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Abstract—MOOCs are disrupting educational technology by 

democratizing access to high quality courses offered by some of 

the most prestigious universities. However, due to low entry cost 

and multiple other factors, MOOCs suffer from low retention 

rates: making MOOCs more interactive and engaging is 

therefore an important goal. Educational games provide 
environments that mix both immersion and quick feedback 

cycles, and we consider that games also have the potential to 

improve interaction and assessment in MOOCs environments; 

indeed, many game-like simulations have already been 

successfully applied within MOOCs in domains such as electronic 
circuits (schematic circuit simulator) and biology (foldit, 

eyewire). In this work, we analyze multiple such experiences and 

propose a catalogue of best practices that could contribute to the 

successful integration of educational games into MOOC 

platforms. 

Keywords—SGs, MOOCs, integration, best practices 

I.  INTRODUCTION 

Large-scale e-learning, in the form of Massive Online Open 
Courses (MOOCs), is in the process of transforming education. 

MOOCs offer a new opportunity for democratising and 

simplify the access to high-quality long life continuous 
education. Platforms such as edX (www.edx.org), Coursera 

(www.coursera.org), FutureLearn (www.futurelearn.com), 
FUN (www.france-universite-numerique.fr) and Iversity 

(www.iversity.org), among others, are quickly gaining in 
participating institutions and student enrollments – requiring 

only an internet-connected PC from students. 

Since students are not bound by physical location, tuition or 
contracts to the courses that they participate in, the market for 

students is highly competitive, both within and among 
platforms. Course and platform creators are therefore on the 

lookout for ways to differentiate themselves and increase the 
impact of their (highly-scalable) courses. The lack of student 

barriers also results in low retention rates, as students can 

easily decide to drop a course with min imal consequences. For 
example, course 2013's edX MOOC for 8.02x in Electricity 

and Magnetism found that only a 25.1% of its initially-active 
students took the final exam [1]. Retention rates for total 

registered students, regardless of activity level, are much lower, 
typically under 10% [1]–[3]   

While many aspects can affect student retention and 
satisfaction, we consider that assessment is a key element. 

Now, most of the MOOC assignments are multiple choice, 

short answer or programming assignments that are graded 
automatically by the MOOC system or essays that are 

evaluated by peers. However, there are different problems 
because the kind of exercises that can be automatically graded 

is limited and peer evaluation requires extra effort for the 
students and could discourage retention in the MOOC. 

Therefore, we are interested in new types of highly-interactive 

simulations and games that have been used in MOOCs from 
the onset. EdX, with over 65 member institutions as of early 

2015, has included specific support for the protein-folding 
game fold.it [4] exercise, along with circuit-schematics 

editor/simulator and a chemical-formula and protein-sequence 
editors. More recently, they have added access to the Eyewire 

crowd-sourced neuron mapping game. This game has already 

delivered, as of early 2015, more than 3.9 million cubes (each 
one a stack of brain images, which the player traces to 

reconstruct the 3D structure of the neuronal connections 
contained within), and lead very relevant results that has been 

published in high-impact scientific journals such as Nature. 
Eyewire has already announced that they plan to extend 

integration to other systems, using a public API and more 

delivery mechanisms to simplify integration of their serious 
game into different platforms (one assumes, MOOCs 

included). 

The main goal of this paper is to analyze the issues and 

constraints that serious games and simulations face for 
inclusion as part of MOOC courses, as well as highlight recent 

trends in the area. The integration can be analyzed from 
different perspectives, in particular, the depth of the 

integration, the issues related to deployment and the technical 

perspective. 

II. INTEGRATION OPTIONS IN MOOCS 

Although there are many competing MOOC platforms, few 
make their underlying source-code open for external inspection 

(and often improvement). In this section, we analyze the 
approaches towards complex activity integration found in two 

open-source MOOC platforms, edX (used by over 65 higher 
learning institutions worldwide) and OpenMOOC (with around 

7 institutions as of early 2015).  

A.  Integration options in edX    

edX supports a large number of different activity types and 
origins, most notably integrating LON-CAPA exercises and 

access to libraries of such exercises  [5]. LON-CAPA exercises 



are themselves somewhat extensible, as it is possible to link to 

external servers for customized grading by using the “external-
response” tag [6]. Some of these advanced exercise types are 

included in the default edX distribution, such as those 
involving circuits, protein sequence, or chemical molecule 

design. Extending LON-CAPA with new exercise types 
generally requires adding server-side code to allow these new 

types to be rendered in the student’s browser; although edX’s 

open-source nature and explicit support for extensibility (via 
the XBlocks mechanism) makes this easier than in other 

platforms, it still requires considerable expertise.  

Once developed, XBlocks (both LON-CAPA related and 

otherwise) can be shared, to be installed by administrators in 
other edX deployments. Several such XBlocks are available on 

GitHub
1
. As server-side components, XBlocks have direct 

access to the students’ profile, and can even include 

customized “authoring views” for use when their 

corresponding activities are added or modified within edX’s 
Studio course-authoring tool. For example, Microsoft has 

developed an XBlock that simplifies the inclusion of 
OfficeMix lectures as edX activities

2
. Preliminary work 

exp loring the inclusion of serious games as edX XBlocks has 
also been successful. 

A lightweight alternative to adding functionality by 

extending XBlocks, currently in development, is the use of a 
specialized type of LON-CAPA exercises by using a new 

“custom-response” tag called JSInput
3
. Within this tag, external 

HTML pages (which can be made arbitrarily complex via 

JavaScript) can be rendered and evaluated. Although JSInput 
exercises cannot contain specialized authoring or server-side 

code, reuse of JSInput activities requires only copying and 

pasting snippets of XML code pointing to the relevant pages. 

Another source of rich activities is through IMS Learning 

Tools Interoperability (LTI) support [7]. Currently, version 1.2 
is supported in edX. The use of LTI is widespread in traditional 

Virtual Learning Environments such as Moodle or Sakai; and it 
is possible to package complex games and simulations as LTI. 

However, LTI expects communication between activity and 
MOOC to take place only at the start and end of the activity; 

and therefore, makes it d ifficult to receive and act on learning 

analytics data generated during rich activities such as games or 
simulations; this disadvantage is shared with use of JSInput 

LON-CAPA activit ies.  

B. Integration options in OpenMOOC  

OpenMOOC relies on simple HTML forms for exercises, 
and does not provide modular extension hooks. Adding 

exercise “nuggets” (as evaluated activities are termed in 
OpenMOOC) requires changing the MOOC server’s source-

code. Even then, the open-source nature of the project would 
simplify applying these changes to other OpenMOOC 

installations. 

                                                                 
1  https://github.com/edx/edx-platform/wiki/List-of-XBlocks 
2  https://github.com/OfficeDev/xblock-officemix 
3  http://edxpdrlab.readthedocs.org/en/latest/course_data_formats/jsinput.html 

III. SERIOUS GAMES IN MOOCS 

A. Integrating the game in the educational design 

Regarding the course design, we consider that the most 

promising approach is to treat the serious game as a new type 
of activity or exercise. From an educational design perspective, 

the integration of a SG as an activity inside a MOOC can be 
simplified to answering the following questions: 

1. Where do the students’ download / play the game ? 

2. Is it possible to extract students’ score from the game?  

3. Is it possible to extract students’ progress during the 

gameplay? 

To answer the first question, we need to analyze the nature 

of the SG, that is, the game platform (desktop, mobile/tablets, 
web based, etc.). MOOC course’s activities are usually web 

based activities; however it is not always possible to have a 
web based game that fits the educational needs, in particular, 

when the course’s author reuses a previously existing game. In 
addition, even when the SG is web based, the course’s author 

must know/understand the technical details regarding the 

deployment of the game itself, that is, uploading the game and 
all the game assets to the MOOC platform and creating the 

entry web page where the game it is initialized. Both cases 
pose some difficulties for educators that do not have strong 

computer science skills. 

Unlike other multimedia resources included inside a 

MOOC that must be complemented with a traditional 

questionnaire or a reflection activity to evaluate acquired 
knowledge, SGs are a valuable assessment tool in and of 

themselves [8], providing both frequent and immediate 
feedback to the player during gameplay paired with optional 

summary feedback, usually as a score, when the player finishes 
the game or reaches a milestone. This summary feedback can 

be a unique value or a defined set of values (e.g., score, time 

spent playing, actual time in particular game tasks, number of 
errors, etc.) that can be used to automatically evaluate the 

student and, thus, alleviate the workload of the MOOC’s 
instructors. In order to use students’ scores, the course’s author 

must configure how these scores are sent back to the MOOC 
platform. This, poses two problems, first the game developer 

has to provide a means to integrate their games into a MOOC, 
that is, the game developer must know and develop a 

communication module for each MOOC platform, and second 

the course’s author still needs to pair the SG gameplays with 
the course, again, requiring to have a high level of technical 

expert ise. 

Additionally, in-game evaluation can be performed without 

the student being aware of it (a practice known as “Stealth 
Assessment”[8]). Game-players frequently report [9] entering a 

state of flow [10], which implies optimal conditions for 

learning, but a traditional questionnaire can break the flow of 
learning. Implicit (or stealth) evaluation during game-play does 

not have such disruptive effects on the game’s immersion, and 
is therefore highly valuable to preserve student motivation. 

Moreover, sometimes the final result (e.g. score) is not the 
most relevant assessment tool, but the continuous achievements 

and progress during the gameplay, that is, the assessment 



process takes into account not only the results but the timeline 

these achievements. 

B. Game deployment 

Since MOOCs are delivered via web to the student’s 

browser, all MOOC activit ies can be split into a server-side 

portion and a client-side portion. The server-side portion of 
each activity is in charge of configuring and rendering the 

activity; and later on, recording the student’s interactions with 
it. The client-side portion is in charge of actually presenting the 

activity to the student, and interacting with the student during 
its execution. Client-side interaction may or may not involve 

querying the activities’ server-side component. 

 

 

Fig. 1. Deployment models 

The image depicts two major decisions for game-platform 

integration. In the left-hand side, the game-client and the SG 
server is integrated within the MOOC; in the right-hand side, 

the game-client and the SG server are external to the MOOC. 

As depicted by the vertical split, these decisions can be taken 
independently for both the game-client and the game-server, 

with different advantages and disadvantages for each. 

An in-browser game client requires the game client to work 

in a browser; this restricts the range of possible languages and 
platforms to those that can be embedded into browsers, such as 

Flash or Java applets (available as browser plugins). Recent 

advances in web standards and scripting, and increased 
browser support for these standards (eg.: HTML5 with 

WebGL), as well as dimin ishing support for plugins, have 
driven adoption of HTML-only game clients. 

On the other hand, stand-alone game clients allow the 
greatest freedom during game design, and potentially greater 

game performance in terms of speed, at the cost of having to 
build and distribute many more game versions: one for each 

supported platform such as Windows, Mac or Linux. W ith the 

increased availability of cheap computational devices and 
communications, access to many online resources cannot be 

presumed to be through a desktop computer with keyboard and 
mouse; support for mobile, touch-enabled devices such as 

Android tablets or Apple iPads adds additional platforms to 
support or target. The proliferation of platforms has made 

multiplatform game development (where a single game can be 

deployed to several platforms) a very appealing choice; for 
example, the Unity 3D cross-platform game development 

engine boasts a 45% market share as of early 2015 [11]. 

When the game’s server-side component is hosted in the 

MOOC, the game behaves (from the MOOC’s course author’s 
point of view) as just another activity. An alternative is to use 

an external game server, and use a proxy to that server to send 
and gather informat ion. Although this involves additional 

complexity in order to manage user sessions and access data, it 
is important in applications where significant functionality or 

data is only made available on request. This also allows game 

servers to track player performance internally, without needing 
to query the MOOC. Conversely, it is now the responsibility of 

the MOOC to use game server APIs to inquire on student 
performance and interactions after (or even during) their use of 

the game. 

In the case of the edX integrations of EyeWire
4
 and fold.it

5
, 

both use external servers, allowing their clients to load puzzles 
on demand. In the case of EyeWire, puzzles are composed of 

layers of microscope images of brain tissue; while, for fold.it, 

puzzles require folding proteins into a stable lowest-energy 
state. While the EyeWire client is web-based, using WebGL 

for its graphics and Javascript for interaction, the fold.it client 
has higher computational demands, and is therefore external, 

with versions available for Windows, MacOS X and Linux 
platforms. 

IV. TECHNICAL ISSUES IN SERIOUS GAME DEPLOYMENT 

The previous perspectives, in turn, raise questions related to 

the technical feasibility of the different approaches, which take 
a greater relevance when the massive potential size of MOOC 

deployments is taken into account. 

A.  SG execution 

The core SG’s execution may be located either in the 
server, the client’s computer or a mixed approach. The least 

taxing for the servers is (obviously) to deploy the game to the 

students’ computers and run it there. 

However, this typically requires the students to go through 

different installation procedures (e.g. a platform-dependent 
executable, as in the case of Fold.it) or to be able to support 

specific technologies and plugins in their browsers (e.g. a Java 
plugin for edX’s LON-CAPA applets for exercises involving 

proteins and genes). 

Both approaches typically impose additional technical 
requirements in those target computers, which they may or may 

not be able to meet, given the varied populations that typically 
participate in these courses. 

In addition, and depending on the course’s profile, this may 
also be a challenge in terms of assessment, since the game is 

run locally and the host system is unaware of how the students 

interact with the game. 

For this reason, it also feasible to run the code in the server. 

The code is bundled in the MOOC infrastructure and the 
students’ computers act as thin clients. This has the advantage 

of allowing a great degree of control and insight into how each 

                                                                 
4  https://eyewire.org 
5  http://fold.it/portal 

 



student is playing, and often reduces the technical requirements 
to run the game. However, this is often impossible given the 

enormous communication overhead and the risk of 
vulnerabilities in the game code that could potentially affect the 

hosting server. 

As a combination of those two ideas, the most interesting 

approach is probably a mixed scenario: games that have both a 
server and a client component for each exercise. The games 

then run on the students’ computers, but send periodic updates 

to the server. The server can collect detailed information and 
gameplay traces for assessment and tracking purposes. 

In this approach, all games could share the same server-side 
component, and communicate with the host following specific 

APIs common to all deployed games. This improves 
compatibility and helps in maintaining costs at a reasonable 

level. 

B. Setting up a communication channel 

When taking the mixed approach (with a game component 
in the client and another in the server), the next technical 

question to be solved is when and how the games are expected 

to communicate with the server. 

The simplest and most common approach is to 

communicate at the end of the gameplay session, so that the 
game can report back information about the session for 

tracking and assessment purposes. However, it is also very 
common to have an initial communication as soon as the game 

is launched, in order to set communication parameters and a 

global configuration for the play-through. 

In addition, especially when gathering detailed tracking 

information, deferring the transmission of results to the end of 
the play-through presents some issues: the student may not 

complete the playthrough (therefore loosing valuable 
intermediate tracking data) and the endgame data submissions 

may be too large. To alleviate this, the communication may 

contemplate intermediate submissions of partial data to be 
collected by the server. 

C. Game authoring and modification 

The development of the games also presents important 
technical barriers that require attention. Most game 

developments are closed products developed by third parties. 

But while the model is common, this makes games obsolete 
much earlier, since they cannot accommodate even minor 

updates. 

This prompts for the creation of games that are easy to 

maintain and modify, therefore ensuring the future updatability 
of those games. However, this will often require easy-to-use 

authoring environments that do not present significant 

technical barriers when it comes to making changes in the 
game.  

Ideally, the games should fit on the requirement of the 
Open Education Resources  movement’s “4 Rs”: reuse, 

redistribute, revise, remix [12]. In this way, the investment is 
better protected against future changes, the community benefits 

from previous works and the costs can be driven down. 

When taken to the extreme, the idea of “easy to create, easy 

to modify” games also opens the door for further models such 

as those identified by Copper et al. [4], who detected the 
preference of users towards user-created playing tools on 

Fold.it. 

V. BEST PRACTICES 

Based on our previous analysis, we propose the following 
catalogue of best practices (see Table I). We subdivide the 

responsibilit ies into three components, game, course and 
platform. 

Usability issues and the deployment models described in 
section III, and the technical difficult ies described in section IV 

are not completely new in the e-learning field, the have a close 

relation to the very same problems that affected Learning 
Management Systems (LMS) years ago. 

To alleviate the aforementioned limitations in the context of 
LMS, there were proposed different e-learning standards and 

TABLE I.  BEST PRACTICES 

Component 

dimension 

Technical Educational 

game  Support standardized packaging formats, 
providing search-friendly metadata. 

 Simplify integration into host courses and 

platforms. 

 Use student profiles to customize learning experience.  

 Provide information on student actions and progress to the MOOC 

platform. 

 Allow authoring access to the educational content, so that course 
creators can tweak it (OER spirit). 

course  Integrate guest activity into general course 

progression provide activity with student profile, 

 Reflect in-game decisions in updated profile. 

 Provide educational context for SG, both before and after. 

 Select the SG activities that best advance the educational goals of the 

course. 

platform  Clear APIs for guest activities. 

 Support several (incremental) integration levels. 

 Collect and facilitate analysis of data from guests, allowing, for 

example, student leaderboards to be generated. 

 Support A/B testing of game variants. 

 



specifications, specifically, del Blanco et al. [13] argue for 3 

types of integration of SGs within a LMS. Although MOOC 
platforms are not LMS and hence the very same specifications 

may not be applicable (or even not desirable) it is clear that it is 
needed a common set of agreements between game developers 

and MOOC developers in order to take the most advantage 
assessment features of SGs. In addition, this agreements will 

led to the simplification of the authoring perspective (hiding 

most of technical details for the end user), fostering the 
reutilization of the SG and allowing the tailoring of the SG to 

the student profile. 

SGs is that can generate a detailed set of the student 

performance data that can be collected inside the MOOC just to 
track student progress, for example, in-game decision can lead 

to the issuing of a badge that will be reflected in the user 
profile, or to suggest additional activities (or even other MOOC 

courses). 

MOOC platform developers are usually focused on the 
usability and scalability of the core modules of the platform. 

Still having a clear defined integration model for third party 
activities and providing incremental levels of integration can 

attract SG developers and thus attracting educators. 

VI. CONCLUSIONS AND FUTURE WORK 

According to the latest editions of the NMC Horizon 
Report, MOOCs and Serious Games are two of the most 

relevant trends in higher education, with engagement rates 
being the most relevant hindering factor in the former [14], 

[15]. The potential synergies for both are significant, with 

MOOCs being an ideal platform for serious games deployment 
and serious games being an ideal medium to increase 

engagement rates. 

However, the challenges are also significant: serious games 

often need to tackle deployment issues even when applied on a 
small stage, and the scale of MOOCs requires especial 

attention to this issue. In contrast, the other common issue in 

serious games initiatives is the excessive development cost. In 
this case, the scale is a favorable factor, since a single game 

can reach wider audiences, therefore improving the potential 
return on the investment. When developed (and deployed) with 

adequate care to interoperability factors, the investment is 
further protected by allowing deployment across different 

courses and platforms. 

In this work we have analyzed different experiences in 
simulators and serious games used as MOOC activities, as well 

as the most common technical issues that these deployments 
face. From this analysis, we have proposed a set of best 

practices and a brief overview of the current standardization 
landscape at the intersection of serious games and MOOCs. 

Given the comparatively short history of MOOCs as a 
medium, platform maturity is much lower than that of 

traditional VLEs, and considerable research is still necessary to 

confirm our in itial findings. However, given the numbers 
involved in MOOCs and the rate of growth of current 

deployments, the future is exciting and the wait for new 

initiatives data will not be long. 
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