
ARTICLE IN PRESS

Journal of Network and Computer Applications 32 (2009) 1092–1105
Contents lists available at ScienceDirect
Journal of Network and Computer Applications
1084-80

doi:10.1

� Corr

E-m

(J.-L. Sie

(A. Fern
journal homepage: www.elsevier.com/locate/jnca
Language engineering techniques for the development of
e-learning applications
Iván Martı́nez-Ortiz, José-Luis Sierra �, Baltasar Fernández-Manjón, Alfredo Fernández-Valmayor

Dpto. Ingenierı́a del Software e Inteligencia Artificial. Fac. Informática, Universidad Complutense de Madrid, C/ Profesor José Garcı́a Santesmases, s/n. 28040 Madrid, Spain
a r t i c l e i n f o

Article history:

Received 19 June 2008

Received in revised form

29 January 2009

Accepted 26 February 2009

Keywords:

E-learning applications

Language engineering

Domain-specific languages

Authoring

Model checking

Rapid prototyping
45/$ - see front matter & 2009 Elsevier Ltd. A

016/j.jnca.2009.02.005

esponding author. Tel.: +34 913947548; fax:

ail addresses: imartinez@fdi.ucm.es (I. Martı́n

rra), balta@fdi.ucm.es (B. Fernández-Manjón

ández-Valmayor).
a b s t r a c t

In this paper we propose the use of language engineering techniques to improve and systematize the

development of e-learning applications. E-learning specifications usually rely on domain-specific

languages that describe different aspects of such final e-learning applications. This fact makes it natural

to adopt well-established language engineering principles during the construction of these applications.

These principles promote the specification of the structure and the runtime behavior of the domain-

specific languages as the central part of the development process. This specification can be used to drive

different activities: rapid prototyping, provision of authoring notations and tools, automatic model

checking of properties, importation/exportation from/to standards, and deployment of running

applications. This language engineering concept also promotes active collaboration between instructors

(the users of the languages) and developers (the designers and implementers) throughout the

development process. In this paper we describe this language-driven approach to the construction of

e-learning applications and we illustrate all its aspects using a learning flow sequencing language as a

case study.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A common practice in e-learning is the use of languages to
describe the different aspects of a learning scenario (e.g. content,
activities, participants, etc). IMS standardization efforts are good
examples of this trend (Friesen, 2005). Indeed, many of these
efforts result in suitable languages for the description of specific
aspects of an e-learning application. Among them it is possible to
find languages for packaging learning contents (i.e. the IMS
Content Packaging specification) (IMS, 2004), for describing the
different products involved in an assessment process (i.e. the IMS
Question & Test Interoperability specification) (IMS, 2006), for
describing the profile of a particular learner (i.e. the IMS Learner
Information Package specification) (IMS, 2005), for sequencing the
activities in a learning flow (i.e. the IMS Simple Sequencing
specification) (IMS, 2003b), or even for characterizing the different
teaching methods arising in heterogeneous learning situations
(i.e. the IMS Learning Design specification) (IMS, 2003a).

While these standardization efforts stress the use of languages
to solve interoperability issues (i.e. as vehicles that can be used by
heterogeneous platforms to exchange information), in our works
ll rights reserved.

+34 913947547.

ez-Ortiz), jlsierra@fdi.ucm.es

), valmayor@fdi.ucm.es
we have promoted a complementary philosophy: using suitable
languages to describe applications that are generated by auto-
matically processing these descriptions (Sierra et al., 2006b). This
philosophy is shared by the approaches to software development
based on domain-specific languages (Deursen et al., 2000; Mernik
et al., 2005). According to these approaches software development
is conceived as a language engineering process, where suitable
domain-specific languages are specified, implemented and
maintained for each application domain, and where software
applications are described using these languages instead of
general-purpose programming ones. These approaches are spe-
cially well suited to domains where having efficient mechanisms to
norm the interaction between domain experts and developers is a
must. E-learning is a paradigmatic example of these domains, since
many times the cost of providing the contents and fine-tuning the
final applications exceeds by several orders of magnitude the initial
development cost of the software infrastructures where the
applications will finally be deployed. The adoption of a language-
driven approach in e-learning results in a more rational distribu-
tion of responsibilities among the participants in the development
process. Instructors will be in charge of producing and maintaining
the final applications, while developers act as language engineers
responsible for formalizing and maintaining the languages used by
the instructors. Developers are also in charge of the software
infrastructure associated with such languages (including the
generators used to produce the final running applications).

www.sciencedirect.com/science/journal/yjcna
www.elsevier.com/locate/jnca
dx.doi.org/10.1016/j.jnca.2009.02.005
mailto:imartinez@fdi.ucm.es
mailto:jlsierra@fdi.ucm.es
mailto:jlsierra@fdi.ucm.es
mailto:balta@fdi.ucm.es
mailto:valmayor@fdi.ucm.es
mailto:valmayor@fdi.ucm.es

ARTICLE IN PRESS

I. Martı́nez-Ortiz et al. / Journal of Network and Computer Applications 32 (2009) 1092–1105 1093
We have successfully tested these language-driven principles
in the development of several e-learning systems and applications
(Fernández-Manjón and Fernández-Valmayor, 1997; Moreno-
Ger et al., 2007; Sierra et al., 2006c, 2007b, 2008c), where we
have tested the importance of using domain-specific languages to
orchestrate the collaboration needed between instructors and
developers. In these experiences we have also realized the
feasibility of a complementary approach to the interoperability-
oriented standardization efforts when adopting a language-driven
process model. Instead of seeking universal solutions, we consider
that it is also interesting to take a different approach by
formalizing the languages already used by instructors in their
specific learning domains. Since these languages are domain
specific and part of the instructors’ experience, they are more
understandable and easier to use for the instructors than the more
generic ones. It does not mean that standardization issues are
ignored. Indeed, these issues can be subsequently addressed by
appropriate importation/exportation modules. However, by
adopting a language engineering perspective, where developers
are constantly providing suitable linguistic support according to
the particular needs of the instructors, it is possible to promote an
instructor-centered development process, which results in in-
structors’ deeper involvement in the production and maintenance
of the e-learning applications. In this work we will mainly
illustrate this bottom-up approach, similar to the experiences
reported by Sierra et al. (2006a), although the techniques will also
be largely applicable in a top-down manner, based on the use,
specialization and adaptation of pre-existing languages, such as
the one proposed by Moreno-Ger et al. (2006).

The present paper exposes the marriage between e-learning
and language engineering. For this purpose, it describes and
illustrates the different activities promoted by a language-driven
approach in e-learning, and how these activities are organized
around sound specifications of domain-specific languages. These
specifications start with the characterization of abstract informa-

tion models for the languages, which are described in both a
conceptual and a formalized way. The structural formalization of
the languages allows for the subsequent formalization of their
runtime behaviors in the form of suitable operational semantics.
The resulting specifications are used to drive many other language
engineering activities. Indeed, these specifications can be readily
used to build running prototypes of the languages in a
straightforward way, which can be used to refine the structure
and the semantics of these languages. They can also be used to
provide notations that are more user-friendly for the instructors
(e.g. a graphical notation), by specifying a mapping between these
notations and the abstract information models. The resulting
languages facilitate the automatic checking of properties, which
results in better authoring support for instructors. Since the usual
e-learning specifications are also language based, it is possible to
Requirements

Changes

Application Developers Instructors Develo

Fig. 1. Simplified views of (a) conventional development of e-Le
connect these specifications using appropriate language transla-
tions. Finally, the resulting high-level designs can be easily
deployed using the well-known model-view-controller (MVC)
pattern (Krasner and Pope, 1988), which is typically used for
organizing many modern web-based applications.

The structure of the paper is as follows. Section 2 motivates the
language-driven approach by comparing it with conventional
development models. In Section 3 we introduce a case study that
will be used throughout the paper for illustrative purposes. In
Section 4 we focus on the structural and behavioral specification
of domain-specific languages. Section 5 is devoted to analyzing
the different activities enabled by this language-driven approach.
The paper finishes by presenting some conclusions and lines for
future work (Section 6).
2. Language-driven development of e-learning applications
compared to conventional development approaches

In a conventional development process model instructors are
requirement providers, while developers act as application im-
plementers. By using conventional requirement acquisition techni-
ques, developers interview instructors to determine which
resources (i.e. contents, support tools, etc.) must be incorporated
in the application, as well as how the final users (e.g. instructors,
learners, etc.) interact with these contents. For example, as result of
the requirement acquisition process to develop an e-learning
course, instructors determine, among others: the learning contents
and tools needed, the structure of the course/lessons and the
transitions between the different parts of a lesson or the whole
course. With all this information, and using general-purpose
programming languages and technologies (e.g. Java, XML, etc.),
developers implement the application; for example, they can
provide a web-based implementation by using a suitable frame-
work for the development of web-based applications, such as
Apache Struts (Goodwill and Hightower, 2003). Then, the developed
application is evaluated by instructors (perhaps with the help of
end-users), who eventually can discover some aspects to be
improved in the contents or in the interactions. Thus, instructors
propose modifications and/or improvements in the application to
the developers, who produce an enhanced application, starting a
new evaluation (e.g. instructors could include new content, modify
existing ones, as well as modify the learning flow which governs the
transitions between the different parts of the course). This iterative
behavior, characterized by the production/modification of applica-
tions, finishes when a satisfactory application has been obtained but
it needs to be started again when the application needs to be
updated (Fig. 1a). In fact, the process model described resembles the
Analysis Design Development Implementation and Evaluation (ADDIE)
methodology extensively used for the development of e-learning
Instructors

Domain-specific language

Application description

Application
generator Application pers

arning applications, and (b) language-driven development.

ARTICLE IN PRESS

I. Martı́nez-Ortiz et al. / Journal of Network and Computer Applications 32 (2009) 1092–11051094
materials (Allen, 2006; Molenda, 2003). The main advantage of this
conventional approach is its flexibility, because it avoids the
expressive limitations that can be imposed by using a specific
authoring tool (on the contrary, the process models explicitly
involve a development team able to react to the needs and
requirements of the instructors). However, the cost of producing
and maintaining the applications can be prohibitively high (Sierra
et al., 2006b). Indeed, a typical e-learning application can manage
high volumes of contents and exhibit complex interactions with the
different participants in the learning process (e.g. learners,
instructors, assistants, etc.). Then, when instructors want to report
an application change (e.g. error, new feature), many times the best
way that they can do so is to document their proposed modifica-
tions, for example annotating them directly onto applications’
screenshots (i.e. communication between instructors and devel-
opers could be orchestrated by descriptions based on natural
language as well as by other kind of documents). These annotations
are manually analyzed by developers to produce the adequate
application (e.g. in Struts, developers should tweak XML deploy-
ment descriptors and Java code to achieve the desired modifica-
tions). Thus, the resulting production and maintenance loop is
costly and sometimes inefficient due to the communication gap that
exists between instructors and developers.

In turn, in a language-driven approach instructors use suitable
domain-specific languages to produce and maintain the applica-
tions, while developers produce suitable implementations of such
domain-specific languages. This conception of application develop-
ment is possible because domain-specific languages can integrate
primitive constructions, means of combination and means of
abstraction which are close to the expertise and the needs of the
instructors. Therefore, these languages are easier to use than other
general-purpose programming languages for solving the specific
problems posed by instructors (i.e. instructor-oriented languages are
not general-purpose programming languages, but are languages for
describing the different aspects of the teaching and learning
processes). Thus, by adopting a language-driven approach the
production and maintenance loop can be speeded up. Indeed, by
using suitable domain-specific languages, instructors can describe
the relevant aspects of an e-learning application (e.g. learning flows
and contents) in a form which is machine processable. By doing so,
applications can be automatically generated by using suitable
application generators (compilers or interpreters) for these languages,
which are also provided by developers. The overall approach is
summarized in Fig. 1b.

Application generators can work, for instance, by automatically
instantiating application frameworks (Sierra et al., 2008c). Thus, the
language-driven approach does not imply that conventional pro-
gramming languages and technologies (e.g. Java, XML, etc.) become
unnecessary. On the contrary, these technologies also play a very
important role since developers use them to provide the application
generators for the domain-specific languages and the other software
infrastructure required (e.g. suitable application frameworks). In
addition, the design of domain-specific languages can make use of
higher-level specification formalisms and language engineering
techniques. Indeed, once the different aspects of a language are
rigorously specified, implementing it is an ordinary (although
possibly tedious) programming task. Therefore, next sections
concentrate on the language engineering techniques involved in
the design of domain-specific languages for e-learning, as well as on
the different activities enabled by this language-driven approach.
3. An example

In order to illustrate the different aspects presented in this
paper we will use a simple learning flow sequencing language.
This language is a simplified version of a flow-driven educational
modeling language included in /e-LDS, a system developed at the
Complutense University of Madrid (Martı́nez-Ortiz et al., 2007a).
/e-LDS supports the authoring and playing of Units of Learning
described with the aforementioned IMS Learning Design (IMS LD)
specification (IMS, 2003a; Koper and Olivier, 2004).

IMS LD is a powerful activity and role-oriented educational
modeling language developed at the Open University of the
Netherlands as an evolution of the previous language EML (acronym
for Educational Modeling Language) developed by the Professor Rob
Koper’s group (Koper and Manderveld, 2004). Since 2003 the IMS
LD specification has been adopted by the IMS consortium. IMS LD
incorporates a powerful condition system similar to a rule-based
mechanism that makes it possible to design complex adaptive
learning behaviors (Burgos et al., 2007b). However, during our
experiences with IMS LD in developing adaptive game-based
e-learning contents (Burgos et al., 2007a) we observed that many
instructors found it easier to describe their designs using a flow-
oriented notation. For this purpose, in /e-LDS we use a simple
flow-driven domain-specific language, which is similar in spirit to
the aforementioned IMS Simple Sequencing (IMS, 2003b), but with
support for roles. Moreover, we significantly adopt language
engineering principles in /e-LDS in order to keep the language
adjusted to the needs of the instructors, while still maximizing its
usability from an authoring point of view. We maintain an abstract
information model for this language (or, using terminology taken
from the model-driven development community, a metamodel—

Stahl et al., 2006), and we provide several bindings (e.g. an XML-
based one, a graphical one, etc.) in order to adapt the language to
the aforementioned authoring needs. We also provide export and
import mappings with IMS LD.

For sake of simplicity, in this paper we will ignore the aspects
regarding roles, and we will only consider the sequencing part of the
language in /e-LDS. We will also avoid the description of learning
objectives, environments, the description of activities, metadata, etc.
The purpose is to work with a language useful enough for
illustrative purposes, but still simple enough to fit in the limits of
a single paper. Therefore, our example language will be able to
describe how to sequence learning activities in a single-user
learning flow. The language will support either single sequencing
(i.e. the current step has a single next step), alternative sequencing
(i.e. the next step depends on a condition), or multiple
sequencing (i.e. there are several next possible steps to do). Activities
will be exposed to the learner, and they will be attended by him/her. As
a result, a set of achievements will be reached. Conditions themselves
will be formulated as Boolean expressions on achievements.

In order to exemplify the kind of descriptions that can be done
with this language, consider a simple example regarding a course
on Enology (i.e. the science of wine). In this course the learner
must first attend some classroom lectures. Then he/she must
examine some background material (in particular, two papers
written by Joseph Birra and Mary Bebo, two-fictitious—popular
experts on the matter, and a web site about the art of wine
tasting). After that, he/she must pass a knowledge test on the
matter. Depending on the result, he/she can be compelled to re-
examine the material, or otherwise he/she can proceed with the
learning process. The rest of the learning process consists of the
realization of a final-course work assignment, which must be
graded positively before finishing the course. This learning flow is
described in Fig. 2 using natural language.
4. Language design

The central step in the language-driven approach is to design
the domain-specific language used to describe the key aspects of

ARTICLE IN PRESS

I. Martı́nez-Ortiz et al. / Journal of Network and Computer Applications 32 (2009) 1092–1105 1095
the target applications. This design process must characterize the
language both in a structural dimension (i.e. how the aspects
addressed can be described using the language) and in a
behavioral dimension (i.e. how the applications described behave).
In this section we address these two design dimensions by
emphasizing in the language engineering principles used. In Sierra
et al. (2008a, 2008b) there are additional examples of applying
this process into the context of a Socratic Tutoring System (Bork,
1985; Ibrahim, 1989).

4.1. Designing the language’s structure

The design of the language will be addressed from an abstract
point of view. Thus, the language itself will be characterized as an
information model, instead of a concrete grammar. The rationale in
doing so, which is also a common practice in e-learning
specifications and standards, is to maximize the reusability of
the language in different contexts.

Indeed, the language will be adapted to each particular context
by providing a suitable binding to a concrete notation, as is also
usual in the e-learning standardization practice. From a language
engineering perspective, this structural design of the language is
analogous to the definition of the abstract syntax of a conventional
1. Perform the Attend to lectures activity
2. Perform the following activities

- Read Birra’s Paper
- Read Bebo’s Paper
- Visiting wine tasting website

3. Perform the Do Test activity
4. If the achievement test-passed has not been achieved, go to step 2
5. Perform the Do Work Assignment activity
6. If work-is-successful has not been achieved, go to step 5

Fig. 2. An example of learning flow sequencing.

Activity

+name

And Or

Simple Command

Achievement

+name

Learning Flow 1..*

Stop

Fig. 3. Information model for the
programming language, which lets language designers capture the
features of the language that are essential for further specifying
the meaning of their constructs (Friedman et al., 2001). Also, and
as said before, the process can be understood as a meta-modeling
activity in the context of model-driven engineering (i.e. as the
design of a domain-specific modeling language—Stahl et al., 2006).

The information model can be initially provided by using
standard data modeling techniques (e.g. entity-relationship
diagrams, or UML class diagrams). In addition, it can be further
formalized in terms of a first-order signature (i.e. a set of function
and predicate symbols) with the aim of subsequently enabling the
formal definition of the behavioral dimension.

In the case of our /e-LDS sequencing language, the abstract
structure of a sequencing specification is a directed graph whose
nodes correspond to learning activities, as well as to Boolean and
flow operations. In Fig. 3 we sketch the information model of this
language using an UML-like notation. This model characterizes a
learning flow sequencing specification as a set of commands, which
are further classified into simple and branched ones. Simple
commands can only have a single next command in the
specification, while branched ones can have two next commands.
Simple commands include the exposition of a learning activity
(Activity), atomic (Achievement) and composite (And, Or, Not)
Boolean operations (they enable us to represent conditions in
postfix notation), and a command for synchronizing several
learning paths (Join). In turn, branched commands include a
command for making alternative sequencing (Alt), and another
one for performing multiple ones (Fork). Finally, the model
includes a Stop command, which will be used to finish the
sequencing. In Table 1 we summarize the predicates used to
formalize descriptions that follow this information model. There
is a predicate for each command. The first argument corresponds
to a unique identifier for the command. In simple commands, the
last argument refers to the identifier of the command in the next
step. Finally, in Fig. 4 we exemplify the representation of the
sequencing in Fig. 2 using this formalized abstract notation.
Command

+identifier

Not

Branched Command

Join

Alt

Fork

next

0..1

next1

0..1

next2

0..1

/e-LDS sequencing language.

ARTICLE IN PRESS

Table 1
Predicates used to formalize the model of the /e-LDS sequencing language.

Predicate Intended meaning

Activity (i,a,j) Activity a must be exposed to the learner

Achievement

(i,a,j)

True if the learner has reached achievement a. False otherwise

And (i,j) True if the two last conditions tested were both true. False

otherwise

Or (i,j) False if the two last conditions tested were both false. True

otherwise

Not (i,j) True if the last condition tested was false. False otherwise

Alt (i,j,k) If the last condition tested was true, the next step is command j.

Otherwise it is command k

Fork (i,j,k) The next step can be both command j and command k

Join (i,j) Synchronize all the learning paths leading to it

Stop (i) It stops the sequencing process

Activity (1,Attend to lectures,2)
Fork (2,3,4)
Activity (3,Read Birra’s Paper,7)
Fork (4,5,6)
Activity (5,Read Bebo’s Paper,7)
Activity (6,Visit wine tasting website,7)
Join (7,8)
Activity (8,Do Test,9)
Achievement (9,test-passed,10)
Alt (10,11,2)
Activity (11, Do Work Assignment, 12)
Achievement (12,work-is-successful,13)
Alt (13,14,11)
Stop (14)

Fig. 4. Abstract representation of the learning flow sequencing outlined in Fig. 2.

Description Memory
(D)

Evaluation Stack
(EST) Achievement Memory

(A)

Joinpoint Memory
(J)

Input Stream
(I)

Output Stream
(O)

Control Stack
(CST)

Learner Inbox Memory
(IB)

Stop Flag
(STP)

Fig. 5. Structure of the abstract machine for the /e-LDS sequencing language.

I. Martı́nez-Ortiz et al. / Journal of Network and Computer Applications 32 (2009) 1092–11051096
4.2. Specifying the language’s behavior

Once the structure of the language has been defined, the
second step in the language design is to characterize the runtime
behavior of this language. This second step will be addressed by
assigning suitable operational semantics to the language. Such
semantics will model the runtime behavior as transitions between
computation states. Therefore, in order to model the behavior, we
need in turn to decide how to represent those computation states,
and also how to characterize the transitions mentioned. These
two aspects will be addressed in the following sections.
4.2.1. Characterizing computation states

The characterization of computation states is analogous to
devising the architecture of an abstract machine for executing the
descriptions in the domain-specific language. Since the language
is specific, the resulting machine will also be so. Computation
states (and hence the associated abstract machines) typically will
include:
�
 The description in the language (which can be thought of as
the program stored in the machine’s memory).

�
 One or several control elements used to decide how the

execution must proceed (e.g. information about the current
instruction, or the current set of instructions in the case of
multithreaded execution).

�
 A context (which can be thought of as the contents of the

machine’s registers and internal memory).

�
 Several streams communicating with other components

(which can be thought of as buses connecting the CPU with
input, output and other devices). These streams are very useful
for isolating the behavioral details from the presentation/
interaction/updating aspects.

This organization naturally leads to MVC-based architectures
for the final implementations, as will be detailed below. Also, in
order to facilitate language evolution, computation states can be
characterized as indexed sets of components (i.e. sets of pairs with
the form /c,CS, where c is the component’s name and C is the
corresponding component value). It will facilitate the addition of
new components to the states without affecting the specifications
already available, with results similar to the use of labels in the
transitions as proposed in works on the modularization of
operational semantics specifications (Mosses, 2004). To facilitate
the manipulation of this representation, we will introduce the
following notational conventions:
�
 sc: It will be used to obtain the value of component c in state s.
Formally, sc ¼ C3hc;Ci 2 s.

�
 [c/C]: It will used to update the value of component c in

state s. The new value will be C. Formally, s½c=C� ¼

ðs� hc;sciÞ [fhc;Cig.

�
 [c1/C1, c2/C2,y, ck/Ck]: It will be a shortcut for s[c1/C1][c2/C2]y

[ck/Ck].

Regarding our case study, in Fig. 5 we outline the structure of an
abstract machine that can be used to execute learning flow
sequencing descriptions. In this structure:
�
 The description will be stored in a description memory

(abbreviated as D). This memory will consist of the sets of
sequencing commands.

�
 The control elements will be a control stack (CST), a Learner

Inbox Memory (IB) and a stop flag (STP). Each element in the
control stack will be a pair /j, iS where i points to a command

ARTICLE IN PRESS

I. Martı́nez-Ortiz et al. / Journal of Network and Computer Applications 32 (2009) 1092–1105 1097
in the description memory, and j points to the preceding
command, also in the description memory (this last reference
will be required during the execution of the Join commands). In
turn, the learner inbox memory will store those activities that
are currently exposed to the learner, along with the informa-
tion needed to restart the execution once these activities are
attended. Finally, the stop flag will indicate whether the
execution has stopped or not.

�
 The context will be represented by an Evaluation Stack (EST),

an Achievement Memory (A), and a Joinpoint Memory (J). The
evaluation stack will be used to store the results of the
conditions tested that will be required in subsequent tests.
The achievement memory will store all the achievements
established as a result of executing the activities. Finally, the
joinpoint memory will store information about the Join

commands executed. Its elements will be pairs of the form
/i, WS, with i being the identifier of a Join command and
W a set of references to the preceding commands pending
execution.

�
 Finally, the machine has an Input (I) and an Output (O) stream.

The input stream will contain the result of executing the
activities —i.e. attended (a,As) terms, with a being an activity’s
name and As a set of achievements. The output stream will
contain commands to expose activities to the learner—i.e.
expose(a) terms, with a the name of an activity.

Therefore the computation states managed in the semantics
will be sets of the form

fhD; _i; hCST; _i; hEST; _i; hA; _i; hJ; _i; hIB; _i; hI; _i; hO; _i; hSTP; _ig (1)

where _ denotes an anonymous unique syntactic variable.
To facilitate the manipulation of the description, by pred(D,i)

we will denote the set of identifiers of all the commands pointing
to command i in description D. Finally, in order to facilitate the
manipulation of the stacks and streams, we will abstract the
specifications in the following typical operations:
�
 empty(S) for checking the emptiness of a stack, top(S) for
consulting the stack’s top, pop(S) for popping the stack’s head,
and push(e,S) for pushing element e into stack S.

�
 in(S) for reading from a stream, out(e,S) for writing element e

in stream S, and close(S) for closing the stream.

4.2.2. Specifying the semantic rules

Once the structure of the computation states is set, the
language’s runtime behavior can be formalized. For this purpose
we propose using the structural style of operational semantics
(Plotkin, 2004; Mosses, 2006). In this style, semantics rules
typically adopt the form

Fo; ; . . . ; ;Fk

Co; ; . . . ; ;Cn
(2)

and therefore they resemble the inference rules of formal calculi
in logic. The meaning of these rules is also straightforward: if
sentences Fi in the premise hold, the sentences in conclusions Cj

will also hold. Some of these sentences will typically adopt the
form of so-s1, meaning a transition from state so to state s1.
Other ones will involve additional tests and constraints on the
possible states using typical logical and set theoretic operations.
In addition, we use a small-step style of specifying the semantics
(Mosses, 2006). This specification style concentrates on charac-
terizing transitions between consecutive states, and will facilitate
subsequent development steps, such as model checking and
implementation.
In Fig. 6 we show the semantic rules for our example. These
rules characterize the sequencing process as the iteration of two
stages:
�
 The first stage executes all the sequencing steps required to
expose the activities to the learner. For this purpose, com-
mands must be successively executed until reaching an Activity

one. In addition, Fork commands can cause several activities to
be exposed. It requires tracking several execution paths instead
of a single one, which is achieved by using the control stack.
Indeed, this stage supposes executing commands until this
stack is empty. The stage itself is governed by all the rules but
the last one. The activity-exposition rule characterizes the
execution of the Activity commands, and therefore the
exposition of the activities to the learner: a suitable exposed

command is written in the output stream, and information
required to resume the execution when the activity has been
attended is stored in the learner inbox memory. The achieve-
ment-test, and-test, or-test and not-test rules characterize
how the different conditions are tested. For achievements, the
result is true or false depending on where the achievement is or
is not stored in the achievement memory. For composite
conditions, the result is obtained by operating on the top
values of the evaluation stack, which will correspond to the
operands already evaluated, and such a result will replace the
top values as is usual in the stack-based evaluation of
expressions (Aho et al., 2007). The alt-branching and the
fork-branching rules characterize the execution of the
branching commands. While the next step to execute due to
the Alt command depends on the top of the evaluation stack,
the Fork command supposes pushing the two possible next
steps in the control stack. The execution of a Join command is
modeled using three different rules. The first one (join-
activation) models the activation of a joinpoint: pointers to
the Join command and to the pending commands are stored in
the joinpoint memory. Also notice that the control stack is
unchanged, to deal with the actual execution of the command.
This execution supposes blocking the sequencing if there are
more commands pending execution (join-blocking rule), or to
restart it if such execution was provoked by the last one
pending (join-unblocking rule). Finally, the execution of the
Stop command supposes stopping the sequencing process
(stop rule).

�
 The second stage, which is governed by the rule activity-

attendance, supposes taking care of learner’s interactions,
which in this case study are reduced to attending activities.
This stage comprises a step where the input stream is read to
determine the activity attended and the achievements estab-
lished as a result of such an action. These achievements are
then used to update the achievement memory, and the
continuation information, stored in the learner inbox memory,
is used to restart the sequencing process by pushing this
information in the control stack.
5. Enabled activities

As said before, once the design of the language is available, it
can be used to organize several activities, which are facilitated by
using well-established language engineering techniques. In
particular, in this section we contemplate the addressing of rapid
prototyping, the incorporation of author-oriented notations, the
introduction of model-checking capabilities, the importation/
exportation from/to standard specifications, and the deployment
of the final applications.

ARTICLE IN PRESS

{ }
;; () _, ;; (, ,)

(), , , , ((),)

i i a j

a i j a

σσσ

σσσσσ

= = ∈

∪→
DTSCPTS

OBITSC

false top activity

CST/pop IB/ O/out expose
activity-exposition

{ }
;;) ;; ,), ');; ,

,), ', , ,

a As I a n

n I As a n

σσσσ

σ σ σ σ σ

∈===

−∪→

BIITSCPTS

CST A IB

false empty(true attended(in(

CST/push(I/ A/ IB/
activity-attendance

;;) _, ;; , ,)

]),,))(,[

i i a j

a
i j

σσσ
σ

σσσσ

∈==
∈

→

DTSCPTS

A
TSETSC

false top(achievement(

true if
CST/push(,pop EST/push(

false otherwise

achievement-test

1

1

;;) _, ;; (;; ();; (())

, ()), (, (()))

TSETSEDTSCPTS

TSETSC

false top(and ,) top top pop

CST/push(,pop EST/push pop pop

o

o

i i j v v

vvji

σ σ σ σ σ

σσσσ
= = ∈ = =

→ ∧
and-test

1

1

;;) _, ;; (;; ();; (())

, ()), (, (()))

TSETSEDTSCPTS

TSETSC

false top(or ,) top top pop

CST/push(,pop EST/push pop pop

o

o

i i j v v

vvji

σ σ σ σ σ

σσσσ
= = ∈ = =
→ ∨

or-test

;;) _, ;; (;; ()

, ()), (, ())

TSEDTSCPTS

TSETSC

false top(not ,) top

CST/push(,pop EST/push pop

i i j v

vji

σ σ σ σ

σσσσ

= = ∈ =

→ ¬
not-test

;;) _, ;; (, ,

()
])(,))(,,[

DTSCPTS

EST
TSETSC

false top(alt)

 if top true
pop/TSEpop(hsup/TSC

 otherwise

i i j k

j
i

k

σσσ
σ

σσσσ

= = ∈
=

→
alt-branching

;;) _, ;; (, ,

[, , (, , ()))]
DTSCPTS

CST

false top(fork)

CST/push(push pop

i i j k

i j i k

σσσ
σσσ

= = ∈
→

fork-branching

{ }
;;) _, ;;) ;; (,)

, (,)

j j k W j W

j j

σσσσ
σ σ σ σ

= = ∈ ¬∃ ∈

→ ∪
JDTSCPTS

DJ

false top(join(,

J/ pred
join-activation

{ }
{ } { }{ }

;;) , ;;) ;; , ;;

(), (,) ,

JDTSCPTS

CST J

false top(join(,

CST/pop J/

i j j k j W W i

j W j W i

σ σ σ σ

σ σ σ σ

= = ∈ ∈ − ≠ ∅

−∪−→
join-blocking

{ }
{ }

;;) , ;;) ;; , ;;

(,)), ,
JDTSCPTS

CST J

false top(join(,

CST/push ,pop(J/

i j j k j W W i

j k j W

σ σ σ σ
σ σ σ σ

= = ∈ ∈ − = ∅

−→
join-unblocking

[]
;;) _, ;;)

,
DTSCPTS

O

false top(stop(

STP/true O/close()

i iσ σ σ
σ σ σ

= = ∈
→

stop

Fig. 6. Semantic rules for the /e-LDS sequencing language.

I. Martı́nez-Ortiz et al. / Journal of Network and Computer Applications 32 (2009) 1092–11051098
5.1. Rapid prototyping

The behavioral specification of the domain-specific language
using structural operational semantics is amenable to supporting
rapid prototyping in a straightforward way. The aim of rapid
prototyping is to enhance the quality of the language specifica-
tions, since this quality will be decisive in the quality of the final
applications. Indeed, if a good specification is provided, it will be
possible to apply systematic techniques in order to derive reliable
platforms, frameworks and/or parametric applications able to be
customized using the languages. Therefore, we need to verify the
correctness of the specification and, more important, to validate it
according to the expectations of instructors and developers. For
this purpose, rapid prototyping can be very helpful. In fact, before
undertaking the implementation, developers can build a proto-
type of processor able to play descriptions which conform to the
domain-specific language. In turn, the participation of instructors
is also very valuable, as they can use these prototypes with real
descriptions to decide on the suitability or unsuitability of the
specification. As a consequence, errors can be detected and fixed
in very early development stages. Therefore high-quality lan-
guages well adapted to the specific needs of relevant learning
scenarios can be provided. This whole process also has advantages
regarding production and maintenance of the final e-learning
applications.
In our experiences we use the Prolog programming language
(Sterling and Shapiro, 1994) because it is especially well suited for
developing prototypes. The Prolog language facilitates the tasks
involving the definition and manipulation of other languages.
Indeed, it was designed with a primarily linguistic purpose, as a
tool for natural language processing (Pereira and Warren, 1980). In
addition, as described by Clément et al. (1986) and Sethi (1996),
Prolog allows for the easy encoding of structural operational
semantics. Another interesting feature is the fact that it is
equipped with an extensible syntax, which can be extended by
defining new operators. Finally, most Prolog implementations also
incorporate very simple and elegant ways of doing concurrent
processing based on co-routines. This feature will be very useful
in isolating the purely behavioral aspects from those regarding
interaction and presentation.

Therefore, Prolog sets an ideal framework to support rapid
prototyping in our language-driven approach as it can speed up
the construction of definitional interpreters for the domain-specific
languages introduced during the language-driven development of
e-learning applications. Definitional interpreters are very com-
mon in language engineering, and they are oriented to making the
relevant behavioral features of the language explicit, but not to
achieving efficiency or realistic deployment conditions (e.g. web-
based execution). However, we will be able to implement it with
very little effort in a few hours, and since it is systematically

ARTICLE IN PRESS

I. Martı́nez-Ortiz et al. / Journal of Network and Computer Applications 32 (2009) 1092–1105 1099
obtained from the specification, we will also be able to update it
easily if the language evolves or changes.

The high-level architecture of the definitional interpreters in
our approach is induced by the typical nature of the operational
semantics specification. This architecture, which is outlined in
Fig. 7, includes:
�

Fig

Fig
righ
A behavioral layer that will encode the transition rules in the
operational semantics specification. Following patterns similar
to those discussed by Clément et al (1986) and Sethi (1996), it
is possible to capture the language’s transition relation with a
transition/1 predicate, whose argument is the encoding of
a transition step s0-s1 (of a whole set of transition steps
actually, since it is possible to use logical variables to represent
state patterns, in the same way that syntactical variables are
used in the semantic rules). Thus, there will be a one-to-one
correspondence between semantics rules and Prolog clauses
defining the transition/1 predicate. Fig. 8a sketches the
Prolog encoding of the activity-exposition semantic rule.

�
 An interaction layer that will model at a very basic level the

interactions with the different participants in the learning
process. The interaction layer includes a set of interaction

actions, which deal with the presentation commands produced
in the behavioral layers, collect the learner responses, and send
them back to the behavioral layer. For this purpose, we
represent interaction actions by an interaction/3 predicate.
The first argument of this predicate is the command itself, the
second argument the current input, and the third argument the
resulting input stream. In this way we need to provide a clause
for each presentation command. In Fig. 8b we sketch the
interaction action for the expose command, which is associated
with the exposition of an activity to the learner.

�
 A communication layer that implements the stream operations

used in the operational semantics. This layer promotes an
Interaction
Layer

Communication
Layer

Interaction
Actions

Input
Stream

Output
Stream

Behavioral
Layer

Transition
Rules

. 7. High-level architecture of the prototypes for the definitional interpreters.

transition (S0-> S1) :-
 component (S0, stp, false),
 component (S0, cst, CST),
 component(S0, d, D),
 top (CST, (_, I)),
 member(activity (I, A, J), D),
 %------------------------
 pop (CST,CST1),
 updateComponent (S0, cst, CST1, SI1),
 component (S0, ib, IB),
 updateComponent (SI1, ib,
 [(a, (I,J))|IB], SI2),
 component (S0, o, O),
 out (O,expose(A), O1),
 updateComponent (SI2, o, O1, S1).

. 8. Prolog encoding of (a) activity-exposition transition rule, and (b) the interaction a

t side of the clauses are omitted for the sake of conciseness.
explicit separation between the two previous ones. This
separation is very relevant for developers. Indeed, final
implementations will usually be web-based, and such im-
plementations usually enforce such a separation between the
client and the server side. Therefore, by also separating these
aspects at the prototyping stages, developers will be able to
test and refine the operational semantics in order to allow for
appropriate interactive behavior. Regarding Prolog encoding,
streams can be represented as open-ended lists. In addition,
standard goal delaying Prolog mechanisms can be used in the
provision of the operations.

For more detail regarding rapid prototyping in the context of
our language-driven approach see the work of Sierra et al.
(2007a).
5.2. Provision of author-oriented notations

Author-oriented notations are very relevant to actively invol-
ving instructors in the whole development process. These
notations can be textual or graphical. Also, it is possible to
provide alternative notations for the same language, each one of
them oriented to a different context or use. In particular:
�

in

inter
 sho
 rea
 out

ctio
During prototyping the provision of a concrete syntax under-
standable to the instructors is mandatory to actively involving
instructors during such an activity. Also, this syntax must be
easy to implement in order to not increase the prototyping
costs.

�
 A common practice in e-learning is to provide XML-based

notations, which make possible the preparation of descriptions
as documents marked with descriptive domain-specific mark-
up languages. This conception of author-oriented notations
based on descriptive markup is close to our previous work on a
document-oriented approach to the production and mainte-
nance of content-intensive and e-learning applications (Sierra
et al., 2006b).
Finally, in order to facilitate the use of the languages by

structors, authoring scenarios encourage graphical notations
artı́nez-Ortiz et al., 2007b).
(M
�
 From the linguistic perspective promoted by the language-

driven approach, the provision of these notations supposes:

�
 Defining suitable concrete syntaxes.

�
 Defining appropriate translations of these syntaxes to the

language’s abstract syntax.

�
 Implementing these translations in the context of suitable

authoring tools.
action(expose (A), In, NIn) :-
wActivity (A),
dAchievements (As),
 (In,attended (A, As), NIn).

n associated with the expose command. Definition of the predicates used in the

ARTICLE IN PRESS

['Attend lectures',
 repeat (
 [par ('Read Birras Paper',
 'Read Bebos Paper',
 'Visiting wine tasting
 website'),
 'Do test'],
 until (test_passed)),
 repeat(
 'Do Work Assignment',
 until (work_is_successful))].

<design>
 <seq>
 <activity>Attend lectures</activity>
 <repeat>
 <seq>
 <par>
 <activity>Read Birra’s Paper</activity>
 <activity>Read Bebo’s Paper</activity>
 <activity>Visiting wine tasting web
 site</activity>
 </par>
 <activity>Do test</activity>
 </seq>
 <until>
 <achievement>test-passed</achievement>
 </until>
 </repeat>
 <repeat>
 <activity>Do Work Assignment</activity>
 <until>
 <achievement>work-is-
successful</achievement>
 </until>
 </repeat>
 </seq>
</design>

Attend
lectures

Read
Birra’s
Paper

Read
Bebo’s
Paper

Visit wine
tasting
website

Do Test

test-passed

no

yes

Do Work
Assignment work-is-successful

yes

no

Fig. 9. Encoding the example of Fig. 2 using different concrete syntaxes: (a) a Prolog-based one; (b) an XML-based one; (c) a graphical one.

I. Martı́nez-Ortiz et al. / Journal of Network and Computer Applications 32 (2009) 1092–11051100
Also, according to well-established language engineering
principles, it is very important to separate the specification of
each of these aspects:
�
 At a purely descriptive level, concrete syntaxes (commonly
known as bindings in e-learning standardization efforts) can be
defined by using a plethora of grammar formalisms (Klint
et al., 2005). In particular, prototyping-oriented notations can
be defined as regular tree grammars (Comon et al., 2007)
adopting a suitable form of the BNF notation. XML-based
markup languages can be defined as a suitable schema
language (e.g. DTDs or XML Schema) (Makoto et al., 2005).
Graphical notations in turn can be defined using suitable visual
grammar formalisms (Marriott et al., 1999).

�
 In turn, translation can be specified using standard mechan-

isms in language engineering. In particular, the attribute

grammar paradigm (Paakki, 1995) is especially well suited to
this purpose. This paradigm can also be applied to describing
contextual constraints not directly describable with the
formalism used to define the notation.

�
 Finally, implementation will vary with the notation and the

application context. For instance, during prototyping, syntax
can be embedded in Prolog using the aforementioned feature
of user-defined operators. Considering the descriptions in the
language as Prolog terms, translation is reduced to a term
manipulation process, which in turn is reduced to a plane
Prolog programming task. Regarding XML-based markup
languages, they can be processed using some of the well-
known XML processing frameworks (Birbeck et al., 2001). Also,
in this case we have realized the feasibility of connecting
event-oriented frameworks (e.g. SAX) with standard compiler-
generation (e.g. JavaCC or Yacc-like) tools, following a pattern
similar to that suggested by Stanchfield (2009) in relation to
the ANTLR compiler-generation framework (Parr, 2007). The
idea is to use SAX as a lexical scanning framework which can
be connected to a translator automatically generated from a
grammar-based specification. This grammar-based nature of
the cited compiler construction environment contributes to
decreasing the distance between implementation and specifi-
cation and, therefore, to leveraging the overall development
and maintenance costs (Sarasa-Cabezuelo et al., 2008). Finally,
regarding graphical syntaxes, the meta-modeling support in
the Eclipse framework, along with its associated edition
facilities, constitutes a pragmatic and cost-effective solution
to implementing them (Steinber et al., 2003).

Regarding our case study, in Fig. 9 we describe the example in
Fig. 2 with three different alternative concrete syntaxes. In Fig. 9a,
we use a prototyping-oriented notation. In Fig. 9b we use an XML-
based one. Finally, in Fig. 9c we use a graphical oriented one,
which is based on the UML’s activity diagrams (Booch et al., 1998),
and which also resembles the typical notations used in the
description of workflows during the automation of business
processes (Aalst and Kees, 2004). Moreover, the graphical notation
used in Fig. 9c is a simplification of /e-LDS’s actual graphical
notation (Martı́nez-Ortiz et al., 2008a).
5.3. Model checking of properties

We consider that a good authoring support not only has to rely
on a user-friendly notation and editing environment, it also
provide authors with the automation of different tasks, such as
the verification of properties in the authored descriptions. Some of

ARTICLE IN PRESS

{ }
;; () _, ;; (, ,)

(), , ,

DTSCPTS

CST IB

false top activity

CST/pop IB/

i i a j

a i j

σσσ

σ σ σ σ

= = ∈

∪→
activity-exposition

{ }
;;) ;; , ;; (,) ;; '

,), ', ,

a n a As As As

n As a n

σσσσ

σ σ σ σ σ

⊆∈∈==

−∪→

DBITSCPTS

CST A IB

false empty(true achievements

CST/push(A/ IB/
activity-attendance

Fig. 10. Modification of the semantic rules for the /e-LDS sequencing language in order to abstract its operational semantics for model-checking purposes.

DEF before (Fo, F1) = not E (not F1 U Fo)
before (expose (Do Work Assignment),

 expose (Do Test))

Fig. 11. Examples of definitions using the assertion language. First the before

temporal operator is defined, with the intended meaning ‘F1 must hold before Fo

holds’. Then a property is formalized stating ‘The Do Test activity must be exposed

before the Do Work Assignment activity is exposed’.

I. Martı́nez-Ortiz et al. / Journal of Network and Computer Applications 32 (2009) 1092–1105 1101
these properties are structural, and therefore they can be statically
checked in a way similar to the syntax or to the contextual
constraints of a conventional programming language. However,
properties related to states during runtime still cannot be verified
in such a way, since this verification requires considering the
possible ways in which the resulting system or application can
evolve from a particular state. Model checking (Clarke et al., 2000)
is a technique that allows for this kind of verifications. In model
checking, properties to be checked are described using a suitable
temporal logic (Emerson, 1990). The goal of the checking process is
then to establish where the application’s state space is a model of
(i.e. satisfies) the temporal properties, and, in the case of finding a
violation, to document it in the form of a suitable execution trace.

In order to take advantage of model checking in the context of
our language-driven approach, the following steps need to be
addressed:
�
 To substitute interactive behavior by non-deterministic choice
in the operational semantics. Indeed, since the goal is to
explore the possible executions of the application, for each
potential learner’s interaction it is sufficient to try all the
possible learner’s responses.

�
 To design a suitable assertion language for describing the

properties. Since the complexity of the checking process will
depend on this language, a reasonable trade-off between
expressivity and the impact on the complexity of the final
checking process must also be taken into account. In particular,
the CTL (Computation-tree logic) language, which we have
adopted in some of our experiences, allows for a checking
process whose time complexity is polynomial in the size of the
state space (Clarke et al., 1986; Emerson, 1990). Yet this
language is expressive enough to describe many interesting
properties.

�
 To distinguish relevant states for property checking. Indeed,

since the complexity of the checking process will also depend
on the size of the state space, it will also be important to
decrease the number of states by distinguishing this subset of
relevant ones.

�
 To provide model-checking support. For some languages it will

be possible to reuse pre-existing model checkers. For instance,
in the context of the language-oriented development of
educational adventure videogames described by Moreno-Ger
et al. (2007), we have used the NuSMV model checker (Cimatti
et al., 2000), which makes use of an efficient technique called
symbolic model checking (Burch et al., 1992) to deal with huge
state spaces (the results are reported by Moreno-Ger et al.,
2009). Other works that use a similar approach are reported by
Baldoni et al. (2007) and Baldoni and Marengo (2007). While
this possibility leverages the overall cost of providing this
support, it supposes facing the encoding of the operational
semantics in the reused model-checker’s specification lan-
guage. It also hinders the implementation of some domain-
specific optimizations during the searching of the state space.
Finally, it also requires providing a way of presenting the
instructors with counterexamples for properties which are
violated, counterexamples which will be given in terms of the
encoding instead of in terms of the original domain-specific
language. Due to these shortcomings, for other languages the
explicit provision of a dedicated model-checking engine could
be more convenient.

By following the steps described above it is possible to build
a framework supporting model checking for each particular
domain-specific language. In order to effectively use this frame-
work, instructors and developers must set it up for each particular
project or family of projects by deciding the relevant properties to
be checked. For this purpose, instructors informally state these
properties, and developers formalize them using the assertion
language. Once the properties are established, instructors take
control. They author the descriptions, automatically detect
potential problems as violations of the properties, examine the
counterexample traces, and use those to solve the problems
detected. The construction of the domain-specific model-checking
frameworks themselves can be exemplified with our /e-LDS
sequencing language:
�
 The substitution of interaction by non-deterministic choice
supposes dropping the input and output streams from the
computation states. In order to anticipate the possible learner’s
responses, one needs to add a predicate of the form
achievements(a, As) to the abstract description, declaring the
possible achievements As for each activity a. In Fig. 10 we show
the modifications in the operational semantics required to
achieve the substitution. These modifications only affect the
rules activity-exposition and activity-attendance. The other
rules remain unmodified.

�
 The assertion language is standard CTL with atomic proposi-

tions, expose(a), where a is the name of an activity,
achieved(a), where a is the name of an achievement, and
stopped. The intended meanings of these propositions are the
obvious ones. The assertion language also includes a basic
abstraction mechanism, which allows for the definition of new
operators. In Fig. 11 we show an example of the use of this
language.

�
 Relevant states will be those produced by the new activity-

exposition and activity-attendance rules, as well as by the
stop rule, since those states are where changes in the truth
value of the assertion language’s basic propositions hold.

ARTICLE IN PRESS

I. Martı́nez-Ortiz et al. / Journal of Network and Computer Applications 32 (2009) 1092–11051102
�
 Implementation is carried out using a dedicated model checker
which is driven by the adjusted operational semantics
specification. The inputs to this model checker are the learning
flow sequencing specification, the declaration of the possible
achievements for each activity, and the properties to be
checked (expressed in the assertion language). Then it system-
atically explores the state space induced by the abstract
semantics and the particular specification, it maintains the
basic propositions which are true in each state, and it uses an
on-the-fly version of the classical model-checking algorithm
presented in Clarke et al. (1986) to check the properties. It also
uses compression and hashing techniques to manage the states
explored and to save space, and it focuses only on the relevant
states. When it discovers a violation of a property, it produces
an execution trace of the learning flow describing this
violation. The current algorithm is able to deal with several
million states in a typical modern personal computer, which is
enough for most of the practical applications.

5.4. Exportation and importation

One of the main aims of standardization efforts in e-learning is
to facilitate the interoperability of heterogeneous applications and
systems, as previously stated. For this purpose, the different
aspects of an e-learning system can be expressed using standard
descriptive languages such as the IMS specifications mentioned at
the beginning of this paper. Nevertheless, standard languages and
notations can be very general for a specific problem domain, and
they can also be more difficult to use from an authoring
perspective. For this purpose, suitable import and export processes
can be defined relating domain-specific notations and standard
ones. Importation consists of producing specifications in the
domain-specific language from specifications in a different
(possibly standard) external language. On the other hand,
exportation consists of the inverse step: producing specifications
in the external language from specifications in the local one.

The language engineering methods applied during importation
and exportation are similar to those used during the provision of
authoring notations, since suitable translations between notations
must be provided. Nevertheless, in this case one needs to face a
lack of expressive power in the target notation. This problem
arises when the target notation is not able to express all the
features that can be described using the source one. Therefore, the
results of the translation process will be:
�
 A (possibly partial) specification in the target notation.

�
 A (possibly empty) report of incidences discovered during

translation.
1 In the actual /e-LDS language these specifications are not separated, since

the real language is able to deal with multiple roles.
We have followed this approach in the work reported by Sierra
et al. (2007b), and Sierra and Fernández-Valmayor (2007). The
first of these papers describes an agenda-based importation
system for IMS Content Packaging. The second one reports how
a flexible importation/exportation system is added to a system for
building repositories of learning objects in specialized domains.
Also, as reported by Martı́nez-Ortiz et al. (2008b) the approach is
a core feature of our /e-LDS environment. In this context
translation is conceived as a semi-automatic process, since
instructors can use the incidence report to refactor the original
specification in terms of the new expressive means. Also, due to
the differences between the languages, the translation processes
are not ensured to be complete, but only to produce satisfactory

approximations to the original specifications. Finally, developers
also play an active role during refactoring. On one hand, they can
change or fine-tune the underlying software infrastructure to
make possible the desired refactoring. On the other hand, they can
implement evolutions of the domain-specific language to accom-
modate the expressive needs of the instructors not taken into
account in the current version of such a language.

In order to exemplify the exportation and importation aspects,
consider exportation from our /e-LDS sequencing language to
IMS LD, and importation from IMS LD to this language:
�
 Exportation will produce a design with a single role that
contains a method with a single act. This act will encode the
sequencing specification. However, the process cannot be
performed directly because of the impossibility of changing
the state of an activity from completed to uncompleted in the
IMS LD language. In order to approximate designs with loops,
one needs to unfold these loops in a pre-established number of
iterations. In /e-LDS a wizard helps the user with this
unfolding process. The result is an IMS LD approximation of
the original design. Therefore, specifications in the /e-LDS
language can be understood as templates that can be used to
generate an unlimited number of IMS LD designs. In addition,
an incidence report will be generated describing those aspects
that must be revised/completed (e.g. the activities cloned
during the unfolding process, or the activities added to end
the last iteration when the termination condition has failed). In
Fig. 12a we illustrate this process. We sketch a simple /e-LDS
sequencing specification (actually, a fragment of the example
specification in Fig. 2), and we show the result of unfolding two
iterations of the loop. After being revised by the instructors,
this specification will be directly describable in IMS LD
(Martı́nez-Ortiz et al., 2009).

�
 The importation process will produce a separate initial

sequencing specification for each role.1 In addition, the process
will be hindered by the different sequencing paradigms, such
as the one we indicated in Section 3. The incidence report will
use conditions and notifications to annotate the initial
sequencing specifications with the different aspects to be
revised. This leads to a learning design reengineering approach,
where instructors and developers can then work on refactoring
the original design in an /e-LDS compliant one, which can be
re-exported into an improved IMS LD design (Martı́nez-Ortiz
et al., 2008b). The process is illustrated in Fig. 12b. This
illustration includes a schematic representation of a level B
IMS LD design, which actually captures a fragment of the
example introduced in Section 3. The importation process
takes the IMS LD level A part as an initial skeleton, and then
uses the conditions to produce the incidence report. This
report annotates the skeleton with aspects to be taken into
account during refactoring. Notice how the refactoring process
must also involve developers, since the learning flow sequen-
cing depends on a real-valued property. Therefore, the actual
implementation of the Do Work activity must be revised by the
developers to produce an equivalent achievement instead.
Meanwhile, developers could decide to extend the domain-
specific linguistic support with mapping capabilities to facil-
itate this kind of fine-tuning.

5.5. Deployment

The deployment infrastructures that result from the language-
driven approach are amenable to being architected following the
MVC pattern. Semantic rules in the language’s operational
semantics are useful in order to structure the application’s

ARTICLE IN PRESS

View

Controller

Interaction
actions

Control
rules Computation

state

Presentation
commands

Learner’s
responses

Model
Specification

Fig. 13. MVC organization of the final deployment.

Do Work
Assignment work-is-successful

yes

no

Do Work
Assignment

work-is-successful

no

#Do Work
Assignment(2)

work-is-successful

no

#end1

yes

yes

This activity is a
clone of Do Work
Assignment. It
should be revised

New activity
created. It should
be completed

Exportation
S1

Do Work
Assignment

Revise Work
Assignment

End

Conditions:
 grade_in_work ≥ 5 ⇒
 hide S1
 grade_in_work < 5 ⇒
 hide End

number to
select =1

End

In this fork only
1 path must be
followed

Do Work
Assignment

Revise Work
Assignment

End

End

This path must be
hidden when
grade_in_work ≥ 5

This activity must
be hidden when
grade_in_work < 5

Importation

Fig. 12. (a) An example of the exportation process; (b) an example of the importation process.

I. Martı́nez-Ortiz et al. / Journal of Network and Computer Applications 32 (2009) 1092–1105 1103
controller. The language’s structural characterization is in turn
useful to structuring the application’s model. Finally, the structure
of the different streams involved in the semantics is useful to
identifying, for instance, the basic presentation commands and
user actions. In Fig. 13 we sketch the resulting organization:
�
 The view contains suitable interactions actions, which
are components governing the presentation of information
to the learner, as well as the processing of the interaction
results.

�
 The stream-based communication between the controller and

the view is refined by function/method invocations. Input and
output data is communicated using appropriate learner

responses and presentation commands.

�
 The controller is configured with a suitable set of control rules,

which are implementations of the semantic rules. The
computation state is in turn kept as a globally available
structure which in turn points to information elements in the
model.

�
 Finally the model is an appropriate representation of a

description in the domain-specific language.

For more details regarding implementation strategies in the
context of the language-driven approach see the works of Sierra
et al. (2008a, 2008b).
6. Conclusions and future work

In this paper we have presented how language engineering can
be applied in order to improve and systematize the development
of e-learning applications. The core of this approach is the
structural and operational specification of a domain-specific
language used to describe key aspects of the final learning
application. This specification is governed by well-established
language engineering methods, techniques and tools, which also

ARTICLE IN PRESS

I. Martı́nez-Ortiz et al. / Journal of Network and Computer Applications 32 (2009) 1092–11051104
apply to several other enabled activities. In particular, we have
illustrated how rapid prototyping, provision of author-oriented
notations, verification of properties, connection with standards
through exportation and importation processes, and deployment
of the final running applications can be achieved, driven by the
domain-specific language and its specification. As has been tested
in several developments, and as we have discussed throughout
the paper, this approach promotes an innovative way of
collaboration between instructors and developers during the
design and development of e-learning applications.

Currently we are enhancing and further systematizing the
approach in the context of our /e-LDS environment. We are also
experimenting with some aspects of the approach in different
application domains. In particular, we are applying the ideas
regarding model-checking in the development of multi-agent
systems based on activity theory (Fuentes-Fernández et al., 2007).
As a future work we want to provide better meta-linguistic
support to help in the maintenance and evolution of the different
linguistics specifications and by-products during the achievement
of the language design and the other enabled activities.
Acknowledgements

The Spanish Committees of Science and Innovation and of
Industry, Tourism and Commerce (Projects TIN2005-08788-C04-
01, Flexo-TSI-020301-2008-19 and TIN2007-68125-C02-01) and
the Regional Government/Complutense University of Madrid
(research group 921340), as well as the Santander/UCM project
PR34/07-15865 and the EU Alfa project CID (II-0511-A) have
partially supported this work.

References

Aalst W, Kees H. Workflow management: models, methods, and systems. MA: MIT
Press; 2004 320p.

Aho AV, Lam MS, Sethi R, Ullman JD. Compilers: principles, techniques and tools,
2nd ed. Boston, MA, USA: Addison-Wesley; 2007 1009p.

Allen CW. Overview and evolution of the ADDIE training system. Advances in
Developing Human Resources 2006;8(4):430–41.

Baldoni M, Baroglio C, Brunkhorst I, Marengo E, Patti V. Reasoning-based
curriculum sequencing and validation: integration in a service-oriented
architecture. In: Duval E, Klamma R, Wolpers M, editors. Creating new learning
experiences on a global scale. 2nd European conference on technology
enhanced learning (EC TEL 2007); 2007 September 17–20, Crete, Greece.
Berlin: Springer; 2007. p. 426–31.

Baldoni M, Marengo E. Curriculum model checking: declarative representation and
verification of properties. In: Duval E, Klamma R, Wolpers M, editors. Creating
new learning experiences on a global scale. 2nd European conference on
technology enhanced learning (EC TEL 2007); 2007 September 17–20, Crete,
Greece. Berlin: Springer; 2007. p. 432–7.

Birbeck M, Kay M, Livingstone S, Mohr SF, Pinnock J, Loesgen B, et al. Professional
XML, 2nd ed. Birmingham: Wrox Press; 2001 1159p.

Booch G, Rumbaugh J, Jacobson I. The unified modeling language user guide.
Reading, MA: Addison Wesley; 1998 482p.

Bork A. Personal computers for education. New York, NY, USA: Harper & Row
Publishers, Inc.; 1985 179p.

Burch JR, Clarke EM, McMillan KL, Dill DL, Hwang LJ. Symbolic model checking:
10420 states and beyond. Information and Computation 1992;98(2):142–70.

Burgos D, Moreno-Ger P, Sierra JL, Fernández-Manjón B, Koper R. Authoring game-
based adaptive units of learning with IMS learning design and /e-AdventureS.
International Journal of Learning Technology 2007a;3(3):252–68.

Burgos D, Tattersall C, Koper R. Representing adaptive and adaptable units of
learning. How to model personalized eLearning in IMS learning design. In:
Fernández-Manjón B, Sánchez-Pérez JM, Gómez-Pulido JA, Vega-Rodrı́guez
MA, Bravo-Rodrı́guez J, editors. Computers and education: E-learning-from
theory to practice. Berlin: Springer; 2007b. p. 41–56.

Cimatti A, Clarker E, Giunchiglia F, Roveri M. NUSMV: a new symbolic model
checker. International Journal on Software Tools for Technology Transfer
2000;2(4):410–25.

Clarke EM, Emerson EA, Sistla AP. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions on Program-
ming Languages and Systems 1986;8(2):244–63.

Clarke EM, Grumberg O, Peled DA. Model checking. MA: MIT Press; 2000 314p.
Clément D, Despeyroux J, Despeyroux T, Hascoet L, Kahn G. Natural semantics on
the computer. In: Fuchi K, Nivat M, editors. Proceedings of the France–Japan AI
and CS symposium, Japan, 1986. p. 49–89.

Comon H, Dauchet M, Gilleron R, Jacquemanrd F, Lugiez D, Löding C, et al. Tree
automata techniques and applications [Online]. 2007 October 17. 262p.
Retrieved January 19, 2009 from: /http://tata.gforge.inria.fr/S.

Deursen A, Klint P, Visser J. Domain-specific languages: an annotated bibliography.
ACM SIGPLAN Notices 2000;35(6):26–36.

Emerson EA. Temporal and modal logic. In: Leeuwen JV, editor. Handbook of
theoretical computer science, vol. B: formal models and semantics. MA: MIT
Press; 1990. p. 995–1072.

Fernández-Manjón B, Fernández-Valmayor A. Improving world wide web educa-
tional uses promoting hypertext and standard general markup languages.
Education and Information Technologies 1997;2(3):193–206.

Friedman D, Wand M, Hayes CT. Essentials of programming languages, 2nd ed. MA:
MIT Press; 2001 389p.

Friesen N. Interoperability and learning objects: an overview of e-Learning
standardization [Online]. Interdisciplinary Journal of Knowledge and Learning
Objects 2005;1:23–31 Retrieved January 19, 2009 from /http://ijklo.org/
Volume1/v1p023-031Friesen.pdfS.

Fuentes-Fernández R, Gómez-Sanz J, Pavón J. Managing contradictions in multi-
agent systems. IEICE Transactions on Information and Systems 2007;E90-D(8):
1243–50.

Goodwill J, Hightower R. Professional jakarta struts. Indianapolis: Wiley; 2003
429p.

Ibrahim B. Software engineering techniques for CAL. Education and Computing
1989;5(4):215–22.

IMS. IMS learning design information model version 1.0 final specification
[Online]. 2003a January 20. Retrieved January 19, 2009 from: /http://
www.imsglobal.org/learningdesign/ldv1p0/imsld_infov1p0.htmlS.

IMS. IMS Simple sequencing information and behavior model version 1.0 final
specification [Online]. 2003b March 3. Retrieved January 19, 2009 from:
/http://www.imsglobal.org/simplesequencing/ssv1p0/imsss_infov1p0.htmlS.

IMS. IMS Content packaging information model version 1.1.4 final specification
[Online]. 2004 October 4. Retrieved January 19, 2009 from: /http://
www.imsglobal.org/content/packaging/cpv1p1p4/imscp_infov1p1p4.htmlS.

IMS. IMS learner information package summary of changes version 1.0.1 final
specification [Online]. 2005 January 5. Retrieved January 19, 2009 from:
/http://www.imsglobal.org/profiles/lipv1p0p1/imslip_sumcv1p0p1.htmlS.

IMS. IMS question and test interoperability assessment test, section, and item
information model Version 2.1 public draft revision 2 specification [Online].
2006 June 8. Retrieved January 19, 2009 from: /http://www.imsglobal.org/
question/qtiv2p1pd2/imsqti_infov2p1pd2.htmlS.

Klint P, Lämmel R, Verhoef C. Toward an engineering discipline for grammarware.
ACM Transactions on Software Engineering and Methodology 2005;14(3):
331–80.

Koper R, Manderveld J. Educational modelling language: modelling reusable, rich
and personalised units of learning. British Journal of Educational Technology
2004;35(5):537–51.

Koper R, Olivier B. Representing the learning design of units of learning. Journal of
Educational Technology & Society 2004;7(3):97–111.

Krasner GE, Pope TS. A description of the model-view-controller user interface
paradigm in the smalltalk 80 system. Journal of Object Oriented Programming
1988;1(3):26–49.

Makoto M, Lee D, Mani M, Kawaguchi K. Taxonomy of XML schema languages
using formal language theory. ACM Transactions on Internet Technology
2005;5(4):660–704.

Marriott K, Meyer B, Wittenburg KBA. Survey of visual language specification and
recognition. In: Marriot K, Meyer B, editors. Visual language theory. Berlin:
Springer; 1999. p. 5–85.

Martı́nez-Ortiz I, Moreno-Ger P, Sierra JL, Fernández-Manjón B. Supporting the
authoring and operationalization of educational modelling languages [Online].
Journal of Universal Computer Science 2007a;13(7):938–47 Retrieved January
19, 2009 from: /http://dx.doi.org/10.3217/jucs-013-07-0938S.

Martı́nez-Ortiz I, Moreno-Ger P, Sierra JL, Fernández-Manjón B. Educational
modeling languages: a conceptual introduction and a high-level classification.
In: Fernández-Manjón B, Sánchez-Pérez JM, Gómez-Pulido JA, Vega-Rodrı́guez
MA, Bravo-Rodrı́guez J, editors. Computers and education: E-learning-from
theory to practice. Berlin: Springer; 2007b. p. 27–40.

Martı́nez-Ortiz I, Moreno-Ger P, Sierra JL, Fernández-Manjón B. A flow-oriented
visual language for learning designs. In: Li F, Zhao J, Shih TK, Lau R, Li Q,
McLeod D, editors. Advances in web based learning-ICWL 2008. 7th
International conference on web-based learning (ICWL 2008). 2008 August
20–22, Jinhua, China. Berlin: Springer; 2008a. p. 486–96.

Martı́nez-Ortiz I, Sierra JL, Fernández-Manjón B. Enhancing reusability of IMS LD
units of learning: the e-LD approach. In: Proceedings of 8th IEEE international
conference on advanced learning technologies (ICALT 2008). 2008 July1–5,
Santander, Spain. Washington DC, USA: IEEE Computer Society; 2008b.
p. 402–4.

Martı́nez-Ortiz I, Sierra JL, Fernández-Manjón B. Translating e-learning flow-
oriented activity sequencing descriptions into rule-based designs. In: Proceed-
ings of the 6th international conference on information technology: new
generations (ITNG 2009). 2009 April 27–29, Las Vegas, USA. Washington DC,
USA: IEEE Computer Society; Forthcoming 2009.

Mernik M, Heering J, Sloane AM. When and how to develop domain-specific
languages. ACM Computing Surveys 2005;37(4):316–44.

http://tata.gforge.inria.fr/
http://ijklo.org/Volume1/v1p023-031Friesen.pdf
http://ijklo.org/Volume1/v1p023-031Friesen.pdf
http://www.imsglobal.org/learningdesign/ldv1p0/imsld_infov1p0.html
http://www.imsglobal.org/learningdesign/ldv1p0/imsld_infov1p0.html
http://www.imsglobal.org/simplesequencing/ssv1p0/imsss_infov1p0.html
http://www.imsglobal.org/content/packaging/cpv1p1p4/imscp_infov1p1p4.html
http://www.imsglobal.org/content/packaging/cpv1p1p4/imscp_infov1p1p4.html
http://www.imsglobal.org/profiles/lipv1p0p1/imslip_sumcv1p0p1.html
http://www.imsglobal.org/question/qtiv2p1pd2/imsqti_infov2p1pd2.html
http://www.imsglobal.org/question/qtiv2p1pd2/imsqti_infov2p1pd2.html
http://dx.doi.org/10.3217/jucs-013-07-0938

ARTICLE IN PRESS

I. Martı́nez-Ortiz et al. / Journal of Network and Computer Applications 32 (2009) 1092–1105 1105
Molenda M. In search of the elusive ADDIE model. Performance Improvement
Journal 2003;42(5):34–6.

Moreno-Ger P, Martı́nez-Ortiz I, Sierra JL, Fernández-Manjón B. A descriptive
markup approach to facilitate the production of e learning contents. In:
Proceedings of the 6th international conference on advanced learning
technologies (ICALT 2006). 2006 July 5–7, Kerkrade, The Netherlands.
Washington DC, USA: IEEE Computer Society; 2006. p. 19–21.

Moreno-Ger P, Sierra JL, Martı́nez-Ortiz I, Fernández-Manjón B. A documental
approach to adventure game development. Science of Computer Programming
2007;67(1):3–31.

Moreno-Ger P, Fuentes-Fernández R, Sierra JL, Fernández-Manjón B. Model-
checking for adventure videogames. Information and Software Technology
2009;51(3):564–80.

Mosses PD. Modular structural operational semantics. Journal of Logic and
Algebraic Programming 2004;60–61:195–228.

Mosses PD. Formal semantics of programming languages: an overview. Electronic
Notes in Theoretical Computer Science 2006;148(1):41–73.

Paakki J. Attribute grammar paradigms—A high-level methodology in language
implementation. ACM Computing Surveys 1995;27(2):196–255.

Parr T. The definitive ANTLR reference: building domain-specific languages.
Pragmatic Bookshelf; 2007 376p.

Pereira FCN, Warren DHD. Definite clause grammars for language analysis-a survey
of the formalism and a comparison with augmented transition networks.
Artificial Intelligence 1980;13(3):231–78.

Plotkin GD. A structural approach to operational semantics. Journal of Logic and
Algebraic Programming 2004;60–61:17–139.

Sarasa-Cabezuelo A, Navarro-Iborra A, Sierra JL, Fernández-Valmayor A. Building a
syntax directed processing environment for XML documents by combining
SAX and JavaCC. In: Proceedings of the 3rd international workshop on XML
Data Management Tools & Techniques (XANTEC 2008) - DEXA 2008 work-
shops. 2008 September 1–5, Turin, Italy. Washington DC, USA: IEEE Computer
Society; 2008. p. 256–60.

Sethi R. Programming languages: concepts and construct. Boston, MA, USA:
Addison Wesley; 1996 640p.

Sierra JL, Fernández-Valmayor A, Guinea M. Exploiting author-designed domain-
specific descriptive markup languages in the production of learning content.
In: Proceedings of the 6th international conference on advanced learning
technologies (ICALT 2006). 2006 July 5–7, Kerkrade, The Netherlands.
Washington DC, USA: IEEE Computer Society; 2006a. p. 515–19.
Sierra JL, Fernández-Valmayor A, Fernández-Manjón B. A document-oriented
paradigm for the construction of content-intensive applications. Computer
Journal 2006b;49(5):562–84.

Sierra JL, Fernández-Valmayor A, Guinea M, Hernánz H. From research resources to
virtual objects: process model and virtualization experiences. Journal of
Educational Technology & Society 2006c;9(3):56–68.

Sierra JL, Fernández-Valmayor A, Fernández-Manjón B. How to prototype an
educational modeling language. In: Proceedings of the IX International
symposium on computers in education. 2007 November 14–16, Porto,
Portugal, 2007a. p. 97–102.

Sierra JL, Fernández-Valmayor A. Universalizing chasqui repositories with a flexible
importation/exportation system. In: Fernández-Manjón B, Sánchez-Pérez JM,
Gómez-Pulido JA, Vega-Rodrı́guez MA, Bravo-Rodrı́guez J, editors. Computers
and education: E-learning-from theory to practice. Berlin: Springer; 2007.
p. 99–110.

Sierra JL, Moreno-Ger P, Martı́nez-Ortiz I, Fernández-Manjón B. A highly
modular and extensible architecture for an integrated IMS-based authoring
system: The /e-AulaS experience. Software-Practice & Experience 2007b;
37(4):441–61.

Sierra JL, Fernández-Manjón B, Fernández-Valmayor A. A language-driven
approach for the design of interactive applications. Interacting with Computers
2008a;20(1):112–27.

Sierra JL, Fernández-Manjón B, Fernández-Valmayor A. Language-driven develop-
ment of web-based learning applications. In: Leung H, Li F, Lau F, Li Q, editors.
Advances in web based learning—ICWL 2007. 6th International conference on
web-based learning, 2007 August 15–17, Edinburgh, United Kingdom. Berlin:
Springer; 2008b. p. 520–31.

Sierra JL, Fernández-Valmayor A, Fernández-Manjón B. From documents to
applications using markup languages. IEEE Software 2008c;25(2):68–76.

Stahl T, Voelter M, Czarnecki K. Model-driven software development, technology,
engineering, management. Chichester, West Sussex, UK: Wiley; 2006
444p.

Stanchfield S. ANTXR: easy XML parsing, based on the ANLR parser generator
[Online]. Retrieved January 19, 2009 from: /http://javadude.com/tools/antxr/
index.htmlS.

Steinber D, Budinsky F, Paternostro M, Merks E. EMF: eclipse modeling framework,
2nd ed. Boston, MA, USA: Addisson-Wesley; 2003 744p.

Sterling L, Shapiro E. The art of prolog, second edition: advanced programming
techniques. MA, USA: MIT Press; 1994 549p.

http://javadude.com/tools/antxr/index.html
http://javadude.com/tools/antxr/index.html

	Language engineering techniques for the development of e-learning applications
	Introduction
	Language-driven development of e-learning applications compared to conventional development approaches
	An example
	Language design
	Designing the language’s structure
	Specifying the language’s behavior
	Characterizing computation states
	Specifying the semantic rules

	Enabled activities
	Rapid prototyping
	Provision of author-oriented notations
	Model checking of properties
	Exportation and importation
	Deployment

	Conclusions and future work
	Acknowledgements
	References

