
Draft version. Citation: Sierra,JL; Navarro, A; Fernández-Manjón, B; Fernández-Valmayor, A. Incremental Definition and Operationalization of 
Domain-Specific Markup Languages in ADDS. ACM SIGPLAN Notices 40(12),28-37. 2005 

Incremental Definition and Operationalization of Domain-Specific Markup 
Languages in ADDS1 

José L. Sierra, Antonio Navarro, Baltasar Fernández-Manjón,Alfredo Fernández-Valmayor 

Dpto. Sistemas Informáticos y Programación. Fac. Informática. Universidad Complutense. 28040. Madrid. Spain 
{jlsierra, anavarro, balta, alfredo}@sip.ucm.es 

Abstract. ADDS is our proposal for the development of content-intensive applications. Applications in ADDS are produced by 
processing documents that describe their main aspects and that have been marked up using application-dependent, Domain-Specific 
Markup Languages (DSMLs). To make ADDS of practical value, we promote the incremental definition of DSMLs, as well as their 
incremental operationalization (i.e. the incremental construction of their processors). In this paper we describe how this incremental 
definition is carried out by using a technique called PADDS (DSML Provision in ADDS), and how incremental operationalization is 
accomplished using a model called OADDS (Operationalization in ADDS).  

Keywords: Domain-Specific Markup Languages, Modular Document Grammars, Modular Language Processors, Software 
Development Approach, XML 

1 Introduction 

With the advent of languages like HTML [26] and other proposals like HyTime [9] (a SGML [8] extension for the 
description of hypermedia applications) at the end of the 80’s and beginning of the 90’s it became evident that 
descriptive markup languages could be used in software application development, regardless of their being initially 
intended for the publishing domain [5]. This use was later popularized in the XML world [26], where descriptive 
markup languages were conceived as a standard way for information interchange between applications, despite being 
initially geared to simplifying the definition, maintenance and processing of electronic documents. We have applied 
these ideas in order to create a document-oriented paradigm for the development of content-intensive applications that 
we have already used in several domains: educational [7] and hypermedia applications [17], as well as knowledge-based 
systems [19]. In all these domains, we have successfully defined and used descriptive, application-dependent, domain-
specific markup languages (DSMLs) to make the structure of documents that describe the main aspects of the 
applications (e.g. contents and user interface appearance) explicit. Moreover, by processing applications associated 
documents (i.e. with suitable processors for these DSMLs), the final applications are automatically generated. 

During our development experiences, we realized that the systematic applicability of the document-oriented 
paradigm is heavily dependent on the incremental formulation of DSMLs, as well as on their incremental 
operationalization (i.e. how their processors are incrementally built) [22]. The adoption of an incremental strategy helps 
to palliate the initial high costs associated with the provision of the DSMLs and their processors. This also provides the 
flexibility required by the development of complex applications, because the DSMLs can be extended when new 
markup needs are discovered. Finally, this strategy also avoids having to include very general or complex markup 
structures in the DSMLs consequently easing their use. Our Approach to Document-based Development of Software 
(ADDS) is a specific implementation of the document-oriented paradigm that promotes these strategies. This approach 
is detailed in [22][25].   

The present paper is focused on how DSMLs are incrementally defined in ADDS, and how they are incrementally 
operationalized. The first of these aspects is covered by the PADDS technique (Provision of DSMLs in ADDS). The 
second one is addressed by the OADDS model (Operationalization in ADDS). The structure of this paper is as follows: 
Section 2 introduces a simple example that will be used throughout to illustrate its different aspects. Section 3 analyzes 

                                                           
1 The Spanish Committee of Science and Technology (TIC2001-1462, TIC2002-04067-C03-02 and TIN2004-08367-C02-02) has partially supported 

this work. 



Draft version. Citation: Sierra,JL; Navarro, A; Fernández-Manjón, B; Fernández-Valmayor, A. Incremental Definition and Operationalization of 
Domain-Specific Markup Languages in ADDS. ACM SIGPLAN Notices 40(12),28-37. 2005 
 
the PADDS technique. OADDS is described in section 4. In section 5 we compare our approach with some related 
work. Finally, section 6 presents some conclusions and future work.  

2 A Simple Application Domain 

This section introduces a simple and well-known application domain (evaluation of arithmetic expressions) that will be 
used to exemplify the different aspects discussed in the following sections. Although we are aware that this illustrative 
example, classic in the field of language processors [1], might be considered a strange choice because it does not fit into 
the claimed problem domain of content-intensive applications, its simplicity avoids the collateral details of more 
realistic applications, such as those used in [22][25] to illustrate the higher – level aspects of ADDS. In addition, the 
richness in the markup of its documents lets us focus on the technical issues of the incremental provision and 
operationalization of DSMLs, which is the main goal of the present paper. 

<Div> 
 <Add>         
  <Num>5</Num> 
  <Num>6</Num> 
 </Add> 
 <Num>2</Num> 
</Div> 

<Div> 
 <Add>         
  <Var>X</Var>
  <Var>Y</Var>
 </Add> 
 <Num>2</Num> 
</Div> 

(a) (b) (c) Processor for 
EXPML(1) 

 
Fig. 1 (a) EXPML(0) document for (5+6)/2, (b) EXPML(1) document for (X+Y)/2, (c) the document in (b) can be processed with a 

processor for EXPML(1) to yield an application that takes the values of the expression’s variables and computes the value of this expression.  

The DSML in this example, which is called EXPML, enables the description of arithmetic expressions. We will 
consider two different evolutions of this DSML: EXPML(0), for the markup of basic expressions, and EXPML(1), for the 
incorporation of variables into the expressions. Thus, arithmetic expressions will be represented as marked documents 
conforming to one of these EXPML evolutions, such as shown in Fig. 1a and Fig. 1b. In turn these documents will be 
processed with a suitable processor to generate evaluators for these expressions (Fig. 1c).    

3 The PADDS Technique  

PADDS (Provision of DSMLs in ADDS) gives a set of guidelines for the incremental definition of DSMLs in ADDS. 
The following subsections explain the technique. Subsection 3.1 gives an implementation-independent description of 
the technique. In its turn, subsection 3.2 shows one of the possible implementations based on XML Document Type 
Definitions (DTDs) [8][16].  

3.1 Implementation-independent description of PADDS 

DSMLs in ADDS are provided incrementally by formulating linguistic modules through the combination and extension 
of simpler ones. Intuitively, a linguistic module is a grammatical characterization of a part of the final DSML. In this 
module each syntactic category is represented as an element type and has a content model associated with it. In our 
simple application domain we can have two different linguistic modules:  lmexp0, which defines markup for basic 
expressions, and lmexp1, which extends lmexp0 with markup for variables. Therefore the incremental definition of 
DSMLs largely depends on being able to combine and extend linguistic modules. To facilitate this, PADDS introduces 
three mechanisms. First, the content models for the element types in a module can refer to definitions in other modules. 
In grammatical terms this is equivalent to the combination of pre-existing grammars by adding new productions. 
Second, a module can include a set of parameters. These parameters play a role similar to the parameter entities in the 
SGML or XML DTDs [8][16], and they can be specialized with element types in the same module or in others. Hence, 



Draft version. Citation: Sierra,JL; Navarro, A; Fernández-Manjón, B; Fernández-Valmayor, A. Incremental Definition and Operationalization of 
Domain-Specific Markup Languages in ADDS. ACM SIGPLAN Notices 40(12),28-37. 2005 

 
they can be grammatically interpreted as undefined non-terminals leading to open grammars that can be subsequently 
extended. Third, a module can add new attribute lists to the element types defined in other modules. 

Once all the linguistic modules for a DSML are available, the DSML itself must be described with a document 
grammar. This grammar is obtained by following a grammar production specification. This specification has a double 
aim. On the one hand, this specification is used for resolving conflicts between linguistic modules (e.g. name conflicts). 
On the other hand, this can be used to adapt the concrete markup vocabulary to different contexts (e.g. different 
languages such as English or Spanish). Also, by providing alternative production specifications it is possible to get 
different alternative document grammars for the same DSML. These grammars generate isomorphic markup languages, 
each one of which with a different concrete markup vocabulary. This feature enhances the usability of a DSML because 
this can be adapted to the particular social and cultural circumstances of the domain experts. For example,  a markup 
vocabulary is much better understood and accepted by a domain expert if it is presented in his/her mother tongue.    

3.2 An implementation of PADDS based on XML DTDs 

PADDS is a conceptualization that can be implemented using any of the multiple schema languages proposed in the 
XML arena [13]. Based on usability and comprehensibility criteria we have developed an implementation based on 
XML DTDs [26] regardless of their expressive limitations [15]. Although XML DTDs are less powerful than other 
schema languages like XML Schema [26] or Relax NG [4], they are more understandable and simpler-to-use 
mechanisms for domain experts [16]. This subsection describes our implementation. 

We have defined the notation used in Fig. 2a to define linguistic modules. The parameters of the module can be listed 
in the Parameters section. The Specializations section is used to add element names to parameters defined in the same 
or in other modules (i.e. to indicate parameter specializations). Finally, the grammar of the sublanguage described in 
the module can be specified as a set of productions of an XML DTD in the Grammar section. The dot in the names of 
element types and parameters has a special meaning: to prefix a name with the name of the module where it is defined. 
Notice that in modules whose only purpose is to integrate simpler modules the grammar section will be empty. 

 

Module: module-name 
[ Parameters: {parameter-name}+] 
[ Specializations: {parameter ⊇ {element-name}+}+ ] 
[ Grammar: dtd ] 

{ Module: used-module-name 
   { Map: element-type-name-in-DTD [→ resulting-element-type-name ]  
             {AMap: attribute-name-in-module [ → resulting-attribute-name ] 
                  { symbol-name-in-module [ → resulting-symbol-name ] }*  
           }* 
  }*}+ 

(a) (b) 

 
Fig. 2 (a) A notation for the definition of linguistic modules; (b) a notation for the description of grammar production specifications. 

Grammar production specifications are defined using the notation of Fig. 2b. Basically, they name the linguistic 
modules to be used, and, for each module, a set of renaming rules for the markup vocabulary in this module. Thus, each 
module used is specified in a Module section. In this section it is also possible to specify a set of renaming rules for the 
different element types of the modules. The renaming of each element type is specified in a Map section. In this section 
a new name for the element tag can be specified, and also a set of renaming rules affecting the attributes for the 
element. The rules for each attribute are grouped in an AMap section, where a new name for the attribute can be 
chosen, and a set of renaming rules for symbols in this attribute domain can be specified. Notice that these renaming 
facilities enable the resolution of the name conflicts produced by collisions among the DTDs of the different linguistic 
modules giving an analogous functionality to the use of XML namespaces [26]2. 

 

                                                           
2 Nevertheless, it should be noted that the only objetive of grammar production specifications is to simplify the authoring of the documents does not 

intend to be nor is conceived as an alternative to namespaces. Another different PADDS implementation based on a namespaces-aware schema 
language could take advantage of the namespaces mechanism in the implementation of grammar production specifications. 



Draft version. Citation: Sierra,JL; Navarro, A; Fernández-Manjón, B; Fernández-Valmayor, A. Incremental Definition and Operationalization of 
Domain-Specific Markup Languages in ADDS. ACM SIGPLAN Notices 40(12),28-37. 2005 
 

Module: lmexp0 
Parameters: EXP 
Specializations: 
   EXP ⊇ {Num,Add,Sub,Mul,Div}
Grammar: 
 <!ELEMENT Num   (#PCDATA)> 
 <!ELEMENT Add   (EXP,EXP)> 
 <!ELEMENT Sub   (EXP,EXP)> 
 <!ELEMENT Mul   (EXP,EXP)> 
 <!ELEMENT Div   (EXP,EXP)> 

(a) 
Module: lmexp1 
Specializations: 
   lmexp0.EXP ⊇ {Var} 
Grammar: 
<!ELEMENT Var  (#PCDATA)>

(b)

Module: lmexp0 
   Map:Add → Suma 
       Sub → Resta 
Module: lmexp1 

(c)

 
Fig. 3. (a) Linguistic module lmexp0; (b) linguistic module lmexp1; (c) grammar production specification for the Spanish version of 

EXPML(1). 

Fig. 3a and Fig. 3b show the definition of the linguistic modules associated with EXPML. Lmexp0 is defined in Fig. 
3a. Notice that this module is made parametric in the possible arithmetic expressions (EXP parameter), which is its main 
point of extension. Lmexp1 is defined in  Fig. 3b. This module specializes the EXP parameter of lmexp0 with the 
element type Var for the markup of variables. Hence lmexp0 is extended. In turn, the grammar production specification 
for the Spanish version of EXPML(1), is shown in Fig. 3c. This specification renames the Add and Sub tags with the 
corresponding Spanish tags Suma and Resta. 

 
<!ENTITY % lmexp0.EXP "(Div|Mul|Num|Resta|Suma|Var)"> 
<!ELEMENT Num   (#PCDATA)> 
<!ELEMENT Suma  (%lmexp0.EXP;,%lmexp0.EXP;)> 
<!ELEMENT Resta (%lmexp0.EXP;, %lmexp0.EXP;)> 
<!ELEMENT Mul   (%lmexp0.EXP;, %lmexp0.EXP;)> 
<!ELEMENT Div   (%lmexp0.EXP;, %lmexp0.EXP;)> 
<!ELEMENT Var  (#PCDATA)> 
<!ATTLIST Num adds.cls NMTOKEN #FIXED "lmexp0.Num lmexp0.EXP"> 
<!ATTLIST Suma adds.cls NMTOKEN #FIXED "lmexp0.Add lmexp0.EXP"> 
<!ATTLIST Resta adds.cls NMTOKEN #FIXED "lmexp0.Sub lmexp0.EXP"> 
<!ATTLIST Mul adds.cls NMTOKEN #FIXED "lmexp0.Mul lmexp0.EXP"> 
<!ATTLIST Div adds.cls NMTOKEN #FIXED "lmexp0.Div lmexp0.EXP"> 
<!ATTLIST Var adds.cls NMTOKEN #FIXED "lmexp1.Var lmexp0.EXP">  

Fig. 4 DTD for the Spanish version of EXPML(1). 

In PADDS, document grammars are represented by using DTDs. The final DTD for a DSML can be systematically 
produced from the linguistic modules and the grammar production specification. Each parameter p in a module m is 
represented in the final DTD by a parameter entity named m.p. The value of this XML entity will be the disjunction of 
the element types that specialize the p parameter, once they have been renamed according to the renaming rules of the 
production specification. The DTDs of the modules are then processed according to the renaming rules, their parameters 
are substituted by references to the corresponding parameter entities, and the result is appended to the final DTD. 
Finally, this DTD is enriched with fixed-valued attributes that relate its markup vocabulary to that defined in the 
linguistic modules. The values of these attributes will be used during operationalization to decouple the processing from 
the names chosen in the different production specifications. In this way, an adds.cls attribute is associated with each 
element type in the DTD. This attribute indicates the module and the element type where such a DTD’s element type is 
originally defined. In addition, if a parameter is specialized by an element type, this is also indicated in the value of this 
attribute. The value itself is a list of tokens with the format module.elementTypeOrParameter. Similarly, the renaming 
rules for the attributes and the symbols in their domains are encoded by using pre-established fixed-values attributes. 
For each element type whose attributes have been renamed, the map is represented as the value of an adds.amap 
attribute. In the same way, if a is an attribute of an element type with renaming rules for the symbols in its domain, 
these rules are encoded as the value of an adds.smap.a attribute.  The DTD for the Spanish version of EXPML(1) is 
shown in Fig. 4.  

To conclude it should be noted that the manual production of document grammars according to this implementation 
of PADDS is a tedious task. To facilitate this task we have developed a tool for the automatic production of DTDs from 
the linguistic modules and the grammar production specification for a DSML.  



Draft version. Citation: Sierra,JL; Navarro, A; Fernández-Manjón, B; Fernández-Valmayor, A. Incremental Definition and Operationalization of 
Domain-Specific Markup Languages in ADDS. ACM SIGPLAN Notices 40(12),28-37. 2005 

 
4 The OADDS Model 

The production of applications from marked documents requires appropriate processors for the DSMLs used. Because 
DSMLs are incrementally provided, their processors must also be incrementally built. Addressing the operationalization 
problem in ADDS has led us to devise OADDS (Operationalization in ADDS), a conceptual model for the incremental 
development of DSMLs’ processors. OADDS adapts the classic ideas of syntax-directed translation [1] with concepts 
taken from the well-known approaches to the development of modular language processors [6][11][14]. 

This section details OADDS. Subsection 4.1 gives an overview of the model, which is heavily based on the 
incremental operationalization of document trees. Subsection 4.2 details the structure of such operationalized document 
trees, and subsection 4.3 describes the components involved in such an incremental operationalization. Finally, 
subsection 4.4 deals with the OADDS processors themselves.  

4.1 Overview 

OADDS regulates the incremental construction of DSMLs processors in ADDS.  The main components used in this 
construction are the operationalization modules. Operationalization modules are used to attach suitable operational 
meanings to the linguistic modules used to define the DSMLs. In addition to the operationalization modules, OADDS 
processors also include other predefined facilities, and a small domain – dependent program that brings together all the 
other components of the processor.  

 

lmexp0 

Incremental 
definition 

lmexp1 

t 

Incremental 
operationalization 

lmexp0Evaluation 

lmexp1Evaluation 

lmexp1Recollection

 
Fig. 5 Incremental definition of EXPML versus its incremental operationalization. 

Processors use the operationalization modules to operationalize element nodes in the document trees by decorating 
them with a set of semantic attributes, together with the code for computing the values of these attributes. Trees 
operationalized in this manner can be evaluated subsequently by invoking the code that decorates their roots. This 
decoration can be incrementally performed. Hence semantic attributes can be incrementally added to the element nodes, 
and the code for computing their values can be incrementally extended. This is one of OADDS’ key features for 
enabling the incremental operationalization of DSMLs. 

Therefore, the incremental definition of linguistic modules in PADDS is mirrored in OADDS with the incremental 
construction of operationalization modules. This point is illustrated in Fig. 5, where the provision of linguistic modules 
for EXPML is parallel to the incremental construction of operationalization modules for evaluating the EXPML 
expressions. Thus, the provision of markup for the basic expressions (regulated by lmexp0) leads to the construction of 
the lmexp0Evaluation operationalization module for computing the values of such expressions. The extension of lmexp0 
by lmexp1 to contemplate variables supposes the extension of lmexp0Evaluation by lmexp1Evaluation. This new 
module will deal with the evaluation of the variables, and also with the propagation of a binding for the variables along 
the inner nodes of the document trees. This propagation will be added without changing lmexp0Evaluation. In turn, the 
module lmexp1Recollection lets the final processor recollect the variables used in the expressions. These variables will 
be used to configure the user interfaces of the final running applications.   

4.2 Operationalized Document Trees 

The most characteristic task carried out by an OADDS processor is the evaluation of document trees (i.e. the calculation 
of values for the semantic attributes in their element nodes). To enable this evaluation, document trees must be 



Draft version. Citation: Sierra,JL; Navarro, A; Fernández-Manjón, B; Fernández-Valmayor, A. Incremental Definition and Operationalization of 
Domain-Specific Markup Languages in ADDS. ACM SIGPLAN Notices 40(12),28-37. 2005 
 
previously operationalized (i.e. appropriate semantic attributes and the code to compute their values must be assigned 
with each element node). 

Element 
Node 

atr1 val1 

atrk valk 

Semantic 
attributes 

 
Evaluator 

Computing proc: proc(e) {…} 
Invocation proc: proc(eo,e1) {…}  

 
Fig. 6 Operationalization of element nodes in OADDS. 

 
The operationalization of element nodes in document trees is depicted in Fig. 6. During this process, the code to 

compute the values of the attributes is provided by an evaluator. In turn, evaluators are composed of two different 
procedures: (i) a computing  procedure that actually carries out the computation, and (ii) an invocation procedure, 
which is used by the computing procedure to invoke the computing procedures of other evaluators.  

The computing procedure takes an element node e as input, and computes the values of its semantic attributes. This 
computation will normally be based on the values of the attributes for the element nodes in the vicinity of e. Before 
consulting these values, the procedure has to call the computing procedures in these element nodes. These calls must be 
carried out using the invocation procedure for the evaluator in e. This procedure takes two inputs (the element node 
associated with the caller computing procedure, and the element node where the one called resides) and encodes how 
this invocation is performed. Thus, computing procedures are parametric in their calls to other computing procedures 
because they never directly perform these calls but use the invocation procedures of their associated element nodes. 
This enables the new operations surrounding the calls to be included (e.g. to propagate new attribute values between the 
associated element node and its vicinity) by only changing the corresponding invocation procedure. This is indeed the 
key issue to facilitate incremental operationalization in OADDS.  

 
<Div> 
 <Add>         
  <Num>6</Num> 
  <Num>7</Num> 
 </Add> 
 <Num>2</Num> 
</Div> 

(a) 
Div

resul …

Comp .proc: CDiv
Inv. proc: IDef

Add
resul …

Comp .proc: CAdd
Inv. proc: IDef 

Num
resul … 

Comp .proc: CNum 
Inv. proc: IDef 

“2”

Num
resul … 

Comp .proc: CNum 
Inv. proc: IDef 

Num
resul …

Comp .proc: CNum
Inv. proc: IDef

“6” “7”

(b) 

(c) 
CDiv ≡ proc(e) { 
                Let i  be  e’s invocator procedure, 
                       eo be  e’s first child element and 
                       e1 be  e’s second child element then 
                       i(e,eo) 
                       i(e,e1) 
                       set e’s resul semantic attribute to 
                             the division of resul in eo between 
                             resul in e1 

                } 

(d) IDef ≡ proc(eo,e1) { 
             Let c be  e1’s computing procedure  
             then 
                  c(e1)  
               } 
 

 
Fig. 7 (a) EXPML document for (6+7)/2, (b) an operationalization of the tree for the document in (a), (c) the IDef default invocation 

procedure, (d) the CDiv computing procedure. 



Draft version. Citation: Sierra,JL; Navarro, A; Fernández-Manjón, B; Fernández-Valmayor, A. Incremental Definition and Operationalization of 
Domain-Specific Markup Languages in ADDS. ACM SIGPLAN Notices 40(12),28-37. 2005 

 

Div 

Add Num 

“2” 

Num Num 

“6” “7” 

(c) IEProp ≡  Proc(i) { 
    return Proc(eo,e1) { 
      set e1’s bind to eo’s bind. 
      i(eo,e1)  
   } 
}  

Var 

“X”

Div

Comp .proc: CDiv 
Inv. proc: IEProp(IDef) 

Add

Comp .proc: CAdd 
Inv. proc: IEProp(IDef) 

Num
resul … 

Comp .proc: CNum 
Inv. proc: IDef 

“2”

Num
resul …

Comp .proc: CNum
Inv. proc: IDef

Var

Comp .proc: CVar 
Inv. proc: IDef “6”

“X”

(b) 

resul … 

bind … 

resul …

bind …

resul … 

bind … 

(a) 

 
Fig. 8 (a) Modification of the document tree depicted in Fig. 7b, (b) operationalization of (a), (c) extension for invocation procedures 

IEProp. 

Fig. 7 and Fig. 8 illustrate how the incremental operationalization of document trees is facilitated by the structure of 
the evaluators described above. In Fig. 7b an operationalized document tree for the EXPML document depicted in Fig. 7a 
is described. Note that a semantic attribute resul has been attached to each element node. This attribute will contain the 
value of the sub-expression corresponding to that node. In addition, appropriate evaluators have also been attached to 
these nodes. For instance, the evaluator for Div includes an invocation procedure called IDef and a computing 
procedure called CDiv. The pseudo-code3 of IDef is included in Fig. 7c.  This is a default invocation procedure that 
calls the computing procedure invoked without further calculations. In Fig. 7d the pseudo-code for CDiv is given. This 
procedure calls the computing procedures in the child element nodes and sets the resul attribute to the division of the 
values for resul in these children. Calls are always performed using the invocation procedure, and this is always 
accessed through the element nodes. Therefore, if this procedure is changed, the new one will be used without 
modification. 

If the document tree in Fig. 7b is changed as described in Fig. 8a (i.e. the second argument of Add is replaced by 
the X variable to yield the (6+X)/2 expression), its operationalization must be changed accordingly. The resulting 
operationalized tree is shown in Fig. 8b. Operationalizations for the element nodes preserved can be incrementally 
obtained from the existing ones. With each inner node a new semantic attribute (bind) is assigned, which will refer to 
the binding of variables with values. In addition, the invocation procedures of these nodes will be extended to deal with 
the propagation of this new attribute. The extension itself (IEProp), which is outlined in Fig. 8c, is represented as an 
invocation procedure parametric in another invocation procedure. This carries out the propagation, and then calls the 
invocation procedure given by its parameter. As shown in Fig. 8b, the final invocation procedure is obtained by 
applying IEProp to the existing one (in this case, IDef). 

4.3 Operationalization Modules 

Operationalization modules in OADDS group together a set of operationalizers and an operational assignment. The 
operationalizers enclose the code to operationalize a kind of element nodes. Thus, operationalizers are modeled as 
procedures that, by taking an element node as input, add the appropriate semantic attributes to this node, and return the 
evaluator to be used with the node. The reason for returning the evaluator is to allow other operationalizers to extend it. 

                                                           
3 Note that we use pseudo-code because OADDS is a conceptual framework independent of specific programming languages or specification 

formalisms. 



Draft version. Citation: Sierra,JL; Navarro, A; Fernández-Manjón, B; Fernández-Valmayor, A. Incremental Definition and Operationalization of 
Domain-Specific Markup Languages in ADDS. ACM SIGPLAN Notices 40(12),28-37. 2005 
 
In turn, the operational assignments determine the appropriate operationalizer to be used on each element node. In this 
way, they are modeled as procedures that by taking an element node as input, select an operationalizer and apply it to 
such a node. 

The operationalization pattern described in the previous subsection makes the incremental provision of 
operationalization modules feasible. This incremental provision relies on the incremental provision of operationalizers 
and operational assignments. Operationalizers can statically call other operationalizers, or they can be left parametric in 
an evaluator (i.e. they can take an evaluator to be extended as additional input). In this case, they will be dynamically 
applied by operational assignments to extend evaluators produced by other operationalizers. Likewise, the incremental 
provision of operational assignments is achieved by calling other pre-existing operational assignments. 

 

lmexp0Evaluation 
 Operationalizers: 
 ONum ≡ proc(e) { 
  add to e the resul semantic 
  attribute. 
  return the evaluator 
   comp.proc: proc(e) {  
    set e’s resul to the 
    numeric value of the 
    e’s pcdata content  
   } 
   inv.proc: IDef 
 }  
 ODiv ≡ proc(e){ 
  add to e the resul semantic 
  attribute. 
  return the evaluator 
   comp.proc: CDiv 
   inv.proc: IDef 
 }  
... 
Operational assignment: 
 proc(e) {  
     if e∈lmexp0.Num return ONum(e) 
  else if e∈lmexp0.Add return OAdd(e) 
  ... 
 } 
} 

lmexp1Evaluation 
 Operationalizers:

 OVar ≡ proc(e) { 
   add to e the resul and the  
       bind semantics attributes 
   return the evaluator 
      com.proc: proc(e) { 
       set e’s resul to the  
       value of e’s pcdata content 
       in e’s bind 
      } 
      inv.proc: IDef 
  } 
 OProp ≡ proc(e,ev) { 
   add to e the bind semantic  
       attribute 
   let c be ev’s computing  
       procedure and i be ev’s  
       invocation procedure 
   then return the evaluator 
         comp.proc: c 
         inv.proc: proc(eo,e1) { 
          set e1’s bind to  
          eo’s bind. 
          i(eo,e1)  
         } 
  }               

Operational assignment: 
 proc(e) { 
  if e ∈ lmexp1.Var then 
     OVar(e) 
  else  
    let a be lmexp0Evaluation’s  
        operational assignment then 
       ev ← a(e) 
     if e ∈ {lmexp0.Add,lmexp0.Mul, 
             lmexp0.Sub,lmexp0.Div} 
     then 
       return OProp(e,ev) 
     else return ev 
} 
 
      
     

 

(a) (b) 

 
Fig. 9 Pseudo-code for the operationalization modules (a) lmexp0Evaluation, (b) lmexp1Evaluation.  

The incremental provision of operationalization modules is exemplified in Fig. 9, where the pseudo-codes for 
lmexp0Evaluation, and lmexp1Evaluation (see subsection 4.1) are outlined. Thus, the pseudo-code for 
lmexp0Evaluation is partially outlined in Fig. 9a (operationalizers for dealing with additions, subtractions and products 
are analogous to ODiv). The pseudo-code for lmexp1Evaluation is shown in Fig. 9b. Besides OVar, the operationalizer 
for variables, this module introduces the parametric operationalizer OProp, which enables the propagation of the 
semantic attribute bind along the inner nodes of the document tree. Notice that this operationalizer is left parametric in 
an evaluator (i.e. in addition to the element node, it takes an evaluator as input). Then, it adds the semantic attribute 
bind to the element node, and produces an evaluator extending the invocation procedure of the evaluator accepted as 
input. The extension deals with the propagation of the attribute bind to the corresponding child element node. 

The operational assignments depicted in Fig. 9 always refer to the markup vocabulary introduced in the linguistic 
modules. Indeed, with e ∈ module.tag we denote an expression that is true when module.tag appears in the value of e’s 
adds.cls attribute. This ensures the independence of the operationalization modules from the particular markup 
vocabularies chosen in the different grammar production specifications. Thus, by being aware of the values for the 
adds.cls, adds.amap and adds.smap.a attributes, the same processor will be able to work with the different 
versions of a DSML, regardless of their vocabulary. 

4.4 Processors 

The structure of a processor in OADDS is outlined in Fig. 10a. The processor uses a tree builder, an operationalization 
driver and an appropriate set of operationalization modules. While the two first components are predefined, 
operationalization modules vary with each particular processor. All these components are appropriately combined by a 
glue program. The tree builder parses marked documents and produces the corresponding document trees. In turn, the 



Draft version. Citation: Sierra,JL; Navarro, A; Fernández-Manjón, B; Fernández-Valmayor, A. Incremental Definition and Operationalization of 
Domain-Specific Markup Languages in ADDS. ACM SIGPLAN Notices 40(12),28-37. 2005 

 
operationalization driver enables the operationalization of document trees with operationalization modules. This 
component, which is modeled as a procedure in Fig. 10b, takes a tree and an operationalization module as input, and 
visits the element nodes in the tree, applying the module’s operational assignment to each node, and setting their 
evaluators to the returned ones. Finally, the glue program dictates how to use all these components to process the 
marked documents4. Because almost all the work will be performed by the other components, this program will usually 
be small. Notice that, while glue programs are components specific to each processor and therefore hardly reusable, 
processors can extend others that are simpler by extending their operationalization modules as illustrated in section 4.3. 
 

glue program 

Tree 
Builder 

Operationalization 
Moduleo 

(a) 

Operationalization 
Driver 

Operationalization 
Modulek 

proc OperationalizationDriver(e,o) { 
   clear the e’s semantics attributes and 
             the evaluator. 
   Let a the operational assignment of o 
   then 
     ev ← a(e) 
     set the evaluator of e to ev 
     foreach child element eh of e 
          OperationalizationDriver(eh,o) 
} 

(b) 
prog { 
  doc ← query the document URI. 
  t ← build the document tree for doc. 
  operationalizationDriver(t,lmexp1Recollection) 
  c(t) with c the computing procedure of  
            t’s evaluator. 
  cvars ← value of t’s cvars semantic attribute. 
  operationalizationDriver(t,lmexp1Evaluation). 
  create the application GUI with cvars and 
         the following callback for the compute  
         button: 
          proc() { 
            if is possible to create the variable 
               binding 
               set t’s bind to this binding. 
               c(t) with c the computing procedure 
                    of t’s evaluator.   
               display t’s resul.  
          }       
} 

(c)

 
Fig. 10 (a) Structure of an OADDS processor. Predefined components are shadowed, (b) pseudo-code for the operationalization driver, (c) 

Pseudo-code of the glue program for the EXPML(1)’s processor. 

In Fig. 10c the glue program of the processor for the calculation of the EXPML(1)’s expressions is outlined. 

5 Related Work 

PADDS has recently been proposed in [25]. The origin of OADDS is dated to [23]. In [20] a first attempt to introduce 
semantic modularity mechanisms in the model is given. Preliminary versions of the model, closer to that described in 
this paper, are outlined in [22][24]. In [21] an updated survey on ADDS is presented, which include short descriptions 
of PADDS and OADDS. 

Modern schema languages [13] are equipped with modularization facilities for the incremental definition of XML-
based descriptive markup languages. With PADDS we don’t attempt to provide an alternative to these proposals, but we 
abstract some useful patterns for the incremental definition of these languages. In addition, these patterns can be 
subsequently implemented by using a specific grammatical formalism. We have chosen a DTD-based implementation 
because DTDs are easy-to-use by developers and easy-to-understand by domain-experts. This choice doesn’t discard 
alternative implementations that use more sophisticated schema languages. In fact, our implementation is based on 
proposals for modularization of DTDs like that used in the modularization of XHTML [26]. Moreover, our grammar 
production specifications resemble the mechanisms underlying architectural forms in HyTime [9].  

There are many proposals for the processing of descriptive markup languages. In their more basic form, they are 
focused on the intermediate representation of the marked documents produced by the parsers. From these, the event-
based and the tree-based ones are the most widely used [2]. The particular implementations of our OADDS model can 
take advantage of these representations.  Hence OADDS can be considered as regulating and structuring the domain-
specific code that operates in these representations. This is facilitated by the wide availability of object-oriented 
frameworks that implement these representations [2] and by the ease of giving object-oriented implementations of 
OADDS (like that described in [22][25]).   

                                                           
4 This program plays a role analogous to the main function provided with YACC specifications [10].   



Draft version. Citation: Sierra,JL; Navarro, A; Fernández-Manjón, B; Fernández-Valmayor, A. Incremental Definition and Operationalization of 
Domain-Specific Markup Languages in ADDS. ACM SIGPLAN Notices 40(12),28-37. 2005 
 

OADDS is inspired by the techniques for the construction of modular language processors. These techniques have 
been popularized inside the functional programming community, where the main approach is based on monads and 
monads transformers [14]. Similar ideas have also been applied in the object-oriented arena [6], where mixins [3] are 
used as an alternative to monad transformers. In turn, attribute grammars [12][18] are also amenable to including 
semantic modularity mechanisms, which are usually achieved by using some sort of attribute propagation patterns [11]. 
These proposals promote modularity by abstracting the context (e.g. the input and outputs of a processor) and the 
control (e.g. how the basic processing steps are chained). OADDS focuses on the evaluation of document trees. In this 
way it abstracts context in terms of tables of semantic attributes that can be incrementally extended. In addition, 
OADDS has a limited abstraction of control using pluggable invocation procedures. Finally, one of the main pragmatic 
limitations of OADDS is to obviate the static typing of the OADDS processors. While static typing of modular 
processors remains an open problem,  approaches to static typing followed in [6][14] could be adapted to the OADDS 
context, as well as those behind the type-safe solutions of the so-called expression problem (i.e. definition of functions 
on trees that can be extended with new types of nodes) [27]. In addition, other types of static analysis that are not 
currently contemplated in OADDS could be incorporated into the model to facilitate the construction of processors (e.g. 
circularity tests in the context of attribute grammar-based specifications [18]).   

6 Conclusions and Future Work 

The practical use of DSMLs in the development of applications depends critically on being able to incrementally define 
and operationalize these DSMLs. This is a lesson learned during our experiences in the document-oriented construction 
of content-intensive (e.g. educational, hypermedia and knowledge-based) applications. Therefore, we have included 
mechanisms to deal with these matters in ADDS, our approach to the document-oriented development of this kind of 
applications.  

DSMLs in ADDS are incrementally defined according to the PADDS technique, and their processors are 
incrementally built following the OADDS model. PADDS abstracts several basic mechanisms that enable the 
incremental definition of DSMLs by combining and extending linguistic modules. The technique also contemplates the 
resolution of conflicts between linguistic modules, and the production of different versions of the same DSML varying 
the names in the markup vocabulary.  We have carried out a DTD-based implementation of the technique, because DTD 
simplicity was well suited to our usability requirements. Nevertheless, the technique can be applied to other schema 
languages in a straightforward manner. 

The incremental definition of DSMLs is parallel at the operational level with the incremental construction of their 
processors. This construction is regulated with the OADDS model. Incremental operationalization in OADDS is 
enabled by extensible tables of semantic attributes, and by the explicit representation of the invocation inside the 
evaluators. We think that our solution achieves a good trade-off between the configurability of the final processors and 
the usability of the approach.   

Currently we are exploring the use of meta DSMLs (i.e. DSMLs used to mark up documents describing OADDS 
processors). Thus we hope to overcome some of the limitations of the model regarding static analysis, because 
additional information required by typing and other static proofs (e.g. circularity tests) can be explicitly incorporated in 
the markup added to the documents describing the processors.  As future work, we are considering experimenting with 
alternatives to PADDS and OADDS based on object-oriented attributed grammars [18].  

References 

[1] Aho, A., Sethi, R. and Ullman, J. D. (1986). “Compilers: Principles, Techniques and Tools”. Adisson-Wesley.  
[2] Birbeck, M et al. (2001). “Professional XML 2nd Edition”. WROX Press.  
[3] Bracha, G. (1990). “Mixin-based Inheritance”. ACM SIGPLAN Notices, 25(10),303-311.  
[4] Clark,J. and Makoto,M (eds) (2001) “Relax NG Tutorial”. Oasis Specification.  
[5] Coombs, J. H., Renear, A. H. and DeRose, S. J.(1987). “Markup Systems and the Future of Scholarly Text Processing”. 

Communications of the ACM 30(11),933-947.  



Draft version. Citation: Sierra,JL; Navarro, A; Fernández-Manjón, B; Fernández-Valmayor, A. Incremental Definition and Operationalization of 
Domain-Specific Markup Languages in ADDS. ACM SIGPLAN Notices 40(12),28-37. 2005 

 
[6] Duggan, D. (2000). “A Mixin-Based Semantic-Based Approach to Reusing Domain-Specific Programming Languages”. 

ECOOP’2000. Cannes. France.  
[7] Fernández-Valmayor, A., López Alonso, C., Sèrè A. and Fernández-Manjón,B. (1999). “Integrating an Interactive Learning 

Paradigm for Foreign Language Text Comprehension into a Flexible Hypermedia system”.  IFIP WG3.2-WG3.6 Conf. Univ. 
California Irvine, California, USA.  

[8] Goldfarb, C. F. (1990).The SGML Handbook. Oxford University Press.  
[9] International Standards Organization ISO. (1997). “Hypermedia/Time-based Structuring Language (HyTime) – 2d Edition”. 

ISO/IEC 10744.  
[10] Johnson,S.C. (1975).“YACC-yet Another Compiler-Compiler”. CS Tech. Report 32. AT&T Bell Laboratories.  
[11] Kastens,U. and Waite,W.M. (1994). “Modularity and Reusability in Attribute Grammars”. Acta Informatica, 31(7), 601-627.  
[12] Knuth,D.E. (1968). “Semantics of Context-free Languages”. Mathematical Systems Theory, 2(2), 127-145.  
[13] Lee,D. and Chu,W.W. (2000). “Comparative Analysis of Six XML Schema Languages”. ACM SIGMOD Record. 29(3).  
[14] Liang,S., Hudak,P. and Jones,M.P. (1995). “Monad Transformers and Modular Interpreters”. 22nd ACM Symposium on 

Principles of Programming Languages. San Francisco. CA.  
[15] Makoto,M., Lee,D. and Mani,M. (2001). “Taxonomy of XML Schema Languages Using Formal Language Theory”. Extreme 

Markup Languages 2001. Montreal, Canada.  
[16] Megginson,D., Leventhal, M. and Ducharme,R. (1998). “Structuring XML Documents”. Prentice-Hall.  
[17] Navarro, A., Fernández-Valmayor, A., Fernández-Manjón, B. and Sierra, J.L. (2004). “Conceptualization prototyping and 

process of hypermedia applications”. International Journal of Software Engineering and Knowledge Engineering, 14(6),  565-
602. 

[18] Pakki, J. (1995). “Attribute Grammar Paradigms – A High-Level Methodology in Language Implementation”. ACM 
Computing Surveys 27(2),196-255.  

[19] Sierra, J. L., Fernández-Manjón, B., Fernández-Valmayor, A. and Navarro, A. (2004a). “A Document-Oriented Approach to 
the Development of Knowledge-Based Systems”. LNAI 2040. Springer-Verlag.  

[20] Sierra, J. L., Fernández-Manjón, B., Fernández-Valmayor, A. and Navarro, A. (2002).  “An Extensible and Modular 
Processing Model for Document Trees”. Extreme Markup Languages 2002. Montreal. Canada. 

[21] Sierra, J. L., Fernández-Manjón, B., Fernández-Valmayor, A. and Navarro, A. (2005).  “Document-oriented Software 
Construction based on Domain-Specific Markup Languages”. ITCC’05. Las Vegas. USA.  

[22] Sierra, J. L., Fernández-Valmayor, A., Fernández-Manjón, B. and  Navarro, A. (2004b). “ADDS: A Document-Oriented 
Approach for Application Development”. Journal of Universal Computer Science, 10(9), 1302-1324.  

[23] Sierra, J. L., Fernández-Valmayor, A., Fernández-Manjón, B. and Navarro, A. (2001). “Operationalizing Application 
Descriptions with DTC: Building Applications with Generalized Markup Technologies”. SEKE'01. Buenos Aires. Argentina.  

[24] Sierra, J. L., Fernández-Valmayor, A., Fernández-Manjón, B. and Navarro, A. (2003). “Building Applications with Domain-
Specific Markup Languages: A Systematic Approach to the Development of XML-based Software”. ICWE 2003. Oviedo.  

[25] Sierra, J.L. (2004c). “Hacia un Paradigma Documental de Desarrollo de Aplicaciones (Torwards a Document-Oriented 
Paradigm for Application Development)”. Ph.D. Thesis (in Spanish). Univ. Complutense de Madrid. Madrid. Spain.  

[26] W3C World Wide Web Consortium. Web site “www.w3.org/TR”.  
[27] Wadler,P et al. (1998). “The Expression Problem”. Discussion on the Java Genericity Mailing List.  
 

 


