
Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience 37(4). pp. 441-461. 2007

A Highly Modular and Extensible
Architecture for an Integrated
IMS-based Authoring System: The
<e-Aula> Experience

José Luis Sierra(a) , Pablo Moreno-Ger(a), Iván Martínez-Ortiz(b), Baltasar
Fernández-Manjón1,2,(a)

(a) Dpto. Ingeniería del Software e Inteligencia Artificial. Fac. Informática. Universidad Complutense. 28040,
Madrid. Spain. {jlsierra,pablom,balta}@fdi.ucm.es. (b) Centro de Estudios Superiores Felipe II.
Aranjuez. Spain. imartinez@cesfelipesegundo.com

SUMMARY

<e-Aula> is a new experimental e-learning platform that adheres closely to IMS e-learning standards in order

to facilitate their applicability in different learning scenarios. <e-Aula> is equipped with an integrated

modular and extensible architecture for the authoring of IMS-compliant learning materials focused on the

IMS manifest. This manifest-driven architecture facilitates maintenance and promotes the evolution of the

<e-Aula> authoring system, both of which are mandatory requirements in the successful production and

maintenance of content for many different specialized learning domains. In this paper, we describe this

authoring system in <e-Aula>, its manifest-driven architecture, and its implementation using well-known and

robust Java-based web technologies.

KEYWORDS: e-learning; IMS-based experimental platform; IMS-based authoring system; <e-Aula>; J2EE; Struts

1. INTRODUCTION

E-learning is a broad and very active field in which any type of learning process aided by Information and

Communication Technologies can be included. A large number of universities have decided to introduce

e-learning facilities by using e-learning platforms. These platforms enhance instruction by allowing

teachers to manage learner data, offering personalized learning material, and tracking learner activity

1 Correspondence: Baltasar Fernández-Manjón. Dpto. Ingeniería del Software e Inteligencia Artificial. Fac. Informática.

Universidad Complutense de Madrid. C/ Profesor José García Santesmases. 28040 Madrid. Spain
2 e-mail: balta@fdi.ucm.es

 THE <E-AULA> EXPERIENCE 2

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

inside the environment [13]. Nevertheless, such approaches are frequently exposed to specific and

recurring obstacles that are clearly identified but not always carefully confronted [14,39]. One of these

obstacles is the obsolescence of the material. It is common to see how excellent material, obtained at an

enormous cost by employing multidisciplinary groups of experts, quickly becomes obsolete upon the

appearance of new technology on the market (e.g. the transition from videodisc or CD-ROM to a web-

based environment). Another recurrent obstacle is the lack of support for reuse. While teachers will often

use material already prepared for other subjects to their advantage (e.g. figures or examples proposed in

books and even material borrowed from other teachers), many times the platform does not provide them

with specific facilities to aid this reuse of the contents in the creation of new courses. These obstacles can

be adequately addressed with the use of e-learning standards.

 Several initiatives on recommendations and standards covering the needs of e-learning environments

that allow a high durability and reusability of the contents have been proposed (e.g. IMS [28],

ADL-SCORM [4], AICC [7] and IEEE LTSC [22]). Among these initiatives, we have focused our

attention on the IMS Global Consortium proposals since they are the most comprehensive collection of

specifications and are becoming the most solid basis for industrial standards in the field. IMS is an

international consortium which brings together experts from the different fields involved (directly or

indirectly) in e-learning technologies. The main concern of IMS is the interoperability between e-learning

systems and for this purpose the consortium has delivered several specifications covering different

aspects of the interoperability process. The core of the IMS specifications is IMS Content Packaging

(IMS CP) [23], which defines how to aggregate educational contents into packages in order to allow the

interchange of such contents between different heterogeneous systems. Other relevant IMS proposals are:

IMS Question & Test Interoperability (IMS QTI) for tests and assessments [26], IMS Learner Information

Package (IMS LIP) for storing and interchanging information about learners [25], IMS Simple

Sequencing (IMS SS) [27] for ordering the learning content in a course, and IMS Learning Design (IMS

LD) [24,29] for describing the learning activities and the interaction between learners, tutors and the

platform.

 THE <E-AULA> EXPERIENCE 3

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

Since they are geared more toward characterizing the different aspects of the instructional processes,

IMS specifications do not constrain the types of learning contents finally included. Indeed, these contents

will be highly dependent on each particular learning scenario. While general-purpose and widely used

types of contents (e.g. HTML pages, PDF documents and media in several formats) can be produced

using widely-available edition and authoring tools, more specific types of contents (e.g. a very specialized

documental language used by linguists during the production of educational material, as seen in [17]) may

require domain-specific authoring support. In the same way, while the delivery of passive content may

rely on standard client-side facilities (e.g. plug-ins for audio, video or other media), more interactive

content (e.g. educational videogames or simulation tools) may rely on a smart and content-specific

distribution of functionalities between the client and the server. To address the domain-specific nature of

the production, maintenance and deployment of learning contents in concrete learning scenarios we have

implemented <e-Aula> [1,18,38], an experimental e-learning platform supporting several IMS

specifications. The <e-Aula> project began in 1999 as a platform to evaluate the applicability of

e-learning standards and to obtain first-hand experience with several e-learning specifications, which at

this time were very immature and frequently changing. Currently <e-Aula> has grown far beyond its

initial evaluation purposes, evolving into a fully featured e-learning solution that bases its power on a

close adherence to mature standardization proposals, and is equipped with an easy-to-use and

easy-to-extend built-in authoring system. This system allows for the edition and deployment of a wide

and open range of learning resources. In addition, it has been designed to be easily specialized on

different application profiles, and includes flexible and robust importation/exportation facilities rooted in

its adherence to IMS standards.

The <e-Aula> authoring system is organized according to the so-called manifest-driven architecture,

which constitutes its main novelty. According to this architecture, the entire system is conceived as a

coordinated set of processors for the XML domain-specific markup language used to structure the IMS

manifests, the XML documents that describe the structure of the IMS content packages in the IMS CP

specification. This organization has yielded a number of benefits for the implementation of a highly

 THE <E-AULA> EXPERIENCE 4

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

modular and integrated system that adheres to the specifications but is resilient to their evolution and

flexible enough to cover the broadly open aspects of IMS specifications such as content types or delivery

methods. In addition, the built-in authoring support lessens the burden posed on authors by the use of

several disaggregated third party authoring tools, which is especially critical in a continuous evolving

scenario. Finally, the system fully addresses the open nature of IMS specifications and therefore can

easily be specialized on different domain-specific learning scenarios and experiences, even on those

supporting highly interactive contents. In this paper, we describe this architecture and its implementation

using Java technologies.

The structure of the paper is as follows. Section 2 provides the background about IMS required to read

the rest of the paper. Section 3 gives a brief description of the <e-Aula> authoring system and describes

its manifest-driven architecture. Section 4 summarizes the details concerning its implementation. Section

5 discusses some related work. Finally, section 6 gives several conclusions and outlines some lines of

future work.

2. THE IMS CONTENT PACKAGING SPECIFICATION

As stated before, the IMS CP specification is one of the bases of IMS specifications, since it established

how to package educational contents together for purposes of interoperability. In addition, this

specification also serves as a packaging mechanism for other IMS specifications, either using the IMS CP

extension points (like IMS LD) or simply referencing the documents that contain the information (like

IMS-QTI). These packages are usually distributed as zipped files, and their structure is depicted in Figure

1a. In this way, a package is formed by a collection of learning contents and a manifest. As also indicated,

this manifest is an XML document [10] that reflects global information about the package, the structure of

the contents, their types and their possible organizations. More precisely, the manifest contains:

 THE <E-AULA> EXPERIENCE 5

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

Local
files

Metadata

Organizations

Resources

Submanifests

Manifest

(a) (b)

<manifest identifier="Photoshop Package">
 <metadata> (…) </metadata>
 <organizations default="ORG1">
 <organization identifier="ORG1">
 <title>Photoshop Tutorial</title> (…)
 <item identifier ="ORG1_3">
 <title>Module 1 - Basics</title>
 <item identifier="ORG1_3_0"
 identifieref="rec3.0">
 <title>Interface</title>
 </item>
 <item identifier ="ORG1_3_1"
 identifieref="rec3.1">
 <title>Toolbox</title>
 </item>
 <item identifier ="ORG1_3_2"
 identifieref="rec3.2">
 <title>Palettes</title>
 </item>
 </item (…)>(…)
 </organization>
 </organizations>
 <resources> (…)
 <resource identifier="res3.0" type="webcontent">
 <file href="Photoshop3.0.html"/>
 </resource>
 <resource identifier="res3.1" type="webcontent">
 <file href="Photoshop3.1.html"/>
 <file href="fig3.1.1.gif"/>
 <file href="fig3.1.2.gif"/>
 </resource> (…)
 </resources>
</manifest>

External
Applications /

Services

External
Files

Figure 1. (a) Structure of an IMS package, (b) fragment of an IMS manifest extracted from a course deployed in

<e-Aula>. These figures have been simplified for presentational purposes and for the sake of clarity.

• A section of metadata summarizing global (meta)information about the package. This metainformation

usually follows the Learning Object Metadata (LOM) specification defined by the IEEE LTSC [21].

• The description of package resources. Resources are the basic content units of the package. As seen in

Figure 1, typical resources are made up of a set of files: a main file and a (possible empty) set of

secondary files (e.g. a main HTML file and the images referred from this file). In turn, these files can

be associated with local archives with learning content as particular cases. However, the flexible

nature of IMS specifications does not limit resources and files to being local. Resources can also be

external assets referenced to using an URL. Therefore, any service, or tool included in the learning

process defined by the package (e.g. a web application and/or service) can become a resource. This

also holds for individual files inside a resource, which can correspond with external objects on the

Internet using absolute URLs. Moreover, the resource can include metadata about itself and define the

type of content within it. Finally, each resource must have a unique identifier.

 THE <E-AULA> EXPERIENCE 6

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

• The organizations of the resources. Each organization represents a tree structure whose nodes can refer

to resources. The nodes in this tree are called items and contain a reference to a corresponding resource

using the unique identifiers of these resources. Therefore, an organization provides a tree-based

structure of the resources of the package (and thus, of its leaning content). Also note that a manifest

can include several organizations, each providing an alternative way to organize the contents and

therefore a different view of the package.

• The submanifests. A manifest can contain other, simpler manifests that in turn exhibit the same

structure outlined here.

Figure 1b depicts a manifest adapted from an ADL-SCORM sample course about Photoshop [3],

which has been deployed in <e-Aula>. This example shows a tree-based organization linked to different

resources by means of the usual XML id-idref mechanism [10]. In turn, the resources contain URLs

pointing to the actual content.

As a final remark, it is important to note that IMS does not impose any restrictions on the format or

type of content files, nor on the metadata schema to be used. These aspects are established in each

particular application profile. The concept of application profile is the IMS term to designate the

customization of a specification to meet the needs of particular communities of implementers with

common application requirements. For instance, in <e-Aula> we have defined the eAulaAP application

profile, which includes resources such as a cover, a glossary, and a list of FAQs whose contents are

documents marked up with XML-based domain-specific markup languages [41,42,43,44]. This

possibility adds all the benefits of the content-structuring power of descriptive markup to the IMS

structuring proposal [15].

Despite the proposal and development of the eAulaAP, one of the highlights of the architecture

described in this work is its potential modular evolution to support different application profiles and thus

accommodate the IMS-CP open nature. In the following sections, the organization of the system is

described with special attention to the relations between design decisions and IMS specifications.

 THE <E-AULA> EXPERIENCE 7

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

3. THE <E-AULA> AUTHORING SYSTEM ANDS ITS MANIFEST-DRIVEN
ARCHITECTURE

<e-Aula> is equipped with a flexible authoring system enabling the edition, preview, importation and

exportation of educational contents. The system allows authors to maintain a repository of IMS-aware

learning material. For this purpose, it offers the following four main functionalities:

 (a) (b)

Figure 2. (a) edition of a new organization (notice the edition style of a tree-like structure); (b) edition of a
resource content (a QTI test) with a resource-specific editor for QTI.

• Edition. This functionality enables the authoring of the different aspects of an IMS package. On the

one hand, the global structure of the package can be edited. On the other hand, users can edit the

organizations by adding and removing items, as well as by assigning resources to these items (Figure

2a). Finally, they can edit the actual contents associated to the resources by using suitable editors for

each content type (Figure 2b).

 THE <E-AULA> EXPERIENCE 8

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

(a) (b)

Figure 3. (a) Presentation of an organization, (b) presentation of a resource with a corresponding resource-specific

player.

• Presentation. This functionality allows authors to preview IMS packages. Authors start by choosing an

organization (if the package contains more than one). Then the organization chosen is displayed as a

tree structure (Figure 3a). Authors may navigate this structure and visualize the contents associated

with the resources (Figure 3b).

• Importation. This facility allows the incorporation of off-the-shelf IMS packages produced in other

IMS-aware systems. Each incoming package is examined for unsupported features and, if required, a

list of adaptation tasks is produced. Some of these tasks may require further interaction with the user,

and other tasks can create new tasks that are added to the adaptation list. Therefore, importation in

<e-Aula> is a complex and highly dynamic process that ensures the quality of the e-learning material

incorporated and its suitability for each specific learning scenario.

• Exportation. This facility makes the educational resources produced in the system available for others

in the form of IMS packages

 THE <E-AULA> EXPERIENCE 9

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

This authoring system has been designed to be highly modular in order to accommodate our research

and development needs and accommodate the open nature of IMS specifications. Therefore new editors

and players, as well as new adaptation tasks and strategies can easily be integrated, enabling the

specialization of the system in each domain-specific application profile. To achieve this we have used a

manifest-driven approach according to which the manifest is used as the key element for driving the

design and architecture of the entire system beyond the usual interoperability processes. This architecture

is sketched in Figure 4. According to this approach:

• The repository stores IMS-aware representations of the learning materials. This means that a

representation of the IMS manifest for each package is explicitly maintained. Therefore, all the

operations performed on this material will be reflected in these representations.

• Edition and presentation are architected following a delivery approach, with resource processors able

to select the most suitable resource editors or players for each type of resource. Hence each resource

processor enables a specialization of the system for each particular application profile.

• Importation is architected using an agenda-based approach, where an agenda of adaptation tasks is

used to cope with the complexities of this operation in a dynamic and modular way.

• Finally, exportation is straightforward due to the explicit representation of the manifests in the

repository.

 THE <E-AULA> EXPERIENCE 10

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

Manifest
introspector

Resource
handlers

Resource
handlers
Resource
handlers

Resource
editors

Resource
processors Manifest

editor

Importation

Edition Presentation

Exportation

Repository

Packager

Agenda

Adaptation
tasks

Organization
editor

Resource
handlers

Resource
handlers
Resource
handlers

Resource
players

Resource
processors Manifest

player

Organization
player

Figure 4. Architecture of <e-Aula>’s authoring system.

The next subsections describe this architecture.

3.1. The Repository

The repository within the <e-Aula> architecture acts as a storage layer for the IMS packages included in

the system. All subsystems are organized around this entity which offers the functionalities invoked by

the rest of the application for operations on full packages (e.g. loading, updating and deleting existing

packages, creating new ones, etc.) as well as on content files (e.g. loading and saving files, storing new

ones, etc.). The presence of this layer isolates the different subsystems from the low-level details of

course storage.

One of the main responsibilities of the repository is to offer a common and coherent model of all the

learning material to the other modules. In particular, the repository takes care to ensure coherence in the

 THE <E-AULA> EXPERIENCE 11

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

concurrent access to this material. In addition, the repository must offer efficient access to the packages

stored. For this purpose, several caching techniques can be applied (e.g. storing of IMS packages in an

unzipped format, and keeping an in-memory representation of the manifest file using an entity class), and

advanced database support can be used.

3.2. The Edition Module

The edition module is based on a delivery approach enabling it to react to different application profiles

and different content types and process them accordingly. As suggested in Figure 5:

 Resource

Processors

Manifest AP

Item A
 Resource

Type:

eAulaAP

eaula-xml

Resource
handlers

Processor for
eAulaAP

Resource
handlers
Resource
handlers

Processor for
 IMS 1.1.3

Manifest

Resource
handlers

Editor for
eaula-xml

Resource
handlers
Resource
handlers

Editor for
QTI ASI

Resource
editors in
eAulaAP

Figure 5. The delivery strategy of the edition module exemplified. The resource processor for the eAulaAP

application profile is loaded according to the corresponding profile found in the manifest. The resource editor for the
content type eaula-xml is loaded according to the type of resource.

• The module maintains a table that associates a resource processor with each application profile

supported by the authoring system. Therefore, when an existing package is loaded or a new one is

created, its profile is used to obtain the adequate processor for handling all the requests related to the

edition of the package’s resources. For existing packages this profile is obtained from the package’s

manifest, while for new ones it is requested from the user.

 THE <E-AULA> EXPERIENCE 12

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

• In turn, each resource processor maintains a table relating each content type to an appropriate resource

editor, which is a component capable of editing content of this type. Therefore, when the user orders

the edition of a resource, the manifest is used to obtain the type of the resource and this type is used by

the active resource processor to determine the editor to be launched. Notice that the way of managing

the different kind of files included in the resource is editor-dependent. For instance, an editor can

decide to make local copies of the external files of a given type. Another one can only allow the change

of the URLs for such files (referencing to package internal files or external contents/services). Still a

third editor can collaborate with a third-party application accessible by using a web service in order to

update any appropriate pieces of external learning content.

• In addition to this delivery strategy, the module uses a manifest editor component to edit the global

structure of the package, and an organization editor to let the user edit the package’s organizations.

This structure allows the incorporation of new resource processors with new resource editors in a

clean, modular way without interfering with the overall editing behaviour of the authoring system, as we

have realized repeatedly during the development of <e-Aula>. As an illustrative example, we could cite

the integration of support for IMS QTI in the authoring system. An independent team from the <e-Aula>

project developed a QTI Lite engine in the form of a standalone web application. The integration was

performed by implementing a resource editor for QTI by wrapping the edition facilities of the

independent application (see also Figure 2).

3.3. The presentation module

The presentation module is organized in a similar way to that of the edition module:

• The content presentation environment reuses the ideas used in the edition module to trigger the

appropriate resource players. Notice that for interactive contents, these players will address not only

static presentation, but may also perform other tasks like tracking the interaction with the learner. Also

notice that the way to play the learning content (including external content) is entirely player-

 THE <E-AULA> EXPERIENCE 13

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

dependent. As with edition, this approach allows a great flexibility, making it even possible to involve

third-party remote applications accessible through the Internet.

• Navigation throughout the structure of the course is facilitated by an organization player component.

This component is analogous to the organization editor in the edition module, but this time the tree-like

representation of the manifest is not editable. In addition, there is also a manifest player component,

which is used to present the overall structure of the package to the user, letting him/her choose the

organization to be used during navigation.

As with the edition module, the architecture of the presentation module allows the incorporation of

new presentation facilities in a straightforward manner. This feature has proved to be very useful during

our experimentation with <e-Aula>, letting us integrate, for instance, an interactive player based on the

QTI system mentioned above.

3.4. The importation module

The richness and open nature of the IMS CP specification makes it so flexible that, for example, packages

can contain a variety of content types unknown to any importation system or content files can be based on

different versions of the specification. The architecture of the importation module must be flexible

enough to cope with the complexities of the importation process. It must implement a flexible behavior,

capable of reacting when confronted with different problems, even with the possibility of querying the

user when more information is needed to perform the importation. Because of this, we propose an

implementation based on an agenda similar to the one proposed in [2] to simulate discrete systems.

According to agenda-based organization, when a package is imported, the system parses the manifest,

adding new tasks to the agenda to solve the troubles encountered during the scan. These tasks (especially

those that involve a query to the user) can create other tasks and add them to the agenda if needed for

their resolution. In this manner, a complex process that requires a heterogeneous set of actions is

dynamically split into simple tasks. More precisely (Figure 6):

 THE <E-AULA> EXPERIENCE 14

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

XML
INTROSPECTOR

INFORME E
INTERACCIÓN

CON EL
USUARIO AGENDA

1

2
4

1

2
3

Tasks
Manifest
introspector

Report and
user
interaction Agenda

Figure 6. The steps of the importation process. The execution of some tasks may include interaction with the user.

Task execution and user decisions may add new tasks to the agenda.

• The importation begins with a deep scan of the manifest. This is carried out using a component called

the manifest introspector. This generates a report that profiles, among other things, whether the

manifest is a well-formed XML document, which version of the standard it follows, which other

schemas (if any) are needed to understand it and under what application profile it has been developed.

This report is presented to the user, who decides how to continue.

• Guided by the user’s response, the system may generate a list of initial tasks for the agenda and start

working on them. Such tasks may include the modification of the manifest file, modification of the

application profile, adaptation of some resources or physical installation of the package.

This agenda-based implementation makes it possible to add new types of adaptation tasks during

importation in a transparent way (e.g. to support a new content type). Such an organization dramatically

enhances the modularity and maintainability of this complex subsystem. A representative and realistic

example of this feature at work is our experience in adapting incoming packages to our eAulaAP

application profile. All that was needed to adapt general IMS CP-compliant packages to this profile was

to include the required cover, glossary, and FAQ resources during the importation process. This was

accomplished by implementing adaptation tasks that generate such files from a default template and insert

references to them in the incoming manifests.

 THE <E-AULA> EXPERIENCE 15

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

3.5. The exportation module

In systems that use IMS CP as a basic interoperability format, but whose internal architecture is not

necessarily driven by this specification (see section 5), the process of exporting content following the

proposed standards can be a complex task. It might imply scanning the course, finding out its structure

and type, packaging the contents and creating a valid manifest to be delivered with the package. For

instance, in a system where the structure of the learning contents is internally stored in a relational

database following a domain-specific optimized information model, the packaging process will imply an

overall sequence of queries to such a database in order to rebuild the IMS manifest. However, in the

manifest-driven architecture this process is extremely simple, and can be carried out by a simple packager

component, which produces a zipped IMS package from the information maintained in the repository.

4. IMPLEMENTING THE MANIFEST-DRIVEN ARCHITECTURE

The previous section has introduced the conceptual view of manifest-driven architecture. This section

describes how those general concepts can be modelled as a web-based application with special attention

to modularity and extensibility requirements.

Since the possibility of distributing the system under an open source license has been considered, all

the implementation technologies must be licensed as open source as well. This restriction naturally led to

the adoption of Java technologies given the spectrum of open source initiatives surrounding this platform.

For this reason we have based our implementation in <e-Aula> on Sun Microsystems’ J2EE platform [8]

complemented by the Apache Foundation’s Struts framework [20]:

• From J2EE we have adopted the multi-tier organization according to which applications are layered in

different tiers (client, web, business and persistence).

• From Struts we have adopted the organization in terms of the classical MVC (Model-View-Controller)

design pattern [30]. In the MVC design pattern, a central controller manages program flow. The

controller receives requests and acts on the model, which represents the system’s information and state.

 THE <E-AULA> EXPERIENCE 16

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

Control is then forwarded back through the controller to the appropriate view, which manages

information display. The use of the MVC pattern clearly decouples the view and the model,

contributing to making applications significantly easier to create and maintain. In Struts controllers can

be characterized as set of actions (i.e. components encapsulating the response to a user’s interaction)

that act as façades to an arbitrarily complex domain logic. In addition, we use client-side scripted

HTML pages as well as Java Server Pages (JSPs) [11] to configure the views. Finally, models can be

characterized by a data management logic connected to a persistent storage (database) support.

Both platforms suggest how the implementation should be organized and, although not obvious at first

sight, both approaches can be blended in an elegant manner. With this, the <e-Aula> implementation of

the manifest-driven architecture is disposed on a layered organization that takes full advantage of the

power offered by the MVC pattern. Notice that each main module (edition, presentation, importation and

exportation) has its own view and controller, which interact with a common model represented by the

repository and the manifests within it.

The next subsections address the main implementation details of each module in the architecture from

the simplest to the most complex.

4.1. Implementing the Repository

The repository is the core of the system and represents the common model shared by the remaining

modules. As previously mentioned, the repository controls the access to all the learning material and

gives the rest of the modules a coherent view of this material.

The structure of the repository in the <e-Aula> authoring system is depicted in Figure 7. As suggested

in this figure, IMS packages are deployed physically in an unzipped format, by using a directory of the

file system for each package, whose name is the unique identifier included in package’s manifest. It is

important to note that all the directories are situated at the same level (i.e. the resulting structure of

directories associated with the unzipped packages is flat). This means that sub-packages inside a

 THE <E-AULA> EXPERIENCE 17

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

composite package are allocated in their own directories. The rationality of this design decision is to

allow these packages to be edited and displayed as independent packages in a uniform way. The

repository will take care of the dependencies by avoiding, for instance, the removal of a package if it is

used as a sub-package by another package. Moreover, sharing sub-packages is not allowed by the

repository. For this purpose a copy must be made and used instead.

Pool of manifest
objects

manifest
package 1

package 2

package k

 content
files

Figure 7. Structure of the repository.

The repository ensures consistent access to these directories (e.g. while two concurrent presentations of

the same package are allowed, the repository prohibits two or more simultaneous editions). In addition,

and for reasons of efficiency, the repository maintains an in-memory pool of manifest objects. The first

time that a package is accessed, its manifest is parsed and a manifest object, containing a DOM

representation [51] of the tree, is added to this pool. All subsequent accesses will be directed to the object

stored. This pool of objects also facilitates coherency maintenance because all the modules gaining access

to the same package can share the same manifest object.

Finally, it should be noted that this implementation includes an abstraction layer for the manifest and

the operations that can be performed on them. This will allow the substitution of the default filesystem’s

backend with more sophisticated database support if required.

 THE <E-AULA> EXPERIENCE 18

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

4.2. Implementing the Exportation Module

The structure of the exportation module is depicted in Figure 8. This structure, which is the simplest of all

the modules as a consequence of the manifest-driven approach, is featured as follows:

 View

Model

 Controller

Export
action

Unzipped IMS
package

Zipped IMS
package

Result
JSP

Packager

Init
JSP

Figure 8. Structure of the exportation module.

• There is a single export action that uses the packager on the directory associated to the package. This

action can either succeed (in this case a zipped package will be produced), or fail (this will be the case

when trying to export packages currently under edition).

• The view is formed by an init JSP, which is the entry point to the module and which produces a page

letting the user choose the package to export, and a result JSP, which displays a report informing the

user of the outcome of the packaging process.

4.3. Implementing the Importation Module

The structure of the importation module is depicted in Figure 9. Although the behaviour of this module

can be complex, this complexity is adequately dealt with by an agenda-based architecture as mentioned

before. This architecture leads to a reasonably simple implementation:

 THE <E-AULA> EXPERIENCE 19

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

 View

Model

 Controller

Package under
adaptation

Introspection
report JSP

Manifest
introspector

Init action

Start
adaptation
action

Continue
action

Agenda
Task report
JSP

Result
JSP

Incoming
package

Adapted package

init
HTML

Continue
action

Task
continue
action

Task report
JSP

Task report
JSP

Figure 9. Structure of the importation module.

• The domain logic is composed of the agenda and the manifest introspector. In turn the agenda is

structured as a simple FIFO queue of adaptation tasks. Each task generates a report informing about its

execution. If a task fails, the execution of the agenda stops and the incoming package is discarded. If

the agenda is emptied, the adapted package is definitively inserted in the repository.

• The entry point is given by an init HTML page, which lets the user upload the package to be imported.

This page has an init action associated that temporally inserts the incoming package in the repository

and applies the manifest introspector to its manifest in order to produce the initial report for the user.

This report is presented by using an introspection report JSP in the view. There is also a start

adaptation action that interprets the reaction of the user to this report, populates the agenda with an

initial set of tasks, and activates its execution.

• Reports generated by the tasks are interpreted by associated task report JSPs in the view. This kind of

JSP, specific to each type of adaptation task, can include controls in the page generated to request

further information from the user when required. In turn, the response to these reports is worked out in

the corresponding task continue action. These actions interpret the reaction of the user to the

corresponding reports, adding and/or removing tasks in the agenda when required, and reactivating its

execution.

 THE <E-AULA> EXPERIENCE 20

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

• Finally there is a result JSP, which is used to announce the end (success or failure) of the importation

process.

4.4. Implementing the presentation module

Figure 10 illustrates the structure of the presentation module. As seen in this figure, the module can be

implemented in the J2EE/Struts context in a clean and elegant manner:

• Resource processors are split into a view and a controller part. For each content type supported by a

processor there is a displayer JSP, which takes care of displaying the resource. In addition, for

interactive contents (e.g. an interactive test) there is also an associated interactor action in the

controller part that takes care of the interaction. Therefore, resource players are implemented as a

displayer JSP and for interactive content types by an interactor action.

 Controller View

Display
resource
action

Display
manifest
action

XSLT

Manifest
displaying
JSP

Model

Manifest

Organization

Item Resource

Organization
displayer
JSP

Physical
files

Resour
ce

Resource
handlers Resource

Processor
(controller part)

 Interactor
action

Resour
ce

Resource
handlers Resource

Processor (view
part)

 Displayer
JSP

Figure 10. Structure of the presentation module.

• The entry point to the module is the manifest displaying JSP. The page generated enables the selection

of the package to be presented and the organization to be used in this presentation. In response the

display manifest action is executed, which sets up the suitable resource processor (both in the controller

and the view) according to the first step of the delivery strategy described above (i.e. a suitable

 THE <E-AULA> EXPERIENCE 21

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

resource processor is chosen according to the manifest’s application profile). Therefore the pair

manifest displaying JPS – display manifest action configures the manifest player component in the

conceptual architecture.

• In turn, the organization’s presentation is produced by the organization displayer JSP. It is also

interesting to note that the dynamic part of this displayer is configured as an XSLT transformer [12]

which generates the required (HTML) presentation from the manifest document tree. When an item

with an associated resource is selected in this presentation, the display resource action is executed.

Therefore, the organization player component is deployed like the pair organization displayer JSP –

display resource action. This last action implements the second step in the delivery strategy: to choose

a suitable displayer JSP in the active resource processor. For interactive content types, the interaction

will be managed by the corresponding interactor action.

4.5. Implementing the edition module

The edition module is the most complex to implement in the <e-Aula> authoring system because it must

offer remote web editing capabilities of all package elements. Hence the different editing components

introduced in the conceptual architecture (manifest editor, resources manager and resource editors) are

split into an action and a view (JSP) part. The main features of this implementation, which is depicted in

Figure 11, are:

• The entry point is the init JSP, which lets the user choose a package to edit or create a new package.

The result of this interaction is worked out in the init action, which also sets up the appropriate

resource processors, both in the controller as well as in the view part.

• The manifest edition JSP produces an HTML form that lets the user modify the global structure of the

package. The result is processed by the manifest edition action. Both assets configure the manifest

editor component in the conceptual architecture.

 THE <E-AULA> EXPERIENCE 22

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

• The organization edition JSP is analogous to the organization displayer JSP in the presentation

module, but the presentation produced is extended to allow edition (i.e. new controls are included to

enable the addition and deletion of new items, as well as their edition). The result of interacting with

this presentation is processed by an organization edition action that encapsulates the required editing

operations. Therefore the pair organization displayer JSP – organization edition action configures the

organization editor component introduced in the conceptual architecture of section 3.

Resource
handlers

Init
action

Resource
processors
(controller part)

Init
JSP

Manifest
edition
JSP

Organization
edition
 JSP

Result
JSP

Manifest
edition
action

Organization
edition
action

 Resource
edition
action

Resource
handlers

Resource
processors (view
part)

 Resource
edition JSP

Controller View

Model

Manifest

Organization

Item Resource Files

Figure 11. Structure of the edition module.

• Finally, each resource editor is similarly split into a resource edition action and a resource edition JSP.

The resource edition JSP will produce an HTML page, giving access to the corresponding resource

editor. The editing result is processed by the resource edition action. Both kinds of assets are grouped

into processors oriented to specific profiles both in the controller and in the view. The init action

performs the first step in the delivery policy, setting up the appropriate processor’s controller and view

parts on the basis of the manifest’s application profile. The organization edition action carries out the

second step when the user orders the edition of a content file.

 THE <E-AULA> EXPERIENCE 23

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

5. RELATED WORK

IMS specifications have been adopted by many e-learning initiatives as a basic interoperability

mechanism. They range from commercial e-learning platforms like WebCT [49], which can be purchased

by companies in order to deploy their own content, to initiatives like ADL-SCORM [4], which provides

complementary specifications to obtain high-quality content and systems in a variety of fields. While

these initiatives mainly pay attention to IMS standards when it comes to interoperability issues (e.g.

content exportation/importation), our manifest-driven proposal goes a step further. Indeed, we propose the

use of the specifications (in particular, the IMS manifest) as central mechanisms to conceive, architect,

design and implement the system. The manifest-driven proposal naturally leads to modular and extensible

architectures, and also facilitates tasks like the exportation of contents in IMS-aware format, which can be

difficult to do in other approaches. Furthermore, works on the architecture of general [5,6] and IMS-based

e-learning platforms [47] usually put the emphasis on the architecture of the overall system instead of on

their authoring capabilities.

Many commercial (e.g. [32,50]) and free (e.g. [9]) authoring tools support production of web-based

courses. These tools are usually conceived as standalone applications, and they are independent of

particular e-learning platforms. In turn, most of the widely used e-learning platforms (e.g. [16,35,49])

include some limited authoring capabilities. In <e-Aula> we have included a powerful web-based

authoring system in the platform itself, providing teachers with an integrated scenario in which to produce

and maintain their e-learning materials. In addition, the modularity and extensibility of this authoring

system enables a smooth evolution to accommodate the authoring needs arising in each specific

pedagogical domain. This evolutionary nature, which is achieved by the manifest-driven approach, is also

a distinctive feature of our work with respect to the aforementioned systems. In [52] an IMS-based

authoring tool similar to the one described here is presented, although no details are provided about its

internal architecture and implementation, as well as about its integration (if any) with an e-learning

platform.

 THE <E-AULA> EXPERIENCE 24

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

The evolution of the authoring system is also a fundamental requirement in works like [19,45].

Nevertheless, while those works start with an application-dependent authoring tool that evolves as new

knowledge is gained in the application domain, in <e-Aula> we adopt a dual approach: we start with a

general-purpose authoring system that can be specialized according to particular e-learning scenarios

whenever they are encountered. Previous work on the <e-Aula> platform, including its authoring system,

is described in [18,38]. Previous work on the manifest-driven approach is described in [46].

6. CONCLUSIONS AND FUTURE WORK

In this paper we have described our manifest-driven approach to architecting an IMS-based authoring

system integrated in <e-Aula>, a web-based experimental e-learning platform. This approach is the result

of our efforts in the development of a system aimed at the evaluation of different e-learning standards and

e-learning modular architectures. The approach leads to a highly modular and extensible integrated

authoring system. This system, which is able to integrate a huge amount of disaggregated authoring and

deployment facilities in the same platform, can be specialized on many different learning scenarios,

which can include static, moderately interactive, and highly interactive e-learning content.

The manifest-driven approach facilitates the main tasks contemplated in the authoring system: edition

and presentation, as well as importation and exportation of content packages. In addition, this approach

leads to an architecture that facilitates extensibility. Adding support for a new content type is just a matter

of writing the code needed to edit and play content in that format. Likewise, extending the functionality of

our importation system is just a matter of writing new tasks for the agenda.

The high degree of modularity of the architecture also enhances maintainability. It is easy to find the

points in the source code where any changes might be needed. Changes in most modules will have a

slight impact on the rest of the system. While the complexity of the architecture is high (in terms of the

number of classes and files in the resulting implementation), this is the price to pay for achieving a very

high degree of modularity, and therefore better extensibility and easier maintenance.

 THE <E-AULA> EXPERIENCE 25

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

Our Java-based implementation preserves the benefits of the architecture and adds a high degree of

robustness. However, we should point out as a drawback the need for more computing power in the server

when compared to lighter applications based on scripting solutions (like PHP [31]). While the choice

between a large and robust system and a lightweight application will depend on the exact needs of each

learning environment, the J2EE / Struts-based solution is well suited for our purposes because it allows

for a continuous evolution of the system to accommodate our evaluation and research needs.

Currently the architecture based on the manifest-driven approach is fully implemented in the <e-Aula>

system. The authoring system is fully functional and adheres strictly to the IMS CP standard. As future

work, we are planning to incorporate support for more elaborate types of contents. For this purpose, we

want to integrate in the system a manual-oriented metaphor for the production of learning content in

technical domains [33,37]. This metaphor encourages organizing the learning materials as manuals about

technical subjects following a suitable set of guidelines. We have implemented this metaphor using

DocBook [48], and we are planning to integrate the resulting federated tools as a whole in the <e-Aula>

authoring system. In this research on content production and maintenance, we also want to pay special

attention to interactivity. For this purpose, we are currently working on the incorporation of authoring

support for educational-oriented graphical adventure videogames. The resulting project is called

<e-Game>, and some preliminary results were published in [34,36]. We also expect to incorporate

content in the domain of language processors and compiler construction. In order to let students test the

examples, we want to integrate the tool for prototyping language processors that is described in [40] using

appropriate players. Finally, we wish to exploit the possibility of connecting external tools to deal with

this kind of interactive and dynamic contents. Another research goal is to integrate support for the

authoring of activity-oriented learning strategies [29]. This effort will provide another more sophisticated

alternative based on the IMS LD to the current edition and playing of simpler IMS organizations. For all

these initiatives, we will further envision applying the document-oriented approach promoted in

[41,42,43,44] for both the incremental definition of new types of resources and the incremental

construction of their associated handlers as processors for domain-specific descriptive markup languages.

 THE <E-AULA> EXPERIENCE 26

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

Finally, we are planning to involve field experts in the authoring of high-quality content that fully exploits

the functionalities of the eAulaAP application profile.

ACKNOWLEDGEMENTS

The Spanish Committee of Science and Technology (TIC2002-04067-C03-02, TIN2004-08367-C02-02

and TIN2005-08788-C04-01) has partially supported this work. We also would like to thank Javier

López-Moratalla for his collaboration in earlier stages of this work.

REFERENCES

1. <e-Aula> project. Prototype available online at http://eaula.sip.ucm.es/aulaVIMS (last visited on March 2006)
2. Abelson, H.; Sussman. G. J. Structure and Interpretation of Computer Programs - Second Edition. MIT Press. 1996
3. ADL Technical Team , SCORM 2004 Photoshop Examples Version 1.1. Available online at http://www.adlnet.org (last

visited on March 2006)
4. Advanced Distributed Learning - Shareable Content Object Reference Model (ADL-SCORM), Faulkner Information Services.

2003
5. Anido-Rifón, L.; Fernández-Iglesias, J.; Llamas-Nistal,M.; Caeiro-Rodríguez,M.; Santos-Gago,J.; Rodríguez-Estévez,J.S. A

Component Model for Standardized Web-Based Education. ACM Journal of Educational Resources in Computing 1(2). 2001.
6. Avgeriou, P.; Papasalouros, A.; Retalis, S.; Skordalakis, M. Towards a Pattern Language for Learning Management Systems.

Educational Technology & Society, 6(2), pp. 11-24. 2003
7. Aviation Industry Computer Based Training Committee. Available online at http://www.aicc.org (last visited on March 2006)
8. Bodoff, S.; Armstrong, E.; Ball, J.; Carson, D. The J2EE Tutorial, Second Edition. Addison-Wesley Professional. 2004
9. Bolton University (2005) Reload Project. Available online at http://www.reload.ac.uk/ (last visited on March 2006)

10. Bray, T.; Paoli, J.; Sperberg-McQueen, C. M.; Maler, E (Eds), Extensible Markup Language (XML) 1.0 (Second Edition).
W3C Recommendation. 2000

11. Chopra, V.; Eaves, J.; Jones, R.; Li, S.; Bell, J. Beginning JavaServer Pages. Wrox Press. 2005
12. Clark, J (Ed). XSL Transformations (XSLT) Version 1.0. W3C Recommendation. 1999
13. Collier, G. e-Learning Application Infraestructure. Sun Microsystems White Paper. 2002
14. Collis, B; Strijker,A. Technology and Human Issues in Reusing Learning Objects. Journal of Interactive Media in Education 4.

Special Issue on the Educational Semantic Web. 2004. www-jime.open.ac.uk/2004/4
15. Coombs, J. H.; Renear, A. H.; DeRose, S. J. Markup Systems and the Future of Scholarly Text Processing. Communications

of the ACM, 30 (11), pp. 933-947. 1987
16. Dokeos. More information available online at http://www.dokeos.com (last visited on March 2006)
17. Fernández-Manjón, B.; Fernández-Valmayor, A. Improving World Wide Web Educational Uses Promoting Hypertext and

Standard General Markup Languages. Education and Information Technologies, 2(3), 193-206. 1997
18. Fernández-Manjón,B.; Sancho, P. Creating cost-effective adaptive educational hypermedia based on markup technologies and

e-learning standards. Interactive Educational Multimedia 4. 2002
19. Fernández-Valmayor, A.; Guinea,M.; Jiménez,M.; Navarro,A.; Sarasa,A. Virtual Objects: An Approach to Building Learning

Objects in Archeology. In Llamas-Nistal et al. (eds). Computers and Education: Towards a Lifelong Society. Kluwer
Academic Publishers. 2003

20. Goodwill, J.; Hightower, R. Professional Jakarta Struts. Wrox Press. 2003
21. Hodgings, W. (chair); IEEE Standard for Learning Object Metadata. IEEE Standard 1484.12.1-2002. 2002
22. IEEE Learning Technology Standards Committee. More information available online at http://ltsc.ieee.org (last visited on

March 2006)
23. IMS Content Packaging Specification v1.1.4. 2004. Available online at http://www.imsglobal.org/content/packaging (last

visited on March 2006)
24. IMS Learning Design 1.0. 2003. Available online at http://www.imsglobal.org/learningdesign (last visited on March 2006)
25. IMS Learning Information Package Specification v1.0.1. 2005. Available online at http://www.imsglobal.org/profiles (last

visited on March 2006)

 THE <E-AULA> EXPERIENCE 27

Draft version. Citation: Sierra, J.L; Moreno-Ger, P; Martínez-Ortiz, I; Fernández-Manjón, B. A Highly Modular and Extensible Architecture for an
Integrated IMS-based Authoring System: The <e-Aula> Experience. Software: Practice & Experience. 2006. DOI: 10.1002/spe.779

26. IMS Question & Test Interoperability v 2.0. 2005. Available online at http:// www.imsglobal.org/question (last visited on
March 2006)

27. IMS Simple Sequencing Specification 1.0. 2003. Available online at http://www.imsglobal.org/simplesequencing (last visited
on March 2006)

28. Instructional Management System Global Consortium. Available online at http://www.imsglobal.org (last visited on March
2006)

29. Koper, R.; Tatersall, C (Eds.) Learning Design: A Handbook on Modelling and Delivering Networked Education and
Training. Springer. 2005

30. Krasner, G.E; Pope,T.S. A Description of the Model-View-Controller User Interface Paradigm in the Smalltalk 80 System.
Journal of Object Oriented Programming 1(3), pp. 26-49. 1988

31. Lecky-Thompson, E.; Eide-Goodman, H.; Nowicki, S.; Cove , A. Professional PHP5. Wrox Press. 2004
32. Lersus System. More information available online at http://www.lersus.com/ (last visited on March 2006)
33. Martínez-Ortiz, I.; Moreno-Ger, P.; Sancho-Thomas, P.; Fernandez-Manjón, B. Using DocBook to Aid in the Creation of

Learning Content. EduTech 2005. Perth, Australia, October 20-21. 2005
34. Martínez-Ortíz, I.; Moreno-Ger, P.; Sierra, J. L.; Fernández-Manjón, B. Production and Maintenance of Content-Intensive

Videogames: A Document-Oriented Approach. 3th International Conference on Information Technology: New Generations
ITNG’06, Las Vegas, USA, 10-12 April, 2006.

35. Moodle. More information available online at http://www.moodle.org (last visited on March 2006)
36. Moreno-Ger, P.; Martínez-Ortiz, I.; Fernández-Manjón, B. The <e-Game> Project: Facilitating the Development of

Educational Adventure Games. Cognition and Exploratory Learning in Digital Age CELDA’05, Porto, Portugal, 14-16
December, 2005

37. Moreno-Ger, P.; Martínez-Ortiz, I.; Sierra, J. L.; Fernández-Manjón, B. A Descriptive Markup Approach to Facilitate the
Production of e-Learning Contents. ICALT’06. Kerkrade, The Netherlands, July 5-7. 2006

38. Sancho, P.; Manero, B.; Fernández-Manjón, B. Learning Objects Definition and Use in <e-aula>: Towards a Personalized
Learning Experience. Edutech:Computer-Aided Design Meets Computer Aided Learning, pp 177-186. Kluwer Academic
Publishers. 2004

39. Schlusmans, K.H.L.A; Koper, E.J.R; Giesbertz, W.J. Work processes for the development of integrated e-learning courses. In
Jochems,W.; van Merrienboer, J; Koper, E.J.R (eds). Integrated eLearning, pp. 126-138. London: Routledge Falmer. 2003

40. Sierra, J. L.; Fernández-Valmayor, A. A Prolog Framework for the Rapid Prototyping of Language Processors with Attribute
Grammars. LDTA 2006. Vienna, Austria, April 1. 2006

41. Sierra, J.L.; Fernández-Manjón, B.; Fernández-Valmayor, A.; Navarro, A. Document-Oriented Construction of Content-
Intensive Applications. International Journal of Software Engineering and Knowledge Engineering, 15(6), pp 975-993. 2005

42. Sierra, J.L.; Fernández-Valmayor, A.; Fernández-Manjón, B.; Navarro, A. ADDS: A Document-Oriented Approach for
Application Development. Journal of Universal Computer Science, 10(9), pp 1302-1324. 2004

43. Sierra, J.L.; Fernández-Valmayor, A.; Fernández-Manjón, B.; Navarro, A. A Document-Oriented Paradigm for the
Construction of Content-Intensive Applications. The Computer Journal Advance Access. Published on April 13, 2006.
doi:10.1093/comjnl/bxl008

44. Sierra, J.L.; Navarro, A.; Fernández-Manjón, B.; Fernández-Valmayor, A. Incremental Definition and Operationalization of
Domain-Specific Markup Languages in ADDS. ACM SIGPLAN Notices, 40(12), pp 28-37. 2005

45. Sierra,J.L.; Fernández-Valmayor,A.; Guinea M.; Hernanz, H.; Navarro, A. Building Repositories of Learning Objects in
Specialized Domains: The Chasqui Approach. ICALT’05. Kaohsiung, Taiwan. July 5-8. 2005

46. Sierra,J.L.; Moreno Ger, P.; Martínez Ortiz, I.; López Moratalla, J.; Fernández-Manjón, B. Building Learning Management
Systems Using IMS Standards: Architecture of a Manifest-driven Approach. ICWL 2005. Hong Kong, China. 31st July - 3rd
August. Lecture Notes in Computer Science 3583. pp. 144-156. 2005

47. Torres da Silva, V.; Pereira de Lucena C.J.; Fuks, H. ContentNet: a framework for the interoperability of educational content
using standard IMS. Computers & Education 37, 273–295. 2001

48. Walsh, N.; Muellner, L. Docbook The Definitive Guide. O’Reilly, 1999
49. WebCT system. More information available online at http://www.webct.com (last visited on March 2006)
50. Wilson, S.; Thornton, J. Authorware 6. Thomson Delmar Learning. 2001
51. World Wide Web Consortium. Document Object Model (DOM) Technical Reports. W3C. 2004
52. Zongkai,Y.; Gang. Z.; Di, W.; Jianhua, H. A Standard Visual Courseware Authoring Tool Based on Content Packaging

Specification. ITCC’04. Las Vegas, USA. April 5-7. 2004

