

Ángel Serrano-Laguna, Javier Torrente, Borja Manero, Baltasar Fernandez-Manjon
ISIA Department, Complutense University of Madrid, Spain

({angel.serrano | jtorrente | balta} @fdi.ucm.es; borja@sip.ucm.es).

Abstract—There is an increasing interest in providing
Computer Science (CS) instruction to a wider sector of the
population. On the one hand, it would be convenient to include
CS instruction in higher education beyond engineering
disciplines, since CS has become a powerful catalyzer for
development of society, and therefore the need for a workforce
with solid CS background is growing. On the other hand, it
would be beneficial to bring CS instruction to primary and
secondary education, used as a vehicle to increase interest in CS
and capture talent for STEM disciplines from early stages.
However, successful delivery of CS instruction to a wide audience
is a challenge. Game-based learning is one of the most promising
approaches at the moment, since they have the power to appeal to
wider audiences.

In this paper we identify the need to find more scalable game-
based instruction paradigms that can be easily adapted to
variable levels of complexity and contents related to CS. We
present a flexible and scalable game architecture, and a game
model to create videogames for learning CS languages, along
with a game engine developed as a reference implementation. The
game model focuses on level-based games where the student has
to introduce short text fragments or programs to solve each of
the levels. This game model is consistent to others found in the
literature (Scratch, Logo, etc.) that have proven it effective, since
it allow students to discover programming in a self-exploratory
way, using their own intuition and learning from their mistakes.
Our approach is scalable because (1) it separates the CS language
used to write the programs from the game design, allowing
reusing the games with different CS markup or programming
languages; and (2) it provides a system of levels that allows
incremental learning of CS language structures.

The approach was tested by developing “Lost in space”, an
educational game for learning XML. In this game, students
control a spaceship, and their goal is to reach a safe point in each
of the levels. They provide instructions to the ship with short
programs that they write using XML-based instructions. At the
beginning students can use a small set of instructions. As they
master these types of instructions, new ones become available,
supporting in this manner scaffolded learning. The game was
tested with undergraduate students from computer science and
social sciences, by comparing it with traditional instruction (i.e.
lecture). Students who played the game were much more engaged
than those who attended the lecture, showing a more active
attitude along the whole experience and also spent more time
practicing after class. Findings also suggest that the game was
effective for instruction regardless of the background of the
students. However, the educational gain observed with the game-
based instructional approach, even effective, was not significantly
higher than traditional instruction.We think that our approach is
adequate to introduce CS languages in general, as well as new
programming languages.

Index terms—Application software, educational technology,
software architecture, computer programming, educational
videogames

I. INTRODUCTION
HE idea of using videogames to support learning of
computer programming is not new, as it dates back almost

to the origins of instructional games [1]. However, this interest
seems to have reached a peak recently, with numerous
advocators bringing the potential of digital game technology
to the field of computer programming education. First, the
popularity of digital games can attract talented people to
computer science and software engineering, professions that
are essential in today's economy. Second, digital games can
help smooth the learning curve for novice programmers by
providing a highly visual and motivating environment. Finally,
learning programming since childhood can foster development
of high level thinking and problem-solving skills.

As a consequence, there are numerous initiatives dedicated
to facilitate using game technology for learning computer
programming. Most of them target kids, although other
software targets college students. The drawback of these
systems is that they are hard to scale. They are usually devised
for a specific target audience, educational goal and/or
programming language, which makes it difficult to repurpose
and reuse the software in different settings.

In this paper, we present a scalable game engine to create
games for learning programming that could be used by
students with different backgrounds. The game engine
facilitates educational game development by providing game
mechanics that are appropriate for learning programming. It is
scalable because (1) it separates the programming language
being learnt from the game design, allowing reusing the games
with different programming languages; and (2) it provides a
system of levels that allows incremental learning of
programming structures. The engine has been used to develop
the game Lost in Space. We have conducted two case studies
with college students from different backgrounds (computer
science and social sciences respectively) to evaluate the
effectiveness of the game for learning computer programming.

II. RELATED WORK
Game technology has been long used to support learning

programming. One of the preferred approaches is to use
activities related to game design and development. Students
create simple program snippets that control characters and
objects in a game environment, usually through a visual or
simplified programming language. The visual condition of the
results obtained facilitates getting students rapidly engaged in
programming. Multiple tools have been developed around this
paradigm, like GameMaker [2], Alice [3], Microsoft’s Kodu

A game Engine to Learn Computer Science
Languages

T

978-1-4799-3922-0/14/$31.00 ©2014 IEEE 765
2014 IEEE Frontiers in Education Conference

[4] or Scratch [5]. The literature is full of experiences where
this paradigm has been successfully applied. For example, De
Kereki [6] reports effective use of Scratch as a motivational
tool in an introductory programming course. In other example,
Chen and Cheng [7] use videogame development as the core
activity of their programming introduction course.

Other studies have explored the activity of playing digital
games in programming courses. Our approach is similar to
those. In many of these games students do not write programs,
using the videogames as mere containers of theoretical
contents about programming, and as a means to increase
students’ motivation. However, the lack of active
programming is a limitation of the approach, since it is an
essential activity to learn programming. For example, in [8]
authors report the use of a role-playing game where quests are
directly related to programming concepts. In a similar
approach, the use of a game environment provided a
significant increase of student motivation towards the subject
[9] and student performance. In [10] authors propose two
mini-games: a typing game and a fill-in-the-blank game to
practice Java syntax, aiming to improve players' basic Java
skills. In [11] a game is used to teach C with crosswords
puzzles and duck shot games and in [12] a game is used to
teach C++ concepts.

There are also educational games where students need to
write little programs to move on in the game or achieve a
specific goal. In [13] authors present an augmented reality
game that uses cards as instructions to create shapes. In this
game, players must combine several cards that represent basic
instructions to create a target shape using augmented reality.
In [14] authors present a 3D game where players' avatars are
controlled using a subset of the Logo instructional language.
Similarly, one of the mini-games proposed in [10] invites
players to introduce commands to guide the main character to
a target point using a simple programming language. A hybrid
approach is described in [15], where students are asked to
program an algorithm in order to beat a game-based challenge.
The game runs this algorithm and gives the student a final
score, based on the algorithm effectiveness.

The main drawback of these approaches is that the games
developed are hard to reuse and to scale. Most of them cover
specific languages and specific programming concepts, and
makes it difficult to adapt them to cover new concepts or new
programming languages to fit other target audiences.

III. GAME ENGINE
In this section, we present the game model proposed for our

approach, and the engine architecture that supports it.

A. Game Model
The engine architecture is built upon a game model that

defines the main high level features for our approach. This
model is defined through the following key ideas:

1) Students must code in the game.

Students must create programs to advance in the game,
following a learning-by-doing approach.

2) Promote reflection, avoid time pressure.
We propose turn-based strategy and to avoid game
mechanics that require fast reaction. This allows students
to take their time to think out a good solution, which is
good practice in programming and promotes reflection.

3) Separate input and game mechanics
The actions that are available in the game must be
independent from how they are introduced in the game.
This adds scalability as it allows reusing a game for
learning different languages. The game defines a set of
actions that users can perform in the game (e.g. move,
rotate, shoot, etc.). This action set is linked to a set of
structures (e.g. procedures, loops, conditions), which
enables players to generate more complex behaviors in the
game. An interpreter is configured to translate orders
formulated in the target programming language (e.g. Java,
C++, Python, etc.) onto these game sets of actions and
structures.

4) Level structure.
It enables incremental introduction of new concepts and
programming constructs as the student becomes more
skilled, facilitating a balanced level of challenge that keeps
the student engaged and prevents frustration [16].

5) A clear goal is set up for each level.
Clear goals are a desirable feature for any good video
game [17], and it also facilitates writing programs.

6) Use scores to promote competition between peers and to
provide a sense of progress.

Scores are used as simple metaphors to engage students.

B. Engine Architecture

In this section, we present the engine architecture that
supports the model presented in the previous section. Fig. 1
shows the main components of the architecture. These

Fig. 1. Engine architecture outline. The set of actions and structures available
is directly related to the power-ups unlocked in the game levels. An
interpreter translates the programs to the set of actions and structures.

766
2014 IEEE Frontiers in Education Conference

components are:
1) Game core

The game core provides basic functionality for the game. It
includes, among other components, a system of game
rules, a physics engine and a rendering engine.

2) Set of actions and structures
This component contains the set of finite actions and
control structures that players can use within the game.

3) Interpreter
The interpreter translates the programming code
introduced by the students into game actions and
structures, making the programming language to interact
with the game exchangeable. For every new language that
needs to be introduced, it is required to create a new
interpreter able to translate it.

4) Levels
Every level is composed of logic blocks. Every block has
its own logic and behavior within the game (defined in the
game core). To make them extensible, levels are defined
apart, in a format understandable by the game engine.
Levels can be created or adapted to meet any specific
needs and to adjust the duration of the game.

Levels are short, easy at first, and their complexity increase
through the game. The game contains power-ups, each of them
representing an action or a structure of the defined set. Ideally,
every new power-up allows the player to perform a new action
that is required to beat the current level.

On the player side, these power-ups unlock new
programming structures/elements that the player use (and
learn) by writing new programs.

This mechanism is scalable, allowing designers to add new
power-ups and puzzles every time the game needs to be
expanded to add new concepts or programming structures.

All levels are defined in an easy-to-read format that is
technology agnostic. For example, Lost in Space uses the
XML format for its level definition (Fig. 2).

 Each tag represents one of the blocks present in the level
grid. The example defines three types of game elements: walls

(3), player (1) and exit (1). The behavior and logic of each
block is defined in the game core.

IV. LOST IN SPACE
Lost in Space1 is built upon the game model and

architecture presented in section III. The game was developed
to introduce new programming languages to students with
different backgrounds. Fig. 3 shows a screenshot of the game.

The game screen is divided in two parts. The left side
contains two elements: the code interpreter text area (bottom),
where players must introduce their code snippets; and a help
window (top) where syntax clues about the unlocked powers
collected are shown.

The right side shows the current level. The goal for each
level is simple: drive the player’s spaceship to the current
level exit (a wormhole), eluding any obstacles that may be laid
out between them. These include spaceships that can be allied
(the player can write instructions to control them) or enemies
(their behavior cannot be controlled), obstacles (rocks and
walls), safe zones (where the player cannot be hit by enemy
fire) and triggers, which release actions in the game (e.g.
movement of obstacles, shooting, etc.). If the player's
spaceship is hit by a shot or collides with an obstacle or
another ship, it is destroyed and the level starts again.

To complete the levels, the player counts with several
atomic operations. These operations affect the main ship and
the allied ships, and are unlocked in the course of the game. In
the last level the player can use a total of 5 instructions: move,
rotate, shoot, wait and disappear (to avoid collisions).

The game flow goes as follows: the player writes a program
and submits it. The code is analyzed and interpreted by the
game. If the syntax is correct, it generates a set of actions that
are executed in the game. Otherwise it reports the error back
to the player. As the player advances in the game, power-ups
are unlocked, appearing on the top left side of the screen.

Table I provides some examples of programs to interact
with the game. As the table shows, the game supports two
target programming languages: Java, and an XML-based
programming language. Although XML is not a programming
language but a markup language, it provides a well-defined
syntax which allows building programming or declarative
languages on top of it. For example, some technologies like
Ant or Maven use XML-based languages to define procedural
behaviors.

1 Available at http://gleaner.e-ucm.es/xml/index.html at date April 10,
2014. Source code available in https://github.com/anserran/lostinspace.

TABLE I
EXAMPLES INPUT PROGRAMS FOR THE GAME

Effect in
the game Java XML

Move
ship 4
spaces

ship.move(4); <move distance=”4”/>

Make ally
shoot

if
(ship.getId().equals(“ally”){
 ship.shoot();
}

<actions idref=”ally”>
 <shoot/>
</actions>

Shoot 4
times

for (int i = 0; i<4; i++){
 shoot();
}

<actions repeat=”4”>
 <shoot/>
</actions>

Fig. 2. A XML document defining a level of Lost in Space, which is shown
below.

767
2014 IEEE Frontiers in Education Conference

The game has thirteen levels, and its estimated completion
time is 50-60 minutes. The game architecture easily allows for
adding new levels and mechanics, as well as new
programming languages. To add new levels, it is only
necessary to create the XML documents defining the new
levels. To add support for a new programming language, for
example, Python, it is only necessary to develop a new
interpreter able to parse Python code.

V. CASE STUDY I
In this section we describe the first experience using Lost in

Space to learn XML syntax in Computer Science settings,
taking advantage of the XML-based programming language
the game supports. The goal of this case study was to compare
game-based instruction using Lost in Space with traditional
instruction based on lectures. The null and alternative
hypotheses are defined as follows:
• H0: The effect of instruction is the same regardless of the

approach (game-based vs. traditional) used.
• HA: The effect of instruction is different depending on

the approach used.

A. Methods, Participants and Settings
Students were randomly assigned to either experimental or

control groups (A and B respectively). Students in the
experimental group (3 females and 14 males) attended a
gameplay session with the game Lost in Space while students
in the control group (3 females and 11 males) attended a
lecture supported by a PowerPoint presentation and driven by
an experienced teacher. Both sessions lasted one hour and
covered the same contents about XML and programming.
Students in the experimental group did not get explicit
guidance by any instructor, apart from basic instructions to
access the game. As an extra to encourage competition,

students playing the game were told to upload a screen capture
with the final score to the e-learning system (Moodle).

Identical pre and post tests were conducted to compare
obtained scores. Each test had two exercises scoring from 0 to
10 each (20 is the maximum total score for the test). In the
first exercise students were asked to identify syntactic errors in
an XML document. In the second exercise students were
asked to write a small XML document conformant to a given
Document Type Definition (DTD).

Tests were anonymous (a unique untraceable code was used
to pair pre and post test for each student), and students had 15
minutes to complete each test. At the end of the session,
students in both groups were also asked to rate the educational
experience using a 5-point Likert scale.

B. Results
Fig. 4 compares results of pre and post tests for groups A

(experimental) and B (control). Table II shows a more detailed
summary of the final results, broken down by questions.

In the pre test, students scored 12.87 and 12.60 on average

on groups A and B respectively, being this difference not
statistically significant after running an unpaired T-Test
(p=0.84) and a Independent-Samples Mann-Whitney U-Test
(p=0.968). Therefore we conclude that both groups had
equivalent initial knowledge on the subject.

Fig. 4. Score results form Group A and Group B from pretest and posttest

12

13

14

15

16

Group A
(Experiment)

Group B
(Control)

Fig. 3. Lost in Space screenshot running on a web browser. The game screen is divided in two parts. On the left part, a text area to introduce the code, and
above, the available set of structures and actions. On the right, the current level, formed by different game elements.

768
2014 IEEE Frontiers in Education Conference

Both groups scored higher in the post test. Group A

registered a score increase (post-pre) of 13.1% and group B an
increase of 14.5% on average. Differences between post and
pre tests were found statistically significant on both groups
after running a paired T-Test for each group (p=0.002 for
group A, p=0.003 for group B) and a related-samples
Wilcoxon Signed Rank test (0.002 and 0.009 respectively).

Differences in the post tests across groups were found not
statistically significant after running an unpaired T-Test
(p=0.960) and a Mann-Whitney U-Test (p=0.858), indicating
that both groups ended up with a similar knowledge level. As
a consequence, we fail to reject the null hypothesis.

We also observe that the score increase was higher in the
second exercise (writing an XML document) than in the first
one (finding errors in an XML document) for both groups.
However, in none of the groups this difference was found
statistically significant (Group A: T-Test p=0.237, Related-
Samples Wilcoxon Signed Rank Test p=0.344; Group B: T-
Test p=0.530, Wilcoxon Signed Rank Test p=0.706).

There are also differences in the self-reported satisfaction. It
is high in both groups (medians above or equals to 4),
although it is higher in group A (game group), with more than
76% of top score (5/5) responses.

C. Discussion
Results show that students' scores increased both after

traditional instruction and game-based instruction. Post test
scores were equally high for both (near 15 over 20 on avg.),
showing little not significant differences, which suggests that
both approaches are appropriate for learning XML.

The two approaches were similar in content (i.e., in both
sessions the educational content covered was similar);
however, teaching approaches were different. While in the
instruction, teacher explicitly presented the XML foundations
–using a PowerPoint presentation–, in the game, XML content
was implicit, i.e., the game did not present any formal content
to the player with text or any other direct explanation: the
students build their own knowledge through active play.

The average effect of instruction (13-14%) is not very high.
However, this may be the consequence of the reduced
exposure to instruction (<50 minutes) and the high pre test
scores of the participants (around 12.5 points over 20).

There was no difference in the pre test score between
groups, which allows us to discard any potential bias
introduced during the randomization process.

Finally, students in the experimental group were more

satisfied with the experience than the students in the control
group. This is not because the satisfaction in the control group
was low but a consequence of the outstanding satisfaction
rates achieved in the experimental group. This finding is
consistent with researchers' observations during the sessions,
who noticed deep engagement in students in the experimental
group. Researchers observed abnormally frequent interaction
between peers, who vigorously competed to get the highest
possible score. Students also kept playing after the class.

The different engagement observed in the two groups may
suggest that overall Lost in Space was a better instructional
approach, although it did not yield better results than
traditional instruction in terms of knowledge acquisition.

VI. CASE STUDY II
We designed a second case study to explore if the effects of

using the game for instruction with a different student
population are consistent to those observed in the previous
experiment. This will help us discuss on the scalability of the
game model proposed by analyzing the size of the potential
target audience that could use the game to learn programming.

In the second study we replicated the gameplay session
(instruction delivered to group A) described in section VI with
college students enrolled in a social sciences degree, who had
no previous programming background (group C) and therefore
were expected to obtain a significant lower pre-test score. The
null and alternative hypotheses are described as follows:
• H0: The score increase factors (post-pre) of the two

game-based instruction groups (A vs C) with different
programming backgrounds are equal.

• HA: The score increase factors are not equal.

A. Method, Participants and Settings
Group C was composed by 13 students (5 males and 8

females) from a Degree in Information and Documentation
(social sciences), who had not received previous instruction on
computer programming and had no technical background.

We replicated the experimental design described in section
VI, using the score increase (obtained as the difference in
score obtained between pre and post test) as the independent
variable that estimates the knowledge gain about XML syntax.

B. Results
Figure 5 shows a high-level view of the results for group C

compared to group A, while Table III provides insight on
these results. These data indicate that the initial knowledge of
students is lower than in groups A and B, who had computer
programming background, as initially expected. The
difference between pre-test scores was found statistically
significant after running an unpaired T-Test (p=0.001) and an
Independent-Samples Mann-Whitney U-Test (p=0.002).

TABLE II
RESULTS FROM CASE STUDY I

Exercise Pre / Post Group A Group B
Q1
(over 10)

Pre test 7.38 ± 1.56 7.12 ± 1.81
Post test 8.29 ± 1.17 8.35 ± 1.63
Gain (Post-Pre) 0.91 ± 1.30 (+9.1%) 1.23 ± 1.96 (+12.3%)

Q2
(over 10) Pre test 5.49 ± 2.30 5.47 ± 2.66

Post test 7.20 ± 2.26 7.09 ± 2.16
Gain (Post-Pre) 1.71 ± 2.49 (+17.1 %) 1.61 ± 1.65 (+16.15 %)

Total
=Q1+Q2
(over 20)

Pre test 12.87 ± 3.05 12.60 ± 4.08
Post test 15.50 ± 2.87 15.44 ± 3.57
Total gain 2.62 ± 2.91 (+13.1 %) 2.83 ± 2.99 (+14.5 %)

769
2014 IEEE Frontiers in Education Conference

Students' score was higher in the post test than in the pre-

test, showing an average increment of 10.95%. This difference
was found statistically significant after running a paired-
samples T-Test (p=0.004) and a Related-Samples Wilcoxon
Signed Rank Test (p=0.011), which suggests that the game
was also effective for group C.

Compared to group A, both groups showed similar total
score increments, being slightly higher for group A (2.62 ±
2.91) than for group C (2.19 ± 2.91 for group C). This
difference was not found statistically significant after running
an unpaired T-Test (p=0.650) and an Independent-Samples
Mann-Whitney U-Test (p=0.662), allowing us to retain the
null hypothesis. It suggests that the effect of game-based
instruction was similar for all students regardless their
previous computer programming background.

However, results are not totally equivalent in both groups,
as differences across exercises are significant for group C. In
this group, students did not improve their score for the first
exercise (-1.3% increase on average), while their performance
in the second exercise increased a 23.2% on average.

Finally, students valued the experience similarly to group
A, with an average score of 4.86 (over 5).

C. Discussion
Group C started from a lower level than Group A, which

can be a consequence of their lack of programming
background. However, data suggest that students in group C
increased their knowledge after playing the game in a similar
way to group A. However, an interesting finding that deserves
further discussion is that students in group C only improved
scores for the second exercise.

Both exercises had different mechanics. In the first exercise
students had to identify syntactic and semantic errors in a
fragment of an XML document. To complete this exercise,
they had to be aware of the syntactic and semantic rules to
form valid XML documents. In the second exercise students
had to write a short XML document. In this case, students

needed to have the procedural skills to write XML documents.
While students have to apply syntactic and semantic rules to
reach a valid solution, they do not need to be aware of what
these rules look like - they just need to apply them.

That may explain the programming background of group A
allowed them to infer the syntactic and semantic rules behind
XML after practicing with the game, even if these rules were
never explicitly presented to them. In contrast, students in
group C were not able to make that inference on their own,
probably as a consequence of their lack of computer
programming background.

VII. CONCLUSIONS
In this paper we discussed how educational videogames can

help addressing some of the challenges related to computer
programming instruction. Building upon the extensive
literature on this topic, we identified the need to find more
scalable game-based instruction paradigms, given the
increasing interest in providing computer programming
instruction to a wider sector of the population, including not
only computer science students but also college students of
different disciplines and even kids. As a response, we propose
a flexible game architecture, supported by an extensible game
engine and game model, to generate fun and entertainment
games that can be extended to cover different languages and
suit diverse target audiences.

We developed a game using this game engine (Lost in
Space), which was used for XML instruction in two different
college settings (computer science and social sciences
respectively). In these experiences the game was well accepted
by the students, and we also observed that they deeply
engaged in gameplay. Moreover, data collected suggest that
they learned with this kind of game-based instruction in a
similar way to traditional instructional methods regardless of
their background. However, a potential limitation of the
approach for students with no computer programming
background that was identified. Data collected suggest that
they were not able to infer the syntax of the language on their
own, as syntactic rules were never explicitly provided to the
students. However, students with programming background
were able to make that inference. Instructors willing to use this
approach should take this finding into consideration and
design a strategy to help students to construct the explicit
representation of the knowledge acquired, using debriefing
sessions or closer tutoring, for example.

We think that our approach is adequate to introduce
computer programming in general as well as new
programming languages. And, in some cases, it can be used as
a complement, but it also can be used as a whole educational
resource.

ACKNOWLEDGMENT
Special thanks to Ricardo García-Mata from the UCM

statistical service for his assistance with the data analysis and
beta testers from the e-UCM group who helped us to improve
the game.

TABLE III
RESULTS FROM CASE STUDY II

Exercise Pre / Post Group C Group A
Q1
(over 10)

Pre test 6.10 ± 1.76 7.38 ± 1.56
Post test 5.98 ± 1.84 8.29 ± 1.17
Gain (Post-Pre) -0.13 ± 1.30 (-1.3%) 0.91 ± 1.30 (+9.1%)

Q2
(over 10) Pre test 2.91 ± 2.03 5.49 ± 2.30

Post test 5.24 ± 2.51 7.20 ± 2.26
Gain (Post-Pre) 2.32 ± 2.22 (+23.2 %) 1.71 ± 2.49 (+17.1 %)

Total
=Q1+Q2
(over 20)

Pre test 9.02 ± 2.63 12.87 ± 3.05
Post test 11.22 ± 3.73 15.50 ± 2.87
Total gain 2.19 ± 2.91 (+10.95 %) 2.62 ± 2.91 (+13.1 %)

Fig. 5. Score results form Group A and Group B from pretest and posttest

0

5

10

15

20

Group A (Experiment 1)

Group C (Experiment 2)

770
2014 IEEE Frontiers in Education Conference

REFERENCES
[1] T. W. Malone and M. R. Lepper, “Making learning fun: A taxonomy of

intrinsic motivations for learning,” R. E. Snow and M. J. Farr, Eds.
Hillsdale, NJ: Lawrence Erlbaum, 1987, pp. 223–253.

[2] J. Robertson and J. Good, “Story creation in virtual game worlds,”
Communications of the ACM, vol. 48, no. 1, pp. 61–65, 2005.

[3] A. E. Rais, S. Sulaiman, and S. M. Syed-Mohamad, “Game-based
approach and its feasibility to support the learning of object-oriented
concepts and programming,” in 2011 Malaysian Conference in Software
Engineering, 2011, pp. 307–312.

[4] M. B. MacLaurin, “The design of kodu: a tiny visual programming
language for children on the Xbox 360,” ACM Sigplan Notices, vol. 46,
no. 1, pp. 241–245, 2011.

[5] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and Y.
Kafai, “Scratch: Programming for all,” Communications of the ACM, vol.
52, no. 11, pp. 60–67, 2009.

[6] I. F. de Kereki, “Scratch: Applications in Computer Science 1,” in 2008
38th Frontiers in Education Conference, 2008, pp. T3B–7–T3B–11.

[7] W.-K. Chen and Y. C. Cheng, “Teaching Object-Oriented Programming
Laboratory With Computer Game Programming,” IEEE Transactions on
Education, vol. 50, no. 3, pp. 197–203, Aug. 2007.

[8] M. Chang, “Web-Based Multiplayer Online Role Playing Game
(MORPG) for Assessing Students’ Java Programming Knowledge and
Skills,” in 2010 Third IEEE International Conference on Digital Game
and Intelligent Toy Enhanced Learning, 2010, pp. 103–107.

[9] P. Sancho, J. Torrente, and B. Fernández-Manjón, “Do Multi-User
Virtual Environments Really Enhance Student’s Motivation in
Engineering Education?” FIE Conference, San Antonio, TX, USA, 2009.

[10] T. Mitamura, Y. Suzuki, and T. Oohori, “Serious games for learning
programming languages,” in 2012 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), 2012, pp. 1812–1817.

[11] R. Ibrahim, J. Semarak, K. Lumpur, and A. Jaafar, “Using educational
games in learning introductory programming: A pilot study on students’
perceptions,” in 2010 International Symposium on Information
Technology, 2010, pp. 1–5.

[12] S. H. A. Hamid and L. Y. Fung, “Learn Programming by Using Mobile
Edutainment Game Approach,” in 2007 First IEEE International
Workshop on Digital Game and Intelligent Toy Enhanced Learning
(DIGITEL’07), 2007, pp. 170–172.

[13] N. Masso and L. Grace, “Shapemaker: A game-based introduction to
programming,” in 2011 16th International Conference on Computer
Games (CGAMES), 2011, pp. 168–171.

[14] I. Paliokas, C. Arapidis, and M. Mpimpitsos, “PlayLOGO 3D: A 3D
Interactive Video Game for Early Programming Education: Let LOGO
Be a Game,” in 2011 Third International Conference on Games and
Virtual Worlds for Serious Applications, 2011, pp. 24–31.

[15] H. C. Jiau, J. C. Chen, and K.-F. Ssu, “Enhancing Self-Motivation in
Learning Programming Using Game-Based Simulation and Metrics,”
IEEE Transactions on Education, vol. 52, no. 4, pp. 555–562, Nov. 2009.

[16] J. Chen, “Flow in games (and everything else),” Communications of the
ACM, vol. 50, no. 4, pp. 31–34, 2007.

[17] J. P. Gee, “What video games have to teach us about learning and
literacy,” Computers in Entertainment, vol. 1, no. 1, p. 20, Oct. 2003.

771
2014 IEEE Frontiers in Education Conference

