
Requirements for educational games in MOOCs

Manuel Freire, Iván Martínez-Ortiz, Pablo Moreno-Ger, Baltasar Fernández-Manjón

Dept. Software Engineering and Artificial Intelligence

Universidad Complutense de Madrid, Facultad de Informát ica

C/ Profesor Jose Garcia Santesmases, 9 28040 Madrid, Spain

{manuel.freire, imartinez, pablom, balta}@fdi.ucm.es

Abstract—MOOCs are disrupting educational technology by

democratizing access to high quality courses offered by some of

the most prestigious universities. However, due to low entry cost

and multiple other factors, MOOCs suffer from low retention

rates: making MOOCs more interactive and engaging is

therefore an important goal. Educational games provide
environments that mix both immersion and quick feedback

cycles, and we consider that games also have the potential to

improve interaction and assessment in MOOCs environments;

indeed, many game-like simulations have already been

successfully applied within MOOCs in domains such as electronic
circuits (schematic circuit simulator) and biology (foldit,

eyewire). In this work, we analyze multiple such experiences and

propose a catalogue of best practices that could contribute to the

successful integration of educational games into MOOC

platforms.

Keywords—SGs, MOOCs, integration, best practices

I. INTRODUCTION

Large-scale e-learning, in the form of Massive Online Open
Courses (MOOCs), is in the process of transforming education.

MOOCs offer a new opportunity for democratising and

simplify the access to high-quality long life continuous
education. Platforms such as edX (www.edx.org), Coursera

(www.coursera.org), FutureLearn (www.futurelearn.com),
FUN (www.france-universite-numerique.fr) and Iversity

(www.iversity.org), among others, are quickly gaining in
participating institutions and student enrollments – requiring

only an internet-connected PC from students.

Since students are not bound by physical location, tuition or
contracts to the courses that they participate in, the market for

students is highly competitive, both within and among
platforms. Course and platform creators are therefore on the

lookout for ways to differentiate themselves and increase the
impact of their (highly-scalable) courses. The lack of student

barriers also results in low retention rates, as students can

easily decide to drop a course with min imal consequences. For
example, course 2013's edX MOOC for 8.02x in Electricity

and Magnetism found that only a 25.1% of its initially-active
students took the final exam [1]. Retention rates for total

registered students, regardless of activity level, are much lower,
typically under 10% [1]–[3]

While many aspects can affect student retention and
satisfaction, we consider that assessment is a key element.

Now, most of the MOOC assignments are multiple choice,

short answer or programming assignments that are graded
automatically by the MOOC system or essays that are

evaluated by peers. However, there are different problems
because the kind of exercises that can be automatically graded

is limited and peer evaluation requires extra effort for the
students and could discourage retention in the MOOC.

Therefore, we are interested in new types of highly-interactive

simulations and games that have been used in MOOCs from
the onset. EdX, with over 65 member institutions as of early

2015, has included specific support for the protein-folding
game fold.it [4] exercise, along with circuit-schematics

editor/simulator and a chemical-formula and protein-sequence
editors. More recently, they have added access to the Eyewire

crowd-sourced neuron mapping game. This game has already

delivered, as of early 2015, more than 3.9 million cubes (each
one a stack of brain images, which the player traces to

reconstruct the 3D structure of the neuronal connections
contained within), and lead very relevant results that has been

published in high-impact scientific journals such as Nature.
Eyewire has already announced that they plan to extend

integration to other systems, using a public API and more

delivery mechanisms to simplify integration of their serious
game into different platforms (one assumes, MOOCs

included).

The main goal of this paper is to analyze the issues and

constraints that serious games and simulations face for
inclusion as part of MOOC courses, as well as highlight recent

trends in the area. The integration can be analyzed from
different perspectives, in particular, the depth of the

integration, the issues related to deployment and the technical

perspective.

II. INTEGRATION OPTIONS IN MOOCS

Although there are many competing MOOC platforms, few
make their underlying source-code open for external inspection

(and often improvement). In this section, we analyze the
approaches towards complex activity integration found in two

open-source MOOC platforms, edX (used by over 65 higher
learning institutions worldwide) and OpenMOOC (with around

7 institutions as of early 2015).

A. Integration options in edX

edX supports a large number of different activity types and
origins, most notably integrating LON-CAPA exercises and

access to libraries of such exercises [5]. LON-CAPA exercises

are themselves somewhat extensible, as it is possible to link to

external servers for customized grading by using the “external-
response” tag [6]. Some of these advanced exercise types are

included in the default edX distribution, such as those
involving circuits, protein sequence, or chemical molecule

design. Extending LON-CAPA with new exercise types
generally requires adding server-side code to allow these new

types to be rendered in the student’s browser; although edX’s

open-source nature and explicit support for extensibility (via
the XBlocks mechanism) makes this easier than in other

platforms, it still requires considerable expertise.

Once developed, XBlocks (both LON-CAPA related and

otherwise) can be shared, to be installed by administrators in
other edX deployments. Several such XBlocks are available on

GitHub
1
. As server-side components, XBlocks have direct

access to the students’ profile, and can even include

customized “authoring views” for use when their

corresponding activities are added or modified within edX’s
Studio course-authoring tool. For example, Microsoft has

developed an XBlock that simplifies the inclusion of
OfficeMix lectures as edX activities

2
. Preliminary work

exp loring the inclusion of serious games as edX XBlocks has
also been successful.

A lightweight alternative to adding functionality by

extending XBlocks, currently in development, is the use of a
specialized type of LON-CAPA exercises by using a new

“custom-response” tag called JSInput
3
. Within this tag, external

HTML pages (which can be made arbitrarily complex via

JavaScript) can be rendered and evaluated. Although JSInput
exercises cannot contain specialized authoring or server-side

code, reuse of JSInput activities requires only copying and

pasting snippets of XML code pointing to the relevant pages.

Another source of rich activities is through IMS Learning

Tools Interoperability (LTI) support [7]. Currently, version 1.2
is supported in edX. The use of LTI is widespread in traditional

Virtual Learning Environments such as Moodle or Sakai; and it
is possible to package complex games and simulations as LTI.

However, LTI expects communication between activity and
MOOC to take place only at the start and end of the activity;

and therefore, makes it d ifficult to receive and act on learning

analytics data generated during rich activities such as games or
simulations; this disadvantage is shared with use of JSInput

LON-CAPA activit ies.

B. Integration options in OpenMOOC

OpenMOOC relies on simple HTML forms for exercises,
and does not provide modular extension hooks. Adding

exercise “nuggets” (as evaluated activities are termed in
OpenMOOC) requires changing the MOOC server’s source-

code. Even then, the open-source nature of the project would
simplify applying these changes to other OpenMOOC

installations.

1 https://github.com/edx/edx-platform/wiki/List-of-XBlocks
2 https://github.com/OfficeDev/xblock-officemix
3 http://edxpdrlab.readthedocs.org/en/latest/course_data_formats/jsinput.html

III. SERIOUS GAMES IN MOOCS

A. Integrating the game in the educational design

Regarding the course design, we consider that the most

promising approach is to treat the serious game as a new type
of activity or exercise. From an educational design perspective,

the integration of a SG as an activity inside a MOOC can be
simplified to answering the following questions:

1. Where do the students’ download / play the game ?

2. Is it possible to extract students’ score from the game?

3. Is it possible to extract students’ progress during the

gameplay?

To answer the first question, we need to analyze the nature

of the SG, that is, the game platform (desktop, mobile/tablets,
web based, etc.). MOOC course’s activities are usually web

based activities; however it is not always possible to have a
web based game that fits the educational needs, in particular,

when the course’s author reuses a previously existing game. In
addition, even when the SG is web based, the course’s author

must know/understand the technical details regarding the

deployment of the game itself, that is, uploading the game and
all the game assets to the MOOC platform and creating the

entry web page where the game it is initialized. Both cases
pose some difficulties for educators that do not have strong

computer science skills.

Unlike other multimedia resources included inside a

MOOC that must be complemented with a traditional

questionnaire or a reflection activity to evaluate acquired
knowledge, SGs are a valuable assessment tool in and of

themselves [8], providing both frequent and immediate
feedback to the player during gameplay paired with optional

summary feedback, usually as a score, when the player finishes
the game or reaches a milestone. This summary feedback can

be a unique value or a defined set of values (e.g., score, time

spent playing, actual time in particular game tasks, number of
errors, etc.) that can be used to automatically evaluate the

student and, thus, alleviate the workload of the MOOC’s
instructors. In order to use students’ scores, the course’s author

must configure how these scores are sent back to the MOOC
platform. This, poses two problems, first the game developer

has to provide a means to integrate their games into a MOOC,
that is, the game developer must know and develop a

communication module for each MOOC platform, and second

the course’s author still needs to pair the SG gameplays with
the course, again, requiring to have a high level of technical

expert ise.

Additionally, in-game evaluation can be performed without

the student being aware of it (a practice known as “Stealth
Assessment”[8]). Game-players frequently report [9] entering a

state of flow [10], which implies optimal conditions for

learning, but a traditional questionnaire can break the flow of
learning. Implicit (or stealth) evaluation during game-play does

not have such disruptive effects on the game’s immersion, and
is therefore highly valuable to preserve student motivation.

Moreover, sometimes the final result (e.g. score) is not the
most relevant assessment tool, but the continuous achievements

and progress during the gameplay, that is, the assessment

process takes into account not only the results but the timeline

these achievements.

B. Game deployment

Since MOOCs are delivered via web to the student’s

browser, all MOOC activit ies can be split into a server-side

portion and a client-side portion. The server-side portion of
each activity is in charge of configuring and rendering the

activity; and later on, recording the student’s interactions with
it. The client-side portion is in charge of actually presenting the

activity to the student, and interacting with the student during
its execution. Client-side interaction may or may not involve

querying the activities’ server-side component.

Fig. 1. Deployment models

The image depicts two major decisions for game-platform

integration. In the left-hand side, the game-client and the SG
server is integrated within the MOOC; in the right-hand side,

the game-client and the SG server are external to the MOOC.

As depicted by the vertical split, these decisions can be taken
independently for both the game-client and the game-server,

with different advantages and disadvantages for each.

An in-browser game client requires the game client to work

in a browser; this restricts the range of possible languages and
platforms to those that can be embedded into browsers, such as

Flash or Java applets (available as browser plugins). Recent

advances in web standards and scripting, and increased
browser support for these standards (eg.: HTML5 with

WebGL), as well as dimin ishing support for plugins, have
driven adoption of HTML-only game clients.

On the other hand, stand-alone game clients allow the
greatest freedom during game design, and potentially greater

game performance in terms of speed, at the cost of having to
build and distribute many more game versions: one for each

supported platform such as Windows, Mac or Linux. W ith the

increased availability of cheap computational devices and
communications, access to many online resources cannot be

presumed to be through a desktop computer with keyboard and
mouse; support for mobile, touch-enabled devices such as

Android tablets or Apple iPads adds additional platforms to
support or target. The proliferation of platforms has made

multiplatform game development (where a single game can be

deployed to several platforms) a very appealing choice; for
example, the Unity 3D cross-platform game development

engine boasts a 45% market share as of early 2015 [11].

When the game’s server-side component is hosted in the

MOOC, the game behaves (from the MOOC’s course author’s
point of view) as just another activity. An alternative is to use

an external game server, and use a proxy to that server to send
and gather informat ion. Although this involves additional

complexity in order to manage user sessions and access data, it
is important in applications where significant functionality or

data is only made available on request. This also allows game

servers to track player performance internally, without needing
to query the MOOC. Conversely, it is now the responsibility of

the MOOC to use game server APIs to inquire on student
performance and interactions after (or even during) their use of

the game.

In the case of the edX integrations of EyeWire
4
 and fold.it

5
,

both use external servers, allowing their clients to load puzzles
on demand. In the case of EyeWire, puzzles are composed of

layers of microscope images of brain tissue; while, for fold.it,

puzzles require folding proteins into a stable lowest-energy
state. While the EyeWire client is web-based, using WebGL

for its graphics and Javascript for interaction, the fold.it client
has higher computational demands, and is therefore external,

with versions available for Windows, MacOS X and Linux
platforms.

IV. TECHNICAL ISSUES IN SERIOUS GAME DEPLOYMENT

The previous perspectives, in turn, raise questions related to

the technical feasibility of the different approaches, which take
a greater relevance when the massive potential size of MOOC

deployments is taken into account.

A. SG execution

The core SG’s execution may be located either in the
server, the client’s computer or a mixed approach. The least

taxing for the servers is (obviously) to deploy the game to the

students’ computers and run it there.

However, this typically requires the students to go through

different installation procedures (e.g. a platform-dependent
executable, as in the case of Fold.it) or to be able to support

specific technologies and plugins in their browsers (e.g. a Java
plugin for edX’s LON-CAPA applets for exercises involving

proteins and genes).

Both approaches typically impose additional technical
requirements in those target computers, which they may or may

not be able to meet, given the varied populations that typically
participate in these courses.

In addition, and depending on the course’s profile, this may
also be a challenge in terms of assessment, since the game is

run locally and the host system is unaware of how the students

interact with the game.

For this reason, it also feasible to run the code in the server.

The code is bundled in the MOOC infrastructure and the
students’ computers act as thin clients. This has the advantage

of allowing a great degree of control and insight into how each

4 https://eyewire.org
5 http://fold.it/portal

student is playing, and often reduces the technical requirements
to run the game. However, this is often impossible given the

enormous communication overhead and the risk of
vulnerabilities in the game code that could potentially affect the

hosting server.

As a combination of those two ideas, the most interesting

approach is probably a mixed scenario: games that have both a
server and a client component for each exercise. The games

then run on the students’ computers, but send periodic updates

to the server. The server can collect detailed information and
gameplay traces for assessment and tracking purposes.

In this approach, all games could share the same server-side
component, and communicate with the host following specific

APIs common to all deployed games. This improves
compatibility and helps in maintaining costs at a reasonable

level.

B. Setting up a communication channel

When taking the mixed approach (with a game component
in the client and another in the server), the next technical

question to be solved is when and how the games are expected

to communicate with the server.

The simplest and most common approach is to

communicate at the end of the gameplay session, so that the
game can report back information about the session for

tracking and assessment purposes. However, it is also very
common to have an initial communication as soon as the game

is launched, in order to set communication parameters and a

global configuration for the play-through.

In addition, especially when gathering detailed tracking

information, deferring the transmission of results to the end of
the play-through presents some issues: the student may not

complete the playthrough (therefore loosing valuable
intermediate tracking data) and the endgame data submissions

may be too large. To alleviate this, the communication may

contemplate intermediate submissions of partial data to be
collected by the server.

C. Game authoring and modification

The development of the games also presents important
technical barriers that require attention. Most game

developments are closed products developed by third parties.

But while the model is common, this makes games obsolete
much earlier, since they cannot accommodate even minor

updates.

This prompts for the creation of games that are easy to

maintain and modify, therefore ensuring the future updatability
of those games. However, this will often require easy-to-use

authoring environments that do not present significant

technical barriers when it comes to making changes in the
game.

Ideally, the games should fit on the requirement of the
Open Education Resources movement’s “4 Rs”: reuse,

redistribute, revise, remix [12]. In this way, the investment is
better protected against future changes, the community benefits

from previous works and the costs can be driven down.

When taken to the extreme, the idea of “easy to create, easy

to modify” games also opens the door for further models such

as those identified by Copper et al. [4], who detected the
preference of users towards user-created playing tools on

Fold.it.

V. BEST PRACTICES

Based on our previous analysis, we propose the following
catalogue of best practices (see Table I). We subdivide the

responsibilit ies into three components, game, course and
platform.

Usability issues and the deployment models described in
section III, and the technical difficult ies described in section IV

are not completely new in the e-learning field, the have a close

relation to the very same problems that affected Learning
Management Systems (LMS) years ago.

To alleviate the aforementioned limitations in the context of
LMS, there were proposed different e-learning standards and

TABLE I. BEST PRACTICES

Component

dimension

Technical Educational

game Support standardized packaging formats,
providing search-friendly metadata.

 Simplify integration into host courses and

platforms.

 Use student profiles to customize learning experience.

 Provide information on student actions and progress to the MOOC

platform.

 Allow authoring access to the educational content, so that course
creators can tweak it (OER spirit).

course Integrate guest activity into general course

progression provide activity with student profile,

 Reflect in-game decisions in updated profile.

 Provide educational context for SG, both before and after.

 Select the SG activities that best advance the educational goals of the

course.

platform Clear APIs for guest activities.

 Support several (incremental) integration levels.

 Collect and facilitate analysis of data from guests, allowing, for

example, student leaderboards to be generated.

 Support A/B testing of game variants.

specifications, specifically, del Blanco et al. [13] argue for 3

types of integration of SGs within a LMS. Although MOOC
platforms are not LMS and hence the very same specifications

may not be applicable (or even not desirable) it is clear that it is
needed a common set of agreements between game developers

and MOOC developers in order to take the most advantage
assessment features of SGs. In addition, this agreements will

led to the simplification of the authoring perspective (hiding

most of technical details for the end user), fostering the
reutilization of the SG and allowing the tailoring of the SG to

the student profile.

SGs is that can generate a detailed set of the student

performance data that can be collected inside the MOOC just to
track student progress, for example, in-game decision can lead

to the issuing of a badge that will be reflected in the user
profile, or to suggest additional activities (or even other MOOC

courses).

MOOC platform developers are usually focused on the
usability and scalability of the core modules of the platform.

Still having a clear defined integration model for third party
activities and providing incremental levels of integration can

attract SG developers and thus attracting educators.

VI. CONCLUSIONS AND FUTURE WORK

According to the latest editions of the NMC Horizon
Report, MOOCs and Serious Games are two of the most

relevant trends in higher education, with engagement rates
being the most relevant hindering factor in the former [14],

[15]. The potential synergies for both are significant, with

MOOCs being an ideal platform for serious games deployment
and serious games being an ideal medium to increase

engagement rates.

However, the challenges are also significant: serious games

often need to tackle deployment issues even when applied on a
small stage, and the scale of MOOCs requires especial

attention to this issue. In contrast, the other common issue in

serious games initiatives is the excessive development cost. In
this case, the scale is a favorable factor, since a single game

can reach wider audiences, therefore improving the potential
return on the investment. When developed (and deployed) with

adequate care to interoperability factors, the investment is
further protected by allowing deployment across different

courses and platforms.

In this work we have analyzed different experiences in
simulators and serious games used as MOOC activities, as well

as the most common technical issues that these deployments
face. From this analysis, we have proposed a set of best

practices and a brief overview of the current standardization
landscape at the intersection of serious games and MOOCs.

Given the comparatively short history of MOOCs as a
medium, platform maturity is much lower than that of

traditional VLEs, and considerable research is still necessary to

confirm our in itial findings. However, given the numbers
involved in MOOCs and the rate of growth of current

deployments, the future is exciting and the wait for new

initiatives data will not be long.

ACKNOWLEDGMENT

The e-UCM research group has been partially funded by

Regional Government of Madrid (eMadrid S2009/TIC-1650,

S2013/ICE-2715), by the Ministry of Education (TIN2010-
21735-C02-02, TIN2013-46149-C2-1-R), by the RIURE

Network (CYTED 513RT0471) and by the European
Commission (SEGAN 519332-LLP-1-2011-1-PT-KA3-

KA3NW and RAGE H2020-ICT-2014-1-644187).

REFERENCES

[1] S. Rayyan, D. T. Seaton, J. Belcher, D. E. Pritchard, and I. Chuang,
“Participation And performance In 8 . 02x Electricity And Magnetism :
The First Physics MOOC From MITx,” Phys. Educ., vol. 11 October,
2013.

[2] D. Seaton, Y. Bergner, I. Chuang, P. Mitros, and D. Pritchard, “Towards
Real-Time Analytics in MOOCs,” ceur-ws.org, 2013. [Online].
Available: http://ceur-ws.org/Vol-985/paper3.pdf.

[3] S. Haggard, Centre for Distance Education, and Observatory on
Borderless Higher Education, “The Maturing of the MOOC: Literature
Review of Massive Open Online Courses and Other Forms of Online
Distance Learning,” BIS Res. Pap. 130, no. 130, pp. 1–122, 2013.

[4] S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen, A.
Leaver-Fay, D. Baker, Z. Popović, and F. Players, “Predicting protein
structures with a multiplayer online game.,” Nature, vol. 466, no. 7307,
pp. 756–760, 2010.

[5] G. Kortemeyer, W. Bauer, D. Kashy, E. Kashy, and C. Speier, “The
LearningOnline Network with CAPA Initiative,” 31st Annu. Front.
Educ. Conf. Impact Eng. Sci. Educ. Conf. Proc. (Cat. No.01CH37193) ,
vol. 2, 2001.

[6] LON-CAPA Group, “LON-CAPA Author’s Tutorial and Manual,”
2014. [Online]. Available:
https://s10.lite.msu.edu/adm/help/author.manual.pdf.

[7] IMS Global Consortium, “Learning Tools Interoperability
Implementation Guide Final Version 1.1,” 2012. [Online]. Available:
http://www.imsglobal.org/LTI/v1p1/ltiIMGv1p1.html.

[8] V. J. Shute, “Stealth Assessment in Computer-Based Games to Support
Learning,” in Computer Games and Instruction, S. Tobias and J. D.
Fletcher, Eds. Information Age Publishers, 2011, pp. 503–523.

[9] B. Hoffman and L. Nadelson, “Motivational engagement and video
gaming: A mixed methods study,” Educ. Technol. Res. Dev., vol. 58, no.
3, pp. 245–270, 2010.

[10] M. Csikszentmihalyi, Flow: The psychology of optimal experience. New
York: Harper and Row, 1990.

[11] Unity 3D, “Unity 3D Fast Facts,” 2015. [Online]. Available:
http://unity3d.com/public-relations.

[12] J. Hilton, D. Wiley, J. Stein, A. Johnson, and J. Hilton III, “The four
‘R’s of openness and ALMS analysis: frameworks for open educational
resources,” Open Learn. J. Open Distance Learn., vol. 25, no. 1, pp. 37–
44, 2010.

[13] Á. del Blanco, E. J. Marchiori, J. Torrente, I. Martínez-Ortiz, and B.
Fernández-Manjón, “Using e-learning standards in educational video
games,” Comput. Stand. Interfaces, vol. 36, no. 1, pp. 178–187, Nov.
2013.

[14] L. Johnson, S. Adams Becker, M. Cummins, V. Estrada, A. Freeman,
and H. Ludgate, “NMC Horizon Report: 2013 Higher Education
Edition,” Austin, Texas, USA, Texas, USA, 2013.

[15] L. Johnson, S. Adams Becker, V. Estrada, and A. Freeman, “NMC
Horizon Report: 2014 Higher Education Edition,” Austin, Texas, USA,
2014.

