
Development of a Game Engine for Accessible
Web-Based Games

Javier Torrente(&), Ángel Serrano-Laguna,
Ángel del Blanco Aguado, Pablo Moreno-Ger,

and Baltasar Fernández-Manjón

UCM, Madrid, Spain
jtorrente@e-ucm.es

Abstract. The Web is rapidly shifting towards more dynamic and interactive
content. One clear example is the increasing use of web-based digital games.
However, the more interactive a piece of content is, the more difficult it is to
make it universally accessible. Besides, users are increasingly demanding
ubiquitous access to the content and applications they use (including games),
resulting in a need for ensuring that Web content is also multiplatform. These
trends are adding an extra technology challenge for ensuring content accessi-
bility. In this paper we describe our technical approach to create an accessible
multiplatform game engine for the new version of the eAdventure educational
game authoring platform (eAdventure 2.0). This approach integrates accessi-
bility as a core design principle instead of adding accessibility features a pos-
teriori. We expect this to facilitate the creation of web-based digital games that
are accessible regardless of the context (device, assistive tools available, situa-
tion, etc.) in which they are being used. In this work we describe the general
architecture, as well as some specific examples of accessibility adaptation plug-
ins already available.

1 Introduction

Rich Internet Applications (RIAs) and interactive content are gaining importance in
modern web to enrich the navigation experience. In particular, digital games are
increasingly being used in the web, not only for leisure but also for ‘serious applica-
tions’ like education [8], health [4], advertising [11] and even as an alternative to
Captchas [1]. The drawback is that RIAs create new issues from an accessibility
perspective. The problem grows for digital games where interaction cycles are extre-
mely short and feedback is usually provided on multiple channels. Although the
problem has been identified, and research is being conducted on how to address it [17],
the fact is that the current level of accessibility of digital games is still rudimentary.

The limited accessibility of digital games is not motivated by a single reason.
An apparent lack of awareness of game developers and the cost overhead that acces-
sibility adds to any game development project are surely among the most relevant.
A proposed approach to address these issues, at least partially, is to integrate acces-
sibility into game development software [14], instead of focusing on ad hoc solutions
for each particular title. On the one hand, this increases the visibility of accessibility

© Springer International Publishing Switzerland 2014
A. De Gloria (Ed.): GALA 2013, LNCS 8605, pp. 107–115, 2014.
DOI: 10.1007/978-3-319-12157-4_9

Draft version. Please visit http://www.e-ucm.es/publications/all for updated citation information

DRAFT



among developers, as it translates the problem to a language they are familiar with.
On the other hand, it allows reusing previous efforts across different game development
projects, resulting in significant savings and cost reductions.

When games are deployed in the web there are also further technical challenges that
are difficult to address. Web content can be used (by definition) in different contexts
and deployed on multiple platforms, which adds uncertainty to what technologies or
assistive tools would be available. Besides, web content must be conformant to stan-
dards to ensure interoperability.

In this paper we present our ongoing development efforts in the eAdventure 2.0
game engine and how it is being designed and implemented to accommodate acces-
sibility from its very inception. Once development is complete, game authors will be
able to make accessible games more easily and automatically deploy them on the Web
using HTML5 and WebGL. Most of the solutions proposed could also be applied to
other types of RIAs and interactive contents.

This paper is structured as follows: Sect. 2 provides a short overview of the state-
of-the-art in digital game and RIA accessibility. Section 3 introduces the eAdventure
platform: what is it, what prototypes have been already developed to explore acces-
sibility in games, and why a new version is being developed based on Web technol-
ogies. Section 4 describes the technical design rationale to introduce accessibility in the
eAdventure 2.0 game engine, with Sect. 5 providing examples on how the architecture
presented allows adapting the games for two specific user profiles. Finally Sect. 6
wraps up our contribution and outlines future lines of research.

2 Background

Web accessibility has traditionally focused on granting equal opportunities of access to
the vast majority of the content and applications that populate the Internet, which used to
be rather static and not highly interactive. Interest on making RIAs accessible is more
recent. This unbalanced distribution of efforts is reflected on current status of web
accessibility standards. While the Web Content Accessibility Guidelines (WCAG), which
deal with static content, are a mature and stable technical standard, its counterpart for
RIAs, the Accessible Rich Internet Applications (WAI-ARIA) specification, is still a draft.

Concurrently the gaming field is gradually starting to explore how to increase
accessibility of digital games, not necessarily focusing on the Web [17]. The first
accessibility guidelines specifically targeted to digital games were proposed by the
Special Interest Group on accessibility of the International Game Developers associ-
ation [5] on 2005. These guidelines provided a compendium of good practices grouped
by types of disability and exemplified through case studies of games that included
features to support accessibility that were available at the time. Since then, the state-of-
the-art on game accessibility recommendations has been pushed forward not only by
IGDA but also by other advocators and dedicated institutions [2]. However, the field is
not mature enough to produce an official standard or technical recommendation similar
to W3C specifications, lacking of reference tools and appropriate conformance levels.

In the academia, research initiatives on digital games have also emerged [17, 18].
Some of these initiatives have focused on the production of games that could be

108 J. Torrente et al.

Draft version. Please visit http://www.e-ucm.es/publications/all for updated citation information

DRAFT



enjoyed by players with and without disabilities alike, while others have focused on the
special needs of players with disabilities only [12]. Other experiences have focused on
making popular games accessible, instead of developing an accessible game from
scratch [3].

Comparatively, very few cases have explored how game technologies and devel-
opment software can support accessibility. For example, in [10] a Game Accessibility
Framework is introduced from a conceptual perspective. Moreover, the additional
requirements of Web games remain as an open issue.

3 eAdventure

eAdventure (formerly <e-Adventure>) is an open source, high-level game authoring
tool [6]. Unlike more complex tools (e.g. Unity [16]) it targets low-profile and user-
generated games that could be used in different contexts, especially ‘serious applica-
tions’ and education. The types of games that can be produced with eAdventure are
limited to 2D point-and-click games and conversational adventures. This genre is
typically considered more appropriate for educational settings (and more accessibility-
friendly) due to the focus on exploration and reflection as opposed to time pressure or
fast-paced action [7].

3.1 Versions 1.X and 2.0

eAdventure has been in development since 2005, being v1.5 the latest version avail-
able. On 2011 it was reaching its end of life. It is built on Java, which is rapidly
becoming an obsolete technology for Web clients due to the need of installing browser
plug-ins and recent security holes found in Java Applets. This presents a problem in
online education (a.k.a. e-learning) environments, where everything lives on the web.
For that reason, we started the development of a new eAdventure game engine from
scratch (v2.0). The main aim in the development of eAdventure 2.0 is to provide an
extensible and multiplatform engine to supports game deployment as HTML 5 (using
WebGL) Web Applications. As HTML 5 cannot be fully deployed in some devices yet
(e.g. computers with old browsers or some smartphones and tablets), the eAdventure
2.0 also has native support for specific platforms (e.g. Android devices).

Both branches of the eAdventure engine currently coexist. The internal architecture
is completely different in both cases. The former one is referred to as version 1.X
(stable but rapidly becoming obsolete) while the new one (unstable) is referred to as
version 2.0.

3.2 Previous Work on Accessibility

Previous work has already explored the introduction of accessibility in the eAdventure
platform using version 1.X. In [13] the development and integration of accessibility
modules for adapting the game interface dynamically is described. Three user profiles
were considered: (a) screen reader users (blind); (b) speech recognition users (limited

Development of a Game Engine for Accessible Web-Based Games 109

Draft version. Please visit http://www.e-ucm.es/publications/all for updated citation information

DRAFT



mobility in hands) and (c) users that need high contrast settings (low or limited vision).
Different alternatives for users requiring screen readers were further explored in a
subsequent experiment [15]. The experience gathered on these previous research
activities has been used to design the core set accessibility features that will be sup-
ported by eAdventure 2.0 out-of-the-box.

4 Implementation Proposed

The basic architecture of the new version of the eAdventure engine (2.0) was described
in a previous publication, which can be consulted for further details [9]. In this paper
we focus on how accessibility fits within this architecture.

4.1 Engine Architecture

The 2.0 engine is modular, multiplatform and extensible. It is built upon an API that
supplies functionality (e.g. access to the data model and art resources, etc.) for all basic
processes of the application (e.g. rendering, collision detection, etc.) to all internal
components (see Fig. 1), and enables cross-component communication. All the plat-
form-independent functionality of the Engine API is implemented by the Engine Core,
the main controller of the application. This way most of the code of the engine is
implemented only once. Platform-dependent components provide implementations for
the rest of the Engine API (e.g. image rendering, video reproduction, input/output,
etc.).

The eAdventure data model (the description of the game) is constituted by EA-
dElements. An EAdElement holds no computation logic, just a piece of the description
of the game or one of its components. This includes characters, items or game sce-
narios, but also effects triggered in the game in response to user’s interactions. These
effects can produce feedback for the user. For example, eAdventure 2.0 supplies effects
to display formatted text on the screen, or to play a sound track. At runtime, the game
engine reads the EAdElements from a XML file and translates them to GameObjects,
which are the minimal game functional units, that can be manipulated.

eAdventure 2.0 uses the concept of plug-ins to support functionality and platform
extension. An eAdventure plug-in is a set of classes and interfaces extending and using
the Engine API. Plug-ins are programmed as independent units that are loaded at start-
up. For example, plug-ins can contain extensions of existing EAdElements or Ga-
meObjects, new implementations of parts of the API, etc. A configuration file defines
the plug-ins that the game engine must load at start-up.

The implementation(s) of all the parts of the Engine Core and API (e.g. EAdEle-
ments, Game Objects, Plug-ins, Core functionality, Platform-dependent components)
are completely separated from the interfaces that define them. The interfaces are bound
to the code components (i.e. classes) dynamically at start-up, using a technique called
dependency injection (Google Guice is used for this purpose). This structure enhances
the flexibility and adaptability of the engine, as the behavior of any component can be
replaced dynamically (e.g. to better suit the needs of the user).

110 J. Torrente et al.

Draft version. Please visit http://www.e-ucm.es/publications/all for updated citation information

DRAFT



4.2 Accessibility Support

Accessibility is present in different components of the game architecture, including: an
Accessibility API (part of the main Engine API); an Accessibility Core, responsible for
implementing part of the Accessibility API and also for setting up accessibility features
at start-up; Accessibility Plug-ins, a set of engine extensions to deal with particular
functionalities; and Platform-dependent accessibility Components that implement parts
of the Accessibility API that handle inputs and outputs, like speech recognition or text-
to-speech (TTS).

Most of the code that deals with accessibility is implemented either as Accessibility
Plug-ins or Platform-dependent Components. The Accessibility Plug-ins (a specific
type of eAdventure plug-ins) allow changing the behavior of any component or ele-
ment of the game engine. For example, a plug-in could adapt how the visual elements
are rendered, or the complexity of the text or other pieces of game content. Platform-
dependent Accessibility Components are designed to allow interoperability with
external components by connecting the engine’s I/O modules to different platform-
dependent implementations of the Accessibility API (e.g. Android or HTML5). In this
manner the game engine can take advantage of technologies or support tools that the
user may already have installed (e.g. the JAWS screen reader, Mac Voice Over system,
etc.). This favors using well-tested and implemented aiding technologies, and also
allows the applications to be lighter and speed up loading times.

In the process of setting up a game for a particular user, some game content (e.g.
images and text) may need to be adapted. Occasionally the content can be adapted
dynamically (e.g. apply a filter to the image) but sometimes it is necessary that the
engine is fed with alternative versions of these resources. For that reason, game content
is highly decoupled and encapsulated. Using a namespace convention, different ver-
sions of the text scripts and images are organized in folders. When a resource is loaded
in the game, the engine fetches the best version available for the characteristics of the

Fig. 1. Architecture of the eAdventure 2.0 engine

Development of a Game Engine for Accessible Web-Based Games 111

Draft version. Please visit http://www.e-ucm.es/publications/all for updated citation information

DRAFT



user. If none of the versions for that resource suit the user needs, then it will attempt
dynamic adaptation.

5 Case Studies

To exemplify how the engine works, two case studies are presented, focusing
respectively on color vision deficiency and screen reader users.

5.1 Adaptation for Color Vision Deficiency

Users with color vision deficiency (CVD) may have troubles playing a game if color
schemes are used to convey information. The color schemes used may need to be
adapted or replaced by other identification techniques (e.g. icons). Users with CVD
may also have problems reading text if its color cannot be distinguished from the
background.

These problems are solved using the dependency injection technique. GameObjects
that are responsible for visual elements of the scenes are created using an alternative
version that alters the rendering code. For example, at runtime, the GameObject used to
control and render a game scenario (interface GOScene) is bound to an alternative
implementation (e.g. class GOSceneCVDImpl) that overrides the draw() method
making interactive elements more distinguishable. Similarly, the GameObject that
represents effects for showing text in the game (interface GOTextEffect) is bound to a
different implementation (class GOTextEffectCVDImpl) that draws the text on a clear
background using a high-contrast color scheme.

5.2 Adaptation for Screen Reader Users

The most important needs of screen reader users are (1) avoiding the mouse as input
device (they can use a keyboard) and (2) providing non-visual feedback (i.e. audio-
based). While the first issue poses no significant challenge from a technological per-
spective, the second is a more complex issue. Dealing with non-visual feedback will
typically require using text-to-speech technologies (a full voiced game may be too
expensive). Web-based TTS are cumbersome as no reference API or implementation is
has been adopted and implemented for the HTML5 specification.

In the case of eAdventure, a TTS API was defined (as part of the Accessibility API)
to abstract all this complexity. At start-up the Accessibility Core inspects the context
where the game has been launched, gathers information about the guest operative
system and platform, and starts a discovery process to investigate potential TTS
engines and other assistive tools installed. Considering this information, the available
implementations of the TTS API that were packaged with the game are analyzed,
discarding those that are not applicable in the current context. Available options are
prioritized and iterated through, trying to set-up the best alternative for the user (Fig. 2).

112 J. Torrente et al.

Draft version. Please visit http://www.e-ucm.es/publications/all for updated citation information

DRAFT



For example, suppose the game is launched in the Chrome Web browser on a
Windows Machine (XP or above) and the Accessibility Core discovers, through a
browser plug-in, that a screen reader (e.g. JAWS) is installed. It will first try to load an
implementation of the TTS that connects to the screen reader, so that the voice used
will be familiar to the player. If the process fails, it would try to take advantage of the
TTS API Google Chrome browser provides. Next it would try to connect to Microsoft’s
Speech API (SAPI) provided by the OS, through another browser plug-in. Should all
these alternatives fail, then the TTS feature would be disabled, as the game engine does
not include a built-in TTS engine.

At start-up the Accessibility Core will also load alternative implementations of the
GameObjects that show text on the screen, in a similar way as described in Sect. 5.1.
When these accessible objects are rendered, they also invoke the TTS API. In this
manner, each piece of text that is displayed on the screen is also played back using the
TTS API (if available). Other GameObject effects are also adapted to enhance the audio
feedback that is conveyed to the user. For example, when the player enters in a new
scene, the game engine will generate a textual description of the scene and reproduce it
using the TTS API.

6 Conclusions and Future Work

With the increasing presence of digital games on the web on one hand, and the need for
ubiquitous access to content in the other, making accessible games is becoming even
harder, as new technological problems are added (e.g. how to deal with text-to-speech
technologies and screen readers on different platforms). The introduction of accessi-
bility features could be facilitate by providing game development software that sup-
ports the production of games that can be delivered through the web on computers and
also on other platforms, like mobile devices.

Fig. 2. On the left, the original game screenshot. On the right, adapted version for CVD. Two
adaptations are performed: (1) chemicals are identified with numbers instead of colors; (2) green-
blue text color scheme, which may be hard to read, is replaced by a high-contrast alternative
(Color figure online).

Development of a Game Engine for Accessible Web-Based Games 113

Draft version. Please visit http://www.e-ucm.es/publications/all for updated citation information

DRAFT



It can be assumed that HTML5 will eventually make Web games run on every
single Internet-enabled device. However, the standard has not fully been debugged and
adopted in several platforms, like smartphones and tablets. Thus it is still necessary to
provide a native version of the games for some platforms.

In this paper we have presented the eAdventure 2.0 architecture that will allow
development of accessible 2D serious games meeting these criteria. The architecture
was designed with extensibility and flexibility as key drivers. The main advantage of
this approach is that eAdventure 2.0 would easily support extensions to accommodate
more types of disabilities and/or new platforms.

This work has only addressed the technical problems related to game accessibility.
However, making a game that is enjoyable for players with different types of profiles
requires more than having a technology that supports it (e.g. game authors also need to
integrate players’ special needs into the game design).

The features here presented are currently on a prototype state. We are currently
working to reach a more stable status. The next steps will be development and eval-
uation of accessible games using the eAdventure 2.0 game engine.

Acknowledgements. The Spanish Ministry of Science (TIN2010-21735-C02-02), the European
Commission (519332-LLP-1-2011-1-PT-KA3-KA3NW, 519023-LLP-1-2011-1-UK-KA3-KA3MP,
FP7-ICT-2009-5-258169), the Complutense University (GR35/10-A-921340) and the Regional
Government of Madrid (eMadrid Network - S2009/TIC-1650) have partially supported this work.

References

1. A Gaming Replacement for Those Annoying CAPTCHAs (2013). http://readwrite.com/
2012/05/03/a-gaming-replacement-for-those-annoying-captchas. Accessed 13 Feb 2013

2. A straightforward reference for inclusive game design (2012). http://www.
gameaccessibilityguidelines.com/

3. Allman, T., et al.: Rock Vibe: Rock Band® computer games for people with no or limited
vision. In: Proceedings of the 11th International ACM SIGACCESS Conference on
Computers and Accessibility, pp. 51–58 (2009)

4. Arnab, S., et al.: Serious Games for Healthcare: Applications and Implications. IGI Global,
Hershey (2012)

5. Bierre, K., et al.: Game not over: accessibility issues in video games. In: 11th International
Conference on Human-Computer Interaction (HCII’05) (2005)

6. eAdventure website: http://e-adventure.e-ucm.es
7. Garris, R., et al.: Games, motivation and learning: a research and practice model. Simul.

Gaming 33(4), 441–467 (2002)
8. Johnson, L., et al.: NMC Horizon Report: 2013 Higher Education Edition (2013)
9. Marchiori, E.J., Serrano, Á., Torrente, J., Martínez-Ortiz, I., Fernández-Manjón, B.:

Extensible multi-platform educational game framework. In: Leung, H., Popescu, E., Cao, Y.,
Lau, R.W., Nejdl, W. (eds.) ICWL 2011. LNCS, vol. 7048, pp. 21–30. Springer, Heidelberg
(2011)

10. Ossmann, R., Archambault, D., Miesenberger, K.: Accessibility issues in game-like
interfaces. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2008.
LNCS, vol. 5105, pp. 601–604. Springer, Heidelberg (2008)

114 J. Torrente et al.

Draft version. Please visit http://www.e-ucm.es/publications/all for updated citation information

DRAFT



11. Pempek, T.A., Calvert, S.L.: Tipping the balance: use of advergames to promote
consumption of nutritious foods and beverages by low-income African American
children. Arch. Pediatr. Adolesc. Med. 163(7), 633–637 (2009)

12. Sánchez, J., Espinoza, M.: Audio haptic videogaming for navigation skills in learners who
are blind. In: Proceedings of the 13th International SIGACCESS Conference on
Accessibility (ASSETS), pp. 227–228 (2011)

13. Torrente, J., et al.: Implementing accessibility in educational videogames with
<e-Adventure>. In: First ACM International Workshop on Multimedia Technologies for
Distance Learning - MTDL ’09, Beijing, China, pp. 55–67 (2009)

14. Torrente, J., et al.: Introducing accessibility features in an educational game authoring tool:
the experience. In: 11th IEEE International Conference on Advanced Learning Technologies
ICALT 2011, pp. 341–343 (2011)

15. Torrente, J., et al.: Preliminary evaluation of three eyes-free interfaces for point-and-click
computer games. In: 14th International ACM SIGACCESS Conference on Computers and
Accessibility (ASSETS), pp. 265–266 (2012)

16. Unity 3D website: http://unity3d.com/. Accessed 15 Feb 2013
17. Westin, T., Bierre, K., Gramenos, D., Hinn, M.: Advances in game accessibility from 2005

to 2010. In: Stephanidis, C. (ed.) Universal Access in HCI, Part II, HCII 2011. LNCS, vol.
6766, pp. 400–409. Springer, Heidelberg (2011)

18. Yuan, B., et al.: Game accessibility: a survey. Univ. Access Inf. Soc. 10(1), 81–100 (2011)

Development of a Game Engine for Accessible Web-Based Games 115

Draft version. Please visit http://www.e-ucm.es/publications/all for updated citation information

DRAFT




