
DRAFT - Please contact authors before citing

Translating e-learning Flow-Oriented Activity Sequencing Descriptions
into Rule-based Designs

Iván Martínez-Ortiz, José Luis Sierra, Baltasar Fernández-Manjón

Dpto. Ingeniería del Software e Inteligencia Artificial. Fac. Informática. Universidad
Complutense, Madrid, Spain

Abstract
In this paper, we describe how to automatically
translate e-learning flow-oriented activity sequences
into rule-based designs, such as those supported by the
“de-facto” e-learning modeling standard: the IMS
Learning Design specification. Our aim is that
instructors model their educational designs using a
user-friendly visual notation. Then these designs can
be automatically exported into standardized and
interoperable representations, which can be
interchanged with / deployed in a plethora of
heterogeneous Learning Management Systems and
tools. This approach has been implemented in e-LD,
an authoring system which supports the authoring and
refactoring of IMS Learning Designs using a flow-
oriented visual syntax.

Keywords: Educational Modeling Languages, Activity
Sequencing, Learning Design, Graphical authoring

1. Introduction

The design of e-learning courses is more than just
creating the content because this design is supposed to
identify and characterize many different and
interwoven aspects [3]: e.g. suitable pieces of content,
the activities to perform during the course, the roles
played by the different actors involved in these
activities, the services that support the learning
process, etc. All these aspects are integral parts of the
teaching and learning methods used in the courses.
However, the incorporation of these methods into
current Learning Management Systems (LMS) is a
difficult task, since it implies close collaboration
between two very different communities: Technicians
and Instructors. While technicians are experts in
hardware and software, they have little knowledge of
the educational method or the domains covered in the
courses. On the other hand, Instructors are specialists
in such domains, but they are not supposed to have any
special Computer Science or Programming skills.
Educational Modeling Languages (EML) can help in

making this collaboration more efficient and agile [14].
Indeed, these EMLs provide instructors with a notation
to describe their teaching methods. Therefore, in an
idealized development setting, instructors might use
suitable EMLs to formalize all the aspects of the
learning process, while technicians might provide the
hardware and software e-leaning infrastructures
required for the automatic deployment and execution
of the formalized learning designs in standardized
LMS.

Unfortunately, real-world EMLs must face a
flexibility-usability gap, which seriously hinders the
idealized scenario: the more expressive and flexible a
EML is, the more difficult its use by instructors, non-
experts in computer science. A good example is IMS
Learning Design (IMS-LD), a powerful and expressive
language, which is becoming a de facto encoding and
interchange standard for learning methods [10].
Expressivity in IMS-LD is a necessity, since it must
serve as a standardized interchange format for learning
designs among heterogeneous LMS. However, IMS-
LD advanced features, and, in particular, Level B’s
condition system, which support user adaptability, are
difficult to use even for those proficient in computer
science [2]. Indeed, condition systems are a kind of
monolithic rule-based systems, such as those used in
artificial intelligence, and they suffer from many of the
production and maintenance issues identified in these
systems [12]. Still, these features are essential to
modeling adaptive learning flows, enabling us to
automatically adapt LMS behavior to the individual
needs of each particular learner [17]. On the other
hand, more usable notations (e.g. the visual notation
integrated in the LAMS authoring tool [5]) can either
lack the required flexibility, or they must resolve
difficult importation / exportation concerns in order to
interoperate with the de-facto IMS-LD standard.

The main aim of our research efforts is to address
the aforementioned flexibility-usability gap. For this
purpose, we have defined a visual notation which
preserves the structural aspects of IMS-LD (i.e. the
level A), but which replaces the flexible but

Article accepted in the 6th International Conference on Information Technology: New Generations ITNG
2009. April 27-29, 2009, Las Vegas, Nevada, USA.
Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

DRAFT - Please contact authors before citing

cumbersome Level B’s condition system with a more
usable flow-oriented style of expressing activity
sequencing [16]. We have integrated this notation in
e-LD [15], an authoring tool for IMS-LD Units of
Learning (the IMS term used for the courses) that we
are developing at the Complutense University of
Madrid (Spain). This tool integrates a semiautomatic,
computer-aided importation system and an automatic
exportation system. In this paper, we focus on
exportation, that is, how to translate an e-LD
representation, where sequencing is described using
flowchart-like notations, into an IMS-LD
representation. The problem itself can be meaningfully
reduced to analyzing how to translate flow-oriented
activity sequencing specifications to rule-oriented
ones, and actually, that is the approach used in this
paper. Moreover, to focus on the essential aspects of
the translation and, at the same time, to make this
paper self-contained we use compact flow-oriented and
rule-oriented sequencing notations. These simplified
notations preserve the essence of the original e-LD and
IMS-LD paradigms.

The rest of the paper runs as follows: Section 2
presents a simple case-study, which models an
adaptive learning flow, and which will be used to
illustrate our approach. Section 3 presents the flow-
oriented and rule-oriented notations chosen. Section 4
details and exemplifies the translation process itself.
Section 5 describes some related work. Finally, section
6 presents some conclusions and lines of future work.

2. Case Study

In order to illustrate the different aspects presented
in this paper we will use a specification of the
conditional / adaptive sequencing of a set of learning
activities.

This example models the sequencing of activities in
a course on Enology (i.e. the science of wine). In this
course, the learner must first attend a course
introduction, then revise a book on enology written by
the reputed expert Mary Bebo (all the names and the
references in the example are fictitious), and finally
take a test. After the test, the learning flow splits into
different learning paths depending on the results. If the
grade is low (< 5) the learner must review the
introductory book written by Joseph Birra (another
expert on the subject), and then retake the test. For
acceptable scores (≥ 5 and < 8), the learner is
compelled to visit the website “the art of wine tasting”.
Outstanding learners are compelled to participate in a
workshop on the subject. Finally, the learner must
prepare an essay on the course’s topic. The flowchart
of Fig. 1 sketches this case-study.

3. Notations and Sequencing Styles
The notation used in the case study promotes a

flow-oriented style for sequencing activities. Rounded
boxes are activities that must be performed during the
learning process (e.g. Course Introduction or Visit
website)1. Arrows denote transitions between activities:
when an activity finishes, the next activity is initiated
(e.g. when the Course Introduction activity is
completed, the learner must initiate the Bebo’s book
revision activity). Diamonds delimitate conditional
learning flows, where the learner is compelled to
follow one or another learning path depending on the
result of checking a condition (e.g. if the grade is < 5,
the learner has to continue by reviewing Birra’s book,
or otherwise will continue with more advanced
activities). Conditions are formulated on the values of
a set of properties. Properties capture activity
outcomes because property values are established by
these activities (e.g. grade is a property that is set by
the Take Assessment activity and whose value is a
numeric value that ranges from 0 to 10). Finally, the
filled circle initiates the learning flow, while the
double circle finishes it. This graphical notation, which

1 These activities can be further decomposed in the structural part of

the design, as is the case with e-LD and IMS-LD, and they also
have roles, learning objects and services assigned, as also occurs in
the tool and language cited. However, these aspects are not
relevant to the present discussion, which is exclusively focused on
sequencing activities. See [16] for more information about how
those complementary aspects can also be graphically described.

Course
Introduction

grade < 5

Bebo’s book
revision

Take
Assessment

Review
Birra’s Book

Retake
Assessment

grade < 8

Visit
website

grade ≥ 8

Workshop

Prepare
essay

grade ≥ 5

Fig. 1. Flowchart for the case-study

DRAFT - Please contact authors before citing

is a subset of the e-LD graphical notation relevant for
activity sequencing, will be more formally described in
section 4.3.

As said before, IMS-LD uses a more expressive and
flexible, although less usable, rule-based mechanism
(conditions) for accomplishing conditional and
adaptive activity sequences. Since introducing the full
IMS-LD condition system is beyond the scope of this
paper, we introduce a significant subset, which is
sufficient to express all the designs describable with
the previous flow-oriented notation, and which will let
us describe the translation’s essentials. We also use a
more concise and compact textual notation instead of
the XML binding proposed by the specification. This
notation is established by the grammar of Fig. 2.
According to this grammar, rules are of the form
condition → actions.

The condition is an arbitrary numeric or boolean
expression, of the same type as that used to label the
diamonds’ alternatives in the flow-oriented notation.
As usual, non-zero values are considered true, while
zero values are taken as false. It is also possible to ask
if a property has a value (defined construct), or an
activity is completed (completed construct).

Regarding actions, they are of three types: show an
activity (the activity becomes visible for the learner),
hide an activity (the activity becomes invisible), and
set a property to a value. This last type of action is
very relevant from a technical point of view since it
turns the language into a computationally (Turing)-
complete one [4], and therefore lets the notation embed
a great variety of sequencing styles.

The operational semantics of the language is also
straightforward: each time a change in a property is
reported, the conditions of the rules are evaluated. If a
rule's condition becomes true, the corresponding action

is executed. Sequencing is achieved by showing and
hiding activities. As with the flow-oriented language,
activities can also change the values of the properties.

Fig. 3 shows a little example of using the rule based

notation for doing activity sequencing. The first rule
shows the Course Introduction activity if it has not
already been completed. When this activity has been
completed, the activity Bebo’s book revision is
showed, provided than it has not been completed (rule
2). The third rule applies a similar strategy to continue
with the Take assessment activity. This brief example
reveals that, although the notation is very flexible, it is
also difficult to use due to the atomicity of the steps
and its reactive nature, which compels the instructors
to be aware of the potential interactions and side
effects between different steps in terms of the
underlying global state. The next section addresses this
issue, showing how the notation can support more
specific sequencing mechanisms, such as the flow-
oriented one, by means of automatic translations into
the underlying rule-based substrate.

4. Translation

In order to translate flow-oriented specifications
into rule-based ones we first need to figure out what a
flow-oriented execution engine is. Then we need to
devise how to encode the engine’s behavior using
rules. Finally, by using standard techniques in the
translation of computer languages [1], we can design
and implement an appropriate translator. Next points
detail these aspects.

4.1. Flow-oriented execution engine

The engine for executing flow-oriented
specifications can operate by being driven by a
sequence of basic flow-oriented instructions. In every
moment, an instruction pointer refers to the instruction
to be executed. The execution starts with the first
instruction. Then the instruction changes the engine’s
state and determines the next instruction to execute.
The state itself is represented by a memory of
properties, which stores the values of the properties

Rules ::= Rules Rule
Rules ::= Rule
Rule ::= Exp → Actions .
Actions ::= Actions , Action
Actions ::= Action
Action ::= hide(activity-id) |
 show(activity-id) |
 property-id := Exp
Exp ::= SExp Comp-op SExp | SExp
SExp ::= SExp Add-op Term | Term
Term ::= Term Mul-op Fact | Fact
Fact ::= Un-op Fact | Atom
Atom ::= number | true | false |
 defined(property-id) |
 completed(activity-id) |
 property-id | (Exp)
Comp-op ::= < | > | ≤ | ≥ | = | ≠
Add-op ::= + | - | or
Mul-op ::= * | / | and
Un-op ::= - | not

Fig. 2. Grammar for the rule-oriented notation.

not completed(Course-Introduction) →
 show(Course-introduction).

completed-Course-Introduction and
not completed(Bebo’s-Book-Revision) →

 hide(Course-introduction),
 show(Bebo’s-Book-Revision).

completed(Bebo’s-Book-Revision) and
not completed(Take-test) →

 hide(Bebo’s-Book_Revision),
 show(Take-test).

Fig. 3. An example of rule-based activity sequencing
specification.

DRAFT - Please contact authors before citing

established by the activities. In Fig. 4 we summarize an
engine’s instruction set which is sufficient for
supporting our flow-oriented language, along with the
intended meaning of these instructions.

Notice that the translation of flow-oriented
specifications to the basic instruction set is similar to

the translation of a high-level structured program to
assembly code. Therefore, this translation can be done
using standard techniques in compiler construction [1].
However, our target language and machine is not this
flow-oriented engine, but the rule-oriented one.
Therefore, to fully undertake the translation, we first
need to map the flow-oriented engine to the rule-
oriented one.

4.2. Mapping the flow-oriented execution

engine into a rule-based one
The rule-based execution engine also contains a

memory of properties, which is updated each time an
activity is completed. The main difference is the
reactive execution behavior sketched in section 3.
Thus, the instruction pointer does not exist, as rules are
reactively executed when a change is registered in the
property memory. Fortunately, the instruction pointer
can be readily recovered by using a distinguished
property (e.g. $IP). This property can be initialized to
1. On the other hand, each instruction can be mapped
into a set of rules (see Fig. 5):
- Expose instructions are translated into two rules.

The first one makes the activity visible. The
second one waits until it is completed, then hides
the activity, and increments the $IP property.

- Conditional jumping instructions are also
translated into two rules: the first one checks that
the jumping expression is true, and then it sets the
$IP property accordingly. The second one acts
when the expression is false, incrementing the $IP,
which will refer to the next instruction.

- Finally, unconditional jumps are translated into a
single rule, which fixes $IP to the instruction’s
argument.

Also notice how the rules’ conditions must check
the $IP value in order to guarantee the execution of the
appropriate instruction.

4.3. Translation Schemes

Finally, this section introduces the translation
schemes of the flow-oriented notation into the rule-
oriented one while taking into account the compiling
techniques described in section 4.1 in combination
with the mapping between the two engines presented
in section 4.2 (for more details regarding syntax-
directed definitions / translation schemes, see [1]). In
Fig. 6 the first column formalizes the flow-oriented
notation using a visual grammar (see [13] for more
details on visual languages and visual grammars). The
second column specifies the sequence of actions to be
performed in the context of each syntax rule in order to
carry out the translation. These actions can be either
primitive or non-primitive. Non-primitive actions
involve the translation into constituent structures (we
denote this last one by enclosing the structure between
brackets). Notice that the translation uses a global
variable (ic), which counts the number of basic flow-
oriented instructions considered during translation.
Notice also that those basic instructions are never
generated. Instead, we use rule generation procedures
which generate the corresponding rules. For each
instruction type it there is a generation procedure
named generate-it-rules. This procedure takes
the expected instruction’s position as a first argument
and the expected arguments of the instruction itself as
the others. With this information it generates the rules.
Since these procedures follow the patterns presented in
section 4.2, we will omit their detailed description.
Besides, notice that there is considerable freedom
while translating composite constructs (i.e. diamonds),
since the patterns ensure that the order of the rules
does not alter their global behavior. Indeed, the rules
for skipping the if part when the first condition is false
are generated once the if part has been generated. It
avoids tedious backpatching strategies [1], and
therefore facilitates the translation.

Taking this specification as a guide, the
implementation of a translator is a direct task, as we

Instructio
n

Intended Meaning

expose(a) Exposes the activity a and waits until it is
completed. Then updates the memory of
properties, and continues with the next instruction

jmpf (e, i) Evaluates the expression e. If the result is false, it
jumps to the instruction i. Otherwise it continues
with the next instruction

jmp(i) It jumps to the instruction i.
Fig. 4. High-level architecture of the flow-oriented

execution engine

Position Instructio
n

Translation

i expose(a) $IP=i and not completed(a) →
 show(a).

$IP=i and completed(a) →
 hide(a), $IP:=i+1.

i jmpf(e,j) $IP=i and not(e) → $IP := j.
$IP=i and (e) → $IP := i+1.

i jmp(j) $IP=i → $IP := j.
Fig. 5. Mapping instructions into rules.

DRAFT - Please contact authors before citing

have realized in the development of our e-LD tool. The
result of applying such a translator to the flowchart of
our case-study is partially shown in Fig. 7. Therefore,
the complexity of rule-based specifications is hidden
by the translator without sacrificing the benefits posed
by standard representations as IMS-LD. In addition,
other alternative sequencing styles (e.g. IMS Simple
Sequencing [9]) can be also supported.

5. Related Work

Flow-oriented notations for describing learning
designs have a long tradition in e-learning. In [7], this
kind of notations is proposed for scripting interactive
and highly-adaptive tutoring systems. In the IMS-LD
specification itself, UML-based flow-oriented
notations are proposed [8]. In [11] UML itself is
adopted as an educational modeling language. LAMS,
an authoring tool for learning designs, also adopts a
flow-oriented-like authoring metaphor [5].

Regarding the translation of flow-oriented into rule-
based notations, it is partially addressed in the IMS-LD

Specification, where some guidelines are described for
their subsequent IMS-LD encoding [8]. LAMS
partially gives support for exporting to IMS-LD,

Syntax Rule Sequence of Translation Actions

Flow ::=

Sequence * x

global ic ← 1
emit("not defined($IP) → $IP:=1.")

Sequence

Sequence0 ::=
 Sequence1 Seq-elm * *x x

Sequence1

Seq-elm

Sequence ::=
 Seq-elm * x

Seq-elm

Seq-elm ::=

activity-id * x

emit-expose-rules(ic, activity-id.image)
ic ← ic+1

Seq-elm ::=

Exp

*

Sequence * x

x

Else-part * x

i-if ← ic
ic ← ic+1

Sequence

Else-part

 ic-else ←

emit-jmpf-rules(i-if, Exp.image,ic-else)

Else-Part ::=

Seq-elm * x

Exp

 i-else ← ic
ic ← ic+2

Seq-elm

emit-jmp-rules(i-else, ic)
emit-jmpf-rules(i-else+1, Exp.image, ic)
return i-else+1

Else-Part ::=

* x

Exp

return ic

Fig. 6. Translation schemes for translating flow-oriented into rule-oriented activity sequencing descriptions.

not defined($IP) → $IP :=1.
....
$IP=10 and not completed(Visit-website) →
 show(Visit-website).
$IP=10 and completed(Visit-websiste) →
 hide(Visit-website), $IP:=11.
$IP=9 and not(grade < 8) → $IP:=12.
$IP=9 and (grade < 8) → $IP:=10.
$IP=13 and not completed(Workshop) →
 Show(Workshop).
$IP=13 and completed(Workshop) →
 hide(Workshop), $IP=14.
$IP=11 → $IP:= 14
$IP=12 and not(grade ≥ 8) → $IP:= 14
$IP=12 and (grade ≥ 8) → $IP:=13
Fig. 7. Fragment of the rules that result of translating the

case-study’s flowchart.

DRAFT - Please contact authors before citing

although until now complete support for IMS Learning
Design Levels B (where the rule-based condition
system arises) has not been reported. In [6],
transformational techniques in model-driven
engineering are proposed as a mechanism to map flow-
oriented patterns into IMS-LD (and also to recognize
these patterns in existing IMS-LD Units of Learning).
However, none of these proposals reports full
automatic support for the translation process.

6. Conclusions and Future Work

This paper presents an approach for the automatic
translation of e-learning flow-oriented activity
sequencing notations into a rule-based one, such as
that promoted by the IMS-LD level B condition
system. This approach makes a meta-linguistic use of
the rule-based substrate, by mapping the computation
model of the flow-oriented engine onto it. As a result,
instructors can author their learning designs in a more
suitable and user-friendly notation. The automatic
translation support makes it possible to deploy these
designs in rule-based platforms in order to address the
standard interoperability issues (i.e. automatic
execution of the design in different LMS). We have
implemented the approach in our e-LD authoring
system, which is able to make a complete exportation
of flow-oriented graphical designs to IMS-LD.

Currently we are working on reducing the number
of rules generated by the translation and also on
supporting other notations and sequencing styles and,
in particular the IMS Simple Sequencing language [9]
that is used in the SCORM reference model.

Acknowledgements
The Spanish Committee of Science and Technology
(projects TIN2005-08788-C04-01, Flexo-TSI-020301-
2008-19 and TIN2007-68125-C02-01) has partially
supported this work, as well as the Complutense
University of Madrid (research group 921340,
Santander/UCM Project PR34/07 – 15865) and the EU
Alfa project CID (II-0511-A).

References
[1] Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D (2007).

Compilers: principles, techniques and tools (2nd
edition). Addison-Wesley.

[2] Burgos, D., Moreno-Ger, P., Sierra, J.L., Fernández-
Manjón, B., Koper, R.(2007). Authoring Game-Based
Adaptive Units of Learning with IMS Learning Design
and <e-Adventure>. International Journal of Learning
Technology, 3(3), 252-268. 2007.

[3] Caeiro, M. Marcelino, M.J., Llamas, M., Anido-Rifón,
L., Mendes, A.J. (2007). Supporting the Modeling of
Flexible Educational Units PoEML: A Separation of

Concerns Approach. Journal of Universal Computer
Science 13(7):980-990.

[4] Cutland, N.J (1980). Computability: An Introduction to
Recursive Function Theory. Cambridge Univ. Press

[5] Dalziel, J. (2006), Lessons from LAMS for IMS
Learning Design. Sixth IEEE Int. Conf. on Advanced
Learning Technologies (ICALT'06), 2006:. 1101-1102.

[6] Dodero, J.M., Tattersall, C., Burgos, D., Koper, R.
(2007) Transformational Techniques for Model-Driven
Authoring of Learning Designs. 6th Int. Conference in
Web Based Learning (ICWL 2007): 230-241.

[7] Ibrahim, B.,1989. Software Engineering Techniques for
CAL. Education & Computers 5, 215-222

[8] IMS (2003). IMS Learning Design Information Model -
Version 1.0 Final Specification. Retrieved November 6,
2008 from:
http://www.imsglobal.org/learningdesign/ldv1p0/imsld_
infov1p0.html

[9] IMS (2003). IMS Simple Sequencing Information and
Behavior Model - Version 1.0 Final Specification.
Retrieved November 6, 2008 from:
http://www.imsglobal.org/simplesequencing/ssv1p0/ims
ss_infov1p0.htm

[10] Koper, R. and C. Tattersall (2005). Learning Design - A
Handbook on Modelling and Delivering Networked
Education and Training. Heidelberg, Springer Verlag.

[11] Laforcade, P (2005). Towards a UML-based
educational modeling language. Fifth IEEE Int. Conf.
on Advanced Learning Technologies, (ICALT'05),
2005. pp 855-859.

[12] Li, X. (1991). What's So Bad About Rule-Based
Programming? IEEE Software 8: 103, 105.

[13] Marriott,K., Meyer,B., Wittenburg,K.B.A (1999).
Survey of Visual Language Specification and
Recognition, in Marriot,K., Meyer,B (eds). Visual
Language Theory, pp. 5-85, Springer-Verlag.

[14] Martínez-Ortiz, I., Moreno-Ger, P., Sierra, J.L.,
Fernández-Manjón, B (2007). Educational Modeling
Languages: A Conceptual Introduction and a High-
Level Classification, in Fernández-Manjón et al. (eds)
Computers and Education: E-learning - from theory to
practice. Springer-Verlag New York, Inc.: 27-4

[15] Martínez-Ortiz, I., Moreno-Ger, P., Sierra, J.L,
Fernández-Manjón, B. (2007). Supporting the
Authoring and Operationalization of Educational
Modelling Languages. Journal of Universal Computer
Science 13(7): 938-947.

[16] Martínez-Ortiz, I.,. Moreno-Ger, P., Sierra, J.L,
Fernández-Manjón, B (2008). A Flow-Oriented Visual
Language for Learning Designs. 7th International
Conference on Web-based Learning (ICWL2008).
Jinhua (China), LNCS 5145: 486-496.

[17] Specht, M.., Burgos, D. (2007). Modeling Adaptive
Educational Methods with IMS Learning Design.
Journal of Interactive Media in Education 2007/08.
Retrieved November 6, 2008 from;
jime.open.ac.uk/2007/08.

