we computed 3 values: RG, FG and TG. Students who did not
complete a mini-game scored 0. From these variables, we calculated IA and FA from the
formulas presented above. Using their results, we classified each student to a learning category
(learner, master, non-learner or outlier) to draw conclusions on the game’s effectiveness.

To gain insight into our methodology, we sought to determine whether we could answer the
following case-study questions (CSQ) concerning BThe Foolish Lady^ serious game:

& CS1: Did the students acquire the targeted skill by the end of BThe Foolish Lady^ game?
Given our demographic variables, were there differences between groups?

& CS2: Is BThe Foolish Lady^ game effective at teaching to targeted skill to our population?
Given our demographic variables, were there differences between groups?

4.4.2 Participants

The experiment involved N = 320 high school students from 8 different schools in Madrid.
Thirty-two of the gameplay sessions were corrupted or not completed due to various technical
problems that arose during gameplay (power outages, Internet connection issues and computer
malfunctions) and were therefore discarded.

The resulting population (N = 288) was 44.4% female and 55.6% male. The partic-
ipants were between the ages of 12 and 16 (with a mean age of 13.70 ± 1.27) and were
students at high schools in the Madrid area. Three of these schools were charter or
private schools (accounting for 58% of the students), and 4 were public schools (ac-
counting for 42% of the students). In regards to gender, age and school type character-
istics, the participants are a representative sample of the student population of Madrid for
this age [9, 31].

We also recorded the participants’ game habits to classify each student into a player
category by evaluating what types of games they played and how often. According to the
instrument developed by [29], 14.9% were non-gamers (they never play any video games),
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28.8% were casual gamers (they play video games casually for short periods of times), 31.6%
were hard-core gamers (they frequently play games such as FPS or MMORPG) and 24.6%
were well-rounded gamers (they play all types of games frequently). A more detailed
explanation of each category is presented in [29].

5 Results

In this section, we present the results of the learning outcomes analysis of the deployment
phase, i.e., the results of the experiment on the high school students.

5.1 Game completion

Figure 6 shows the number of players who completed each phase of BThe Foolish Lady^: all
288 players started the game and also completed the strategy phase; 281 completed the
Bredondilla^ puzzle mini-game; 246 completed the fight mini-game; and 231 completed the
test mini-game. The largest drop in player participation (35) occurs between the Bredondilla^
puzzle and fight mini-game stages.

In summary, 80.21% of the players finished the game at least once.

5.2 Learning outcomes

To determine whether the students acquired the targeted skill level by the end of the game, we
calculated the values of RG, FG and TG and therefore FA and IA. In total, 196 players
(68.05% of the total population and 84.84% of the players who completed the game)
scored higher than 0.5 (adequacy threshold set for the game during the design phase)
in both FA and IA.

The second part of Case Study Question 1 (CS1) led us to calculate FA and IA across the
different demographic groups: gender (M/F), age (12 to 16) and gaming habits (4 clusters).

Fig. 6 Number of players who
accomplished each phase of BThe
Foolish Lady^ game
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To explore whether there were statistically significant differences within each group, we
first determined whether the different groups (e.g., males vs. females for division by gender)
had a different starting point score. In other words, we needed to determine, for instance,
whether males had a statistically significant different IA score than females. Regardless of
whether such differences existed, we needed to adjust the scores of each group according to
their IA values before carrying out the analysis.

We therefore performed a one-way analysis of variance (ANOVA) over IA to find initial
differences across groups. As is shown in Table 2, IA showed statistically significant differ-
ences for each group, which were especially significant in the case of gender and game habits.
Thus, for all of the groups studied, we needed to adjust the initial values through an analysis of
covariance (ANCOVA) rather than using the analysis of variance (ANOVA) method, which is
generally recommended for similar initial values.

The ANCOVA allowed us to evaluate differences in FA scores (dependent variable) across
groups (independent variables) by overriding differences in IA (that is, by using IA as a
covariate). Before conducting the ANCOVA analysis, we had to perform standard preliminary
checks to confirm that there was no violation of assumptions of normality, linearity, variance
homogeneity and regression slope homogeneity [35].

Table 3 shows the ANCOVA results for the 3 independent variables, which present
statistically significant differences (p < 0.05) among groups by age and game habits but not
by gender. This suggests that the dependent variable (FA) values differ statistically by player
age and gaming habits.

The first ANCOVA [between-subjects factor: age (12 to 16); covariate: IA scores] reveals
main effects for age F(4288) =7.28, p < 0.01 and a moderate ηp

2 = .094. According to Table 4,
which shows the adjusted means once the effect of IA is omitted, the 16-year-old players
scored moderately (according to ηp

2) higher (FA = .766) than their younger classmates: the 12-
and 13-year-olds presented the lowest adjusted means (FA = .508).

The second ANCOVA [between-subjects factor: gender (male, female); covariate: IA
scores] shows no main effects for gender F(1288) = .62, p = .43, ηp

2 = .002. Thus, we can
argue that FA does not depend on player gender.

A third ANCOVA [between-subjects factor: game-habits (4 clusters); covariate: IA scores]
reveals main effects for game habits F(3, 288) =2.880, p = .036. In this case, the effect of
gaming habits (ηp

2 = .030) was lower than the effect of age. However, the game worked better
for well-rounded players and worse for non-gamers.

5.3 Serious game effectiveness

Figure 7 shows the total number of players grouped by learning category. Most
players are masters followed by learners. The number of outliers is higher than that
of non-learners.

Table 2 ANOVA results on IA
showing significant differences
among the three groups

Independent
variable

One-way ANOVAs on IA

N df F p

Age 288 4 2.5 .031
Gender 288 1 18.41 <.005
Game Habits 288 3 12.10 <.005
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Figures 8 and 9 show the players grouped by learning category and segmented by
age and gaming habits. In all groups, the number of masters exceeds that of the other
categories, and especially for the 14-year-old group. For all of the groups, the number
of outliers is greater than the number of non-learners, except for the group of students
aged 16.

6 Discussion

In this section, we first present our answers to the case-study questions and then further
elaborate on the methodological research questions.

CS1: Did the students acquire the targeted skill by the end of BThe Foolish Lady^ game?
Given our demographic variables, were there differences between groups?

Yes; 80.2% of the students completed the game, which required, by design, a basic
understanding of the principles of the learning goal. Regarding the students’ final scores, the
ANCOVA analysis (dependent variable: FA; covariate: IA) reveals significant differences
when data are segmented by age and gaming habits.

Table 3 Test scores and ANCOVA results by age, gender and gaming profile

Independent variable ANCOVAs on FA

N df F p Partial η2

Age 288 4 7.28 .000* .094
Gender 288 1 .62 .43 .002
Game Habits 288 3 2.88 .036* .030

*p < 0.05

Table 4 FA adjusted means by age, gender and gaming profile

Ind. Variable Values ANCOVA

N Adj. Mean* Std. Err.

Age 12 69 .508 .038
13 50 .508 .044
14 96 .708 .032
15 43 .631 .048
16 30 .766 .057

Gender Female 128 .603 .029
Male 160 .633 .026

Game Habits Casual 83 .559 .035
Non-gamer 43 .554 .049
Well-rounded gamer 71 .680 .038
Hardcore 91 .659 .034

*Adjusted mean using practice phase scores as covariates (ia = .6146)

2864 Multimed Tools Appl (2018) 77:2849–2871



As is shown in a previous section, by age, students aged 12 and 13 obtained the lowest
values (Adj. Mean = .508), and students aged 16 obtained the highest values (Adj.
Mean = .766). This seems natural: older students found the game easier.

In terms of gaming habits, the well-rounded gamers generated the best results (Adj.
Mean = .680) followed closely by hard-core gamers (Adj. Mean = .659). These two types
of players are used to playing games with complex mechanics. BThe Foolish Lady^ is an
adventure game with fairly simple mechanics, and so these players’ expertise likely helped
them complete the game more effectively. At the other end of the scale, we have non-gamers
(Adj. Mean = .554), which supports our hypothesis.

CS2: Is BThe Foolish Lady^ game effective at teaching to targeted skill to our population?
Given our demographic variables, were there differences between groups?

No; this is not because the players did not learn, but rather because according to the results,
most of them were categorized as BMasters^, i.e., many of them already knew most of the
educational content. This could mean that the game was too easy for most of the players.
However, we think that an additional problem in the game’s design prevented us from
capturing a more accurate IA (and, consequently, a more accurate learning profile): as we
wanted to keep the game short—it had to be completed over a standard 40-min session—the
practice phase was made deliberately shorter than the mastery phase. This forced us to limit the

Learners
62

Masters
143

Non-learners
35

Outliers
48

Fig. 7 Categorization of players
by assessment category
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practice phase to a single comparatively easy mini-game, which proved insufficient as a full
measure of initial knowledge. This flaw went unnoticed during the validation process, as the
players initiated tested were domain experts, and it seemed natural to classify them as masters.
This oversight shows why serious games must be validated with a sample from the target
population and not only by domain experts.

When segmenting groups by age and game habits, there is no particular group for which the
game was more effective.

These results do not imply that the game has no value as an educational tool. Students
playing this game enjoyed other benefits, such as a measurable increase their motivation to
attend the theatre, as demonstrated in [28].

RQ1. What are the implications of using our game-design pattern during the design and
implementation of a serious game?

Our use of this methodology forced us to define a clear learning goal from the start and to
continue to use it throughout the game development process.

In cooperation with education experts, we clearly defined which role each of the mini-
games played in meeting the educational goal. The proposed game-design pattern provided
guidance when defining mini-game difficulty, weight and placement measures. The mini-
games were implemented in such a way that interactions and events involved in their
resolution were clearly identified; and mapping from these events to assessments was also
determined early on.

We also integrated a tracker into the game engine to capture all relevant interactions. This
approach is commonly used in the gaming industry for analytics-related tasks, although its
difficulty varies depending on the chosen game engine. In our case, we used an open source
engine where all required events and interactions were generated in a handful of locations
within the code. This made integrating the tracker a relatively simple task.

We also needed a service to collect all data sent by the tracker. Ours consisted of a REST
back-end system that processed HTTP requests describing events, a database for storing these
traces, and some Python scripts to query the database. Although we used a customized
solution, the serious game could be integrated with any other VLE. This raises new interesting
questions regarding the sharing of data between such systems and a serious game, which
however fall outside of the scope of this paper.
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RQ2. What results in regards to learning outcomes and effectiveness levels can be obtained
from a serious game developed and analysed through this methodology?

The identification of relevant educational observables during game design significantly
simplified the task of measuring learning outcomes and game effectiveness. These results
helped us answer several interesting questions from the case study.

By default, our methodology converts serious games into assessment tools: it relies on clear
assessment locations that are associated with both learning design and goals and which are
then combined to infer learning outcomes. However, using our design pattern, we can also
determine whether students actually learn from playing a game, which is key to assessing a
game’s effectiveness for a particular population group.

From our case study, we conclude that the initial assessment results are higher than what
was expected. The number of outliers generated denotes a design flaw in the practice phase.
Such findings, which are based on actual data, are very useful: after altering the game design,
the result would be an improved game for the next round of players.

Finally, when student demographic data are available, we can use statistical analyses to
identify and characterize those groups enjoying better learning outcomes or game effects. This
can help narrow down and characterize the ideal target population of a game. It can also guide
changes to adapt the game to other audiences.

7 Conclusions

In this paper, we present a means of structuring the design and assessment of serious games at
two levels: inferring learning outcomes and assessing the effectiveness of serious games as
educational tools. We think that this will help systematize serious game development and
improve several of the methodologies identified in our literature review: our methodology is
fully integrated with the production cycle of a serious game (from design to deployment) and
involves a non-disruptive assessment as an alternative to questionnaires, the most common
assessment method used for serious games. The method poses extra requirements during game
development (a tracker in the game engine and a server to collect data), but with the help of
today’s big data technologies, this is now an affordable task.

We tested our methodology by developing a serious game entitled BThe Foolish Lady ,̂
which was played by 320 students. The methodology clearly guided the design process and
later our analysis of the game’s effectiveness. While BThe Foolish Lady^ proved to be an
effective assessment tool (i.e., we were able to assign a mark to each student), it was unable to
fully capture the initial knowledge level of the students studied.

One of the conclusions of the experiment is that the design of the practice phase is key to
the implementation of an effective serious game. However, balance in the practice phase can
be difficult to maintain: the designer wants the player to advance flawlessly while identifying
their mistakes to obtain an accurate assessment of their initial knowledge level. In addition, the
implementation result derived from the case study (i.e., a tracker and a basic server infrastruc-
ture for receiving and analysing traces) is currently being used in the RAGE European Project
[21] as an important part of the infrastructure for assessing games.

Although our case study is focused on a serious game designed to deliver knowledge and to
teach several skills, we think that the methodology could be applied to any serious game
whose goal can be measured in a quantitative way. For instance, a serious game designed to
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help diabetics control their blood glucose levels could use players’ real blood glucose levels
(e.g., reading them through a device connected to the game) to determine whether the goal was
achieved rather than relying on the use of puzzles or mini-games.

In summary, we conclude that the methodology presented in this paper provides a richer
and easily understandable assessment analysis method for serious games. We make one major
point that once a game starts sending observable events, everything is automated and all of the
assessments are based on how learners interact with the game rather than through the use of
traditional out-of-game questionnaires. Additionally, the assessment model is adaptable to
researchers’ needs, as it is not hardwired to game signals: the way each dependent variable (FA
and IA) is calculated can be changed Ba posteriori^, allowing constants used in assessment
model to be updated when required (for instance, AMAX and EMAX in our case study).
Additionally, results obtained via this methodology could complement formal experiments
in measuring serious game effectiveness, which remains as an issue to address [2].

We believe that this methodology opens up avenues for future research. In this paper, we
limited the students’ assessments to 3 particular points in the interest of clarity (the 3 mini-
games). In the future, we plan to enrich our game design pattern with more observables for
both phases. Additional data will provide us with more information on student progression
patterns while affording researchers greater insight into the evolution of the learning process.
We plan to go one step further by analysing other gameplay data (such as the time spent on
each phase) that may shed light on why some players struggle in certain parts of the game. We
also wish to further explore the transformation from game observables into assessment scores
by identifying and addressing common patterns of different game mechanics.

Finally, the integration of serious games that follow our proposed methodology within
VLEs also raises interesting questions. What standards should be used for such communica-
tions? What visualizations should be provided to different stakeholders? Addressing such
integration methods will constitute an important step towards realizing the full potential of
combining serious games with learning analytics.
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