
Language-Driven, Technology-Enhanced Instructional

Systems Design

Iván Martínez-Ortiz, José-Luis Sierra, Baltasar Fernández-Manjón

Fac. Informática. Universidad Complutense de Madrid

C/ Prof. José García Santesmases s/n 28040 Madrid (Spain)

+34913947606

{imartinez, jlsierra, balta}@fdi.ucm.es

Abstract. In this paper we propose to extend the ADDIE (Analysis – Design –

Development – Implementation – Evaluation) process for Instructional Systems

Design (ISD) with a new linguistic layer. This layer allows developers to

provide instructors with domain-specific languages to support and guide them

through ISD. Instructors use the toolsets associated with these languages to

produce technology-enhanced learning systems more effectively. We also

describe how to put these ideas into practice by adopting modern model-driven

software development processes together with the language engineering

principles. This language engineering approach has been applied to <e-LD>, a

highly flexible and extensible authoring tool for IMS Learning Design Units of

Learning.

Keywords: Technology-Enhanced Instructional Systems Design, ADDIE,

Software Language Engineering, IMS Learning Design, <e-LD>

1. Introduction

Instructional Systems Design (ISD) and the generic Analysis – Design – Development

– Implementation – Evaluation ADDIE process were conceived as means of

designing and developing learning systems, independently of whether these systems

are technology-enhanced or not [2]. However, the introduction of a technological

factor in the development process also introduces new issues that must be carefully

addressed. One of the most important problems is the need to manage the active

collaboration of instructors and developers. A way of addressing this collaboration is

to use suitable domain-specific languages (DSLs) [10]. The application of DSLs

results in a more rational distribution of roles: instructors use the languages to

configure the technology-enhanced components, while developers provide the

instructors with all the required machinery to make such a configuration possible.

In this paper we propose an extension of the generic ADDIE process model with a

linguistic layer and illustrate this new process model using <e-LD> [6,7], an

authoring tool for the production and reengineering of IMS Learning Design (IMS

LD) Units of Learning (UoL) developed at Complutense University.

2. The Language-Driven ADDIE model

The Language-Driven ADDIE (LD-ADDIE) model is sketched in Fig. 1. This model

is based on the revised ADDIE model proposed by the US Department of the Air

Force (see [2]). It organizes the concepts and phases of the revised ADDIE model into

five different layers. More precisely:

 The evaluation layer includes activities centered on the continuous evaluation of

the different aspects of the instructional system. It corresponds to the evaluation

phase in the original ADDIE model.

 The production layer encompasses the systematic sequence of phases oriented to

the production of the instructional system. It corresponds to the other four ADDIE

phases (i.e., analysis, design, development and implementation).

 The linguistic layer contains phases for the systematic production of the domain-

specific languages and the associated toolsets. Although these phases mirror the

phases in the production layer, their purpose is very different: to develop the

languages and tools used by instructors for the development of learning systems.

 The system layer contains the main functions of the learning system: management,

administration, support and delivery.

 Finally, the quality improvement layer represents the mechanisms needed to carry

out continuous quality improvement.

LD-ADDIE adds a new layer, the linguistic layer, to explicitly address the

technological factor of technology-enhanced instructional systems. The aim of the

Evaluation Layer

Production Layer

System

Analysis

System

Design

System

Development

Evaluation

System

Implementation

Linguistic

Analysis

Linguistic

Design

Linguistic

Implementation

Linguistic

Development

Linguistic Layer

Delivery Support

Management

Administration

System Layer

Quality Improvement Layer

Fig. 1. The LD-ADDIE Model

phases within this layer is to develop languages and tools. Also, they are mainly

carried out by developers:

 During linguistic analysis, developers analyze the instructional domain addressed

by the learning system and the vocabulary and terminology used by instructors.

The goal is to determine the main terms and concepts in this domain, as well as the

relationships between these concepts. This analysis can be carried out using

standard domain analysis techniques, as understood in software and domain

engineering [3].

 During linguistic design, developers specify the syntax and constraints of the

domain-specific language, as well as its operational semantics. In modern software

language engineering practice, the language usually will be equipped with several

syntaxes [4]: an abstract syntax, in terms of which the operational semantics is

defined, and one or several concrete syntaxes, oriented to facilitate the use of the

language by instructors. All these syntaxes will be linked by suitable

transformations. Operational semantics, in their turn, will specify how technology-

enhanced components can actually be produced from utterances in the language.

During this phase developers also conceive the tools associated with the language.

Typical tools will be authoring tools based on suitable concrete syntaxes, as well as

generators of the technology-enhanced instructional components.

 During linguistic development, developers build the toolset supporting the DSL.

For this purpose, they can use well-established traditional techniques in the

construction of language processors [1]. They can also adopt one of the emerging

tendencies in software language engineering, based on model-driven software

development concepts and the use of language workbenches [4].

 Finally, during linguistic implementation, the DSL and the associated toolsets are

made available for instructors. These tools will be integrated into the final leaning

system as part of the support function.

3. The Language-Driven ADDIE Model in Practice with <e-LD>

To illustrate the LD-ADDIE model, we use <e-LD>, an experimental and highly

adaptable and extensible authoring tool for IMS LD UoL developed at Complutense

University [6,7]. The tool supports three main functions:

 Importation. Using this function, instructors can load pre-existing IMS LD UoL.

The function also produces useful information to understand the structure and

behavior of each imported UoL: a hypertextual view (Fig. 2a), and a dependency

graph with the representation of the dependencies among the design elements

related to learning activity sequencing [8] (Fig. 2b).

 Authoring. Using this function, instructors can load pre-existing IMS LD UoL.

This function lets instructors edit the description of a UoL. For this purpose, they

use the visual notation detailed in [7] (Fig. 2c).

 Exportation. This function makes it possible to generate an IMS LD UoL

automatically from an <e-LD> description. The core of the function is an

automatic translation of flowcharts into rule-based systems [9].

Since <e-LD> considers IMS LD UoL as essential parts of a learning system, it is

possible to systematize the design of evaluation instruments in terms of the structure

imposed by <e-LD> on such UoL (for example a satisfaction survey on a UoL can

mirror the static structure of the UoL, say a method decomposed into several plays,

each one integrating several acts, each one integrating several role-parts, etc.).

Also, <e-LD> plays a prominent role in the different production phases:

 During system analysis, instructors can find it useful to examine pre-existing UoL

used in previous levels of instruction to determine the students’ expected

knowledge and capabilities, as well as to better determine the nature of the learning

process and the more convenient performance exigencies.

 During system design, instructors can reuse pre-existing UoL in the instructional

domain, importing them into the tool and modifying them in accordance with the

target learning task. Also, instructors can use <e-LD> to author formalized plans of

instruction for technology-enhanced components that effectively determines the

instructional methods and strategies.

 During system development, <e-LD> provides a catalog to determine the different

instructional resources and materials to be developed.

 Finally, during system implementation, instructors use <e-LD> to automatically

generate standardized versions of the authored UoL encoded in IMS LD.

Regarding the linguistic layer, the development of <e-LD> follows the principles

of modern software language engineering [4]. Indeed, the root of <e-LD> is a DSL

developed using the language workbench provided by the Eclipse Modeling Project.

(a) (b)

(c)

Fig. 2. (a) Hypertextual view of a UoL’s method; (b) a dependency graph; (c) edition of a method in

<e-LD>.

Thus, <e-LD> can be meaningfully conceived as the main product of an incarnation

of the LD-ADDIE linguistic layer:

 As regards linguistic analysis, <e-LD> represents a cost-effective solution to the

otherwise costly domain analysis processes. Indeed, <e-LD> reuses many of the

conceptual structures of a pedagogically neutral language (IMS LD) with the hope

of increasing the applicability of the solution while still maintaining a reasonable

domain-specific nature.

 During linguistic design, the abstract syntax of the <e-LD> modeling language is

characterized as a metamodel [4] that captures the main terms and concepts

required to describe UoL in <e-LD>, as well as the relationships between these

concepts, and the additional constraints affecting these elements. On the other

hand, the concrete syntax corresponds to the aforementioned visual notation. These

two syntaxes are related by an abstract-to-concrete-syntax mapping. Thus, by

changing the concrete syntax model and this mapping, it is possible to tailor

<e-LD> to the particular idiosyncratic requirements of each particular community

of instructors. Finally, the operational semantics in <e-LD> are actually defined by

the translation of flowchart-oriented specifications to rule-based ones used in the

exportation function and described in [9].

 Linguistic development takes full advantage of the Eclipse Modeling Project.

Indeed, the metamodels of <e-LD>'s abstract and concrete syntaxes are supported

by EMF (the Eclipse Modeling Framework). Translation to IMS LD (carried out

during exportation) is currently done as an ad-hoc model-to-model transformation;

however, we are starting to refactor this process using the model-to-model

transformation languages provided by the Eclipse Model to Model project. <e-LD>

also takes full benefit of GMF (the Graphical Modeling Framework of Eclipse) to

facilitate the development of the <e-LD> authoring function. Finally, the <e-LD>

importation function is implemented as an XML processing component. We are

currently refactoring it using XLOP (XML Language Oriented Processing) [12],

an environment for the processing of XML documents with attribute grammars

[11] also developed at Complutense University.

 Finally, during linguistic implementation, <e-LD> is deployed for the instructors as

an Eclipse-based standalone authoring tool. Currently we are also working on

integrating it with other IMS LD compliant platforms and tools, particularly IMS

LD players.

Finally, following the guidelines encouraged by LD-ADDIE, <e-LD> is an integral

part of the learning systems’ support function. In addition, it is also subject to

continuous improvement. The adoption of principles strongly rooted in software

language engineering in its design and development facilitates this continuous

improvement.

4. Conclusions and Future Work

In this paper we have described an extension of the ADDIE model for instructional

systems design that highlights the collaboration between instructors and developers

during the development of learning systems with significant technology-enhanced

components. For this purpose, the extension promotes the production of domain-

specific languages and associated toolsets as support for instructors. The resulting

model (LD-ADDIE) makes explicit a linguistic layer oriented to the systematic

production of language-oriented assets. We have illustrated the model with <e-LD>,

an authoring tool for IMS LD UoL. From a linguistic point of view, the development

of <e-LD> takes advantage of the language workbenches provided by the Eclipse

Modeling Framework.

We are currently applying the same principles to other language-driven e-Learning

systems: <e-QTI>, a toolset for the authoring and deployment of QTI assessments [5],

and <e-Tutor>, a system [13] for the description of Socratic tutorials. Finally, we plan

to further experiment with the adaptation of (the concrete syntax of) <e-LD> to

different communities of instructors in several instructional domains.

Acknowledgements

We wish to thank the projects TIN2005-08788-C04-01, TIN2007-68125-C02-01,

Flexo-TSI-020301-2008-19, Santander/UCM PR34/07 – 15865 and CID-II-0511-A,

as well as the UCM Research Group 921340.

References

1. Aho A.V, Lam M.S, Sethi R, Ullman J.D. Compilers: principles, techniques and tools (2nd

Edition). Addison-Wesley. 2006.

2. Allen, CW. Overview and Evolution of the ADDIE Training System. Adv. in Dev.

Human Res. 8(4), 430-441. 2006

3. Czarnecki, K. Generative Programming: Methods, tools and Applications. Addison-

Wesley. 2000

4. Kleppe, A. Software Language Engineering: Creating Domain-Specific Languages Using

Metamodels. Addison-Wesley. 2008

5. Martínez-Ortiz, I., Moreno-Ger, P., Sierra, J.L., Fernández-Manjón, B. <e-QTI>: a

Reusable Assessment Engine. ICWL’06. 2006

6. Martínez-Ortiz, I., Sierra, J.L, Fernández-Valmayor, A., Fernández-Manjón, B. Language

Engineering Techniques for the Development of E-Learning Applications. J. Network

Comp. Appl., in press (DOI: 10.1016/j.jnca.2009). 2009

7. Martínez-Ortiz, I., Sierra, J.L., Fernández-Manjón, B. Authoring and Reengineering of

IMS Learning Design Units of Learning. IEEE Trans. on Learning Tech., 27 Mar. 2009.

<http://doi.ieeecomputersociety.org/10.1109/TLT.2009.14>. 2009

8. Martínez-Ortiz, I., Sierra, J.L., Fernández-Manjón, B. Enhancing IMS LD Units of

Learning Comprehension. ICIW’09. 2009

9. Martínez-Ortiz, I., Sierra, J.L., Fernández-Manjón, B. Translating e-learning Flow-

Oriented Activity Sequencing Descriptions into Rule-based Designs. ITNG’09. 2009

10. Mernik M, Heering J, Sloane AM. When and how to Develop Domain-Specific

Languages. ACM Comp. Surveys. 37(4),316-344. 2005

11. Paakki J. Attribute Grammar Paradigms – A High-Level Methodology in Language

Implementation. ACM Comp. Surv. 27(2), 196-255. 1995

12. Sarasa. A., Sierra, J.L., Fernández-Valmayor, A. XML Language-Oriented Processing

with XLOP. WAMIS’09. 2009

13. Sierra, J.L., Fernández-Valmayor, A., Fernández-Manjón, B. From Documents to

Applications Using Markup Languages. IEEE Software 25(2), 68-76. 2008

