A Flow-Oriented Visual Language for Learning Designs

Ivan Martinez-Ortiz, Pablo Moreno-Ger, José Luis Sierra-Rodriguez,
and Baltasar Ferndndez-Manjén

Department of Software Engineering and Artificial Intelligence
Facultad de Informatica, Complutense University of Madrid
C/ Profesor José Garcia Santesmases s/n, 28040 Madrid, Spain
{imartinez,pablom, jlsierra,balta}@fdi.ucm.es

Abstract. Educational Modeling Languages (EMLs) are notations that allow
instructors to describe teaching and learning interactions and activities in a for-
mal way. This description of a specific teaching process is called a Unit of
Learning (UoL). The main advantage of UoLs described using EMLs is that
they can be automatically orchestrated using an interpreter that coordinates all
the activities defined in the UoL. The advantages of this approach in terms of
scalability and interoperability are great but, in practice, its application is being
hindered by different problems such as the technical skills required to use these
languages and the difficulty of understanding preexisting UoLs. In order to al-
low the widespread adoption of EMLs, it is necessary to reduce steep learning
curves that prevent instructors from using them. In this work we present the
graphical notation used in the e-LD approach, a methodology which promotes
the adoption of EMLs simplifying the authoring process of new and preexisting
UoLs.

Keywords: Educational Modeling Languages, Learning Design, Graphical
authoring.

1 Introduction

For the last few years, e-learning has been a very active research field with real appli-
cation in industry and educational institutions. Even though e-learning has been suc-
cessful in many cases, a number of limitations have been identified and have attracted
criticism. One of the key issues identified is that e-learning environments are too
focused on learning content to be consumed by the learners. However, an effective
learning process requires more than simply being exposed to content. It should also
include other activities such as completing exercises, preparing essays, discussing
topics, assessing progress, etc. These activities reinforce the knowledge contained in
the content. Usually, when teachers or domain experts design a course, they decide
which content should be included, which activities should be performed and in which
order these activities should happen to achieve effective learning. In other words,
teachers must design a teaching method.

The definitions of these teaching methods, referred to hereafter as learning de-
signs, include the goals and scope of the course, methods for evaluation, and different
course modules (e.g. contents). An explicitly written learning design can be used for
different purposes. For example it may be validated by a quality department before

F. Li et al. (Eds.): ICWL 2008, LNCS 5145, /pp 486 2008
it veEsioB: I SEB AHIR: Mmrgms blicati ons articles.html for updated citation information

A Flow-Oriented Visual Language for Learning Designs 487

the course is deployed, or it may be reviewed by students before enrollment. Tradi-
tionally, this documentation task is performed by creating descriptive documents
using natural language. Nevertheless, learning designs can be formally described
using suitable Educational Modeling Languages (EMLs). Currently the most widely-
extended formal EML is IMS Learning Design (IMS LD) [5,6].

From a pedagogical perspective, an EML is a notation that teachers or instructors
can use to formalize the learning designs that they have in mind. The formal ap-
proach, as opposed to using natural language, allows the automatic processing of
these designs by a computer system. From a technical perspective, the EML can also
be seen as a scripting language for Learning Management Systems (LMSs) that al-
lows the configuration of the learning experiences on these systems. But contrary to
traditional programming languages created for technical staff, the intended target
audience of EMLs are teachers and instructors.

However, the application of EMLs is not devoid of problems. A formal EML
should be carefully designed in order to provide a balance between the expressivity
features related to its machine processing capabilities and the high level abstraction to
simplify its application by humans. IMS LD, for example, is a powerful EML but its
use in practice is being hindered by different problems such as its large expressive-
ness and the technical skills needed for its application, which are far beyond the reach
of most real users without mature user-friendly supporting tools.

To address this complexity-expressiveness balance, our approach is to make a con-
ceptual distinction between two kinds of EMLs: exchange EMLs and authoring
EMLs. Exchange EMLs have a large expressiveness and include low level character-
istics that are not very relevant for the instructor. They are closer to the machine level,
effectively becoming a low-level abstraction tool for e-learning applications, allowing
the customization of any compliant e-learning platform to suit specific needs. In this
sense, IMS LD should be classified as an exchange EML. On the other hand, author-
ing EMLs have a more restricted expressiveness but are closer to instructors' needs
and ways of thinking. Because authoring EMLs are specifically adapted to instruc-
tors’ expertise, authoring and repurposing tasks are far more affordable for non-
technical instructors.

Our approach, called e-LD, proposes a collaborative process model for the domain-
specific EML authoring design. This process involves not only instructors but experts
in computer science who provide support to instructors during the authoring process
as well.

In our opinion, in order to facilitate the use of EMLs by teachers and instructors, it
is necessary to provide graphical abstractions, which are more user-friendly than the
terse XML syntax usually provided in EML specifications. These abstractions are
closer to the needs of the user, and then can be translated to the more machine-
friendly notations of exchange EMLs via importation/exportation processes. In this
paper we describe the visual language used in our e-LD approach. The notation in-
cludes concepts closely related to IMS LD, which is our target exchange EML. How-
ever, it is simple-enough to be useful for instructors, allowing them to produce and
maintain their learning designs.

The rest of this paper is organized as follows. Section 2 introduces the graphical no-
tations used in the diagrams created during the authoring process. Section 3 describes

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

488 1. Martinez-Ortiz et al.

a use case of the e-LD approach and particularly of the visual notation. Finally, we
provide some conclusions and outline some lines of future work.

2 Graphical Notations for UoL. Authoring

The use of graphical notations to provide a visual syntax for modeling languages has
been tested and put into practice in many different domains. Some examples include
databases with Entity-Relationship models for defining database schemas [13], soft-
ware engineering with Unified Modeling Language (UML) for describing software
systems [3], and business application with Business Process Management Notation
(BPMN) for describing business processes [1].

These graphical notations have been developed to simplify the cognitive load when
working with complex semantic models. They provide a simpler notation that can be
more clearly understood by a wide range of users, from technical to non-technical
staff. Following this trend, we propose the use of graphical notations for the design of
UoLs [8]. These notations include:

— A notation for Learning objectives. This notation allows an instructor to define
which goals (learning objectives) will be covered in the UoL. For this purpose the
instructor can define a high level goal that will be the overall objective and later on
refine this objective into sub-objectives that will be achieved in the different parts
of the UoL. Also, with this type of notation, it is possible to define the actors in-
volved in reaching these goals (e.g. student, teacher).

— A notation for defining activities. This notation contemplates the definition of the
different activities to be performed during the execution of the UoL. Using this no-
tation, instructors analyze which activities are needed to reach the learning objec-
tives. Then they design activities describing what is to be done and which tools
(chat, dossier, laboratory tool, etc.) should be used. These activities will also
include the instructions and the resources (learning contents and tools) needed to
perform them. Activities can be classified into simple and structured ones. Simple
activities are typically performed by students with or without the help of an in-
structor. Structured activities aggregate simple activities adding an implicit runtime
behavior. As structured activities can be very large and complex the notation intro-
duces hierarchical abstraction facilities.

— A notation for sequencing activities. By using this notation, instructors make ex-
plicit the learning flow through the different activities that comprises the UoL. In
addition, the notation allows the roles to be involved in the activities to be defined.
Sequencing definitions can be a simple ordering of activities applied to all partici-
pants, or can be a personalized definition of the learning flow based on the per-
formance of a particular participant during the execution of the UoL. The definition
itself can be verbose. Therefore, the notation also introduces hierarchical decompo-
sition mechanisms. This decomposition involves at least two levels: the first one
defines the overall structure (course modules) and the second provides a precise
definition of the sequencing of these different parts.

All these notations coexist in a unified, flow-oriented, view of the learning design,
which integrates all the aspects of this design. This single unified view avoids unnec-
essary cross-references between information elements which are usually used only in

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

A Flow-Oriented Visual Language for Learning Designs 489

one place. This feature, together with a carefully designed visual aspect, should in-
crease the usability of the notations with respect to more exchange-oriented ones
(such as IMS LD). The following subsections go inside the different notations which
constitute the unified flow-oriented view.

2.1 Notation for Describing Learning Objectives

The notation for describing Learning Objectives is a diagram that allows the defini-
tion of the learning objectives to be covered in the UoL. In addition, this notation can
include the definition of which role will be involved during the achievement of the
learning objectives. Each learning objective definition includes a verbose textual
description which can be attached to the graphical representation.

<<learner>>

OBJ 1
STUDENT
RN <<|nclude>>

<(IHC|L[G€:‘) / "cclnclude:-:v

T
K
l <<|r|clude>> ! """-—--....

<<slaff>>

<<include>> | \J«lnclude»

‘ ./TEACHER

Fig. 1. Example of a learning objectives definition with role association

Fig. 1 shows an example of this notation. This example contains two objectives
OBJ I and OBJ2 represented with ellipses. In addition, OBJ 2 is subdivided into a
graph of sub-objectives using a dashed arrow. In the figure two roles have been
defined: STUDENT (a learner role) and TEACHER (a staff role) represented as
stickmen. These roles are associated to learning objectives using lines between the
stickman and the objective. It should be pointed out that the association between
actors and objectives is inherited by sub-objectives, which means that the role asso-
ciated to the main objective also participates in the achievement of the sub-
objectives. In our example, the TEACHER role is only involved in the achievement
of OBJ 2.3 and OBJ 2.2.1 learning objectives, while the STUDENT role is involved
in OBJ 1, OBJ 2 and in all the sub-objectives of OBJ 2 (i.e. OBJ 2.1, OBJ 2.2, OBJ
2.1.1 and OBJ 2.2.1). Note that it is also possible to design learning objectives for
different learner roles because the notation for learning objectives is not restricted
to only one learner role per diagram.

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

490 1. Martinez-Ortiz et al.

2.2 Notation for Defining Activities

Fig. 2 depicts the graphical notation used in defining activities. Using a terminology
borrowed from IMS LD, the notation introduces two kinds of activities: simple and
structured:

— Simple activities include learning activities (Fig. 2a) which are typically performed
by students and support activities (Fig. 2b) which are performed by students too,
but with the help of a supporting role, usually an instructor.

— Structured activities allow instructors to aggregate simple activities adding an
implicit runtime behavior. With these activities there are two possibilities: per-
formance in sequence or allowing the actor to choose the order of performance.
According to these possibilities, there are two different graphical notations for ac-
tivity structures: Fig. 2 (c) shows the appearance of a structured activity with a se-
quencing runtime behavior and Fig. 2 (d) shows the appearance of a structured
activity with a random selection behavior.

(@) (b) (©))

<<support>> \
[ACTIVITY } [ACTIVITY | ACTIVITY 1 | ACTIVITY STRUCTURE

|

| ACTIVITY A
I |
l—l | <<support>>
| <<support>> | ACTIVITY X

ACTIVITYN | I

|

|

|

| l_hACTIVITY 2 |

i

r—————-\
| AcTivity G
l\ ________ J

Fig. 2. Notation for simple activities and structured activities

Due to the hierarchical nature of activity structures the proposed graphical notation
also allows for the definition of activity structures in separate diagrams. ACTIVITY 2
in Fig. 2 (c) and ACTIVITY G in Fig. 2 (d) show a pitchfork symbol as an annotation
of this behavior. However, it is also possible to define a whole complex structured
activity in the same diagram.

All activities, whether simple or structured have a set of non-visual properties al-
lowing the complete definition of the activity. For example this definition includes the
linking of the activity with the resources that will be available during its performance
or the description of the learning objectives that will be achieved after the perform-
ance of the activity.

2.3 Sequencing Notation

Sequencing diagrams have similarities with UML Activity diagrams [3]. However, in
contrast with works like [7], we are not attempting to use UML as a learning design

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

A Flow-Oriented Visual Language for Learning Designs 491

notation, but simply use activity diagrams as a natural choice in a flow-oriented
modeling domain. Our notation also includes many other elements and concepts
which have nothing to do with standard UML. Fig. 3 depicts a repertory of symbols
used in the e-LD sequencing diagrams. Hence there is a notation for indicating:

The starting (Fig. 3a) and ending (Fig. 3b) points of the diagram.

The different learning flows represented by arrows (Fig. 3c).

Parallel execution of elements (Split element in Fig. 3d). Using this notation, a
single learning flow can be divided into different parallel learning flows.
Synchronization of several threads of execution (Join element in Fig. 3e). When-
ever the learning flow is divided, synchronization of the learning flows is needed to
reunify the learning flow as well.

Assignment of participant roles to activities (Fig. 3f-g). Activity sequencing dia-
grams can be partitioned to specify which roles will be involved in the perform-
ance of the activities.

(d () @)

) (e)
(a) (b) (c) l \/ STUDENT ROLE1, ROLE2
|

7 N

Fig. 3. Symbols used in sequencing diagrams

Activities, whether simple or structured, will appear in activities sequencing dia-

grams using the same notation as described in section 2.2. In addition the concept of
module is introduced in activity sequencing diagrams to ease the authoring of com-
plex sequencing learning flows. Fig. 4a represents a module, whereas Fig. 4b repre-
sents quite a common structure used during sequencing where Fig. 4c is its compact
representation.

(@ (b) ()
()
[rhMODULE] [l_hMODULE1] + MODULE 1

!

MODULE N

Fig. 4. Notation for play IMS LD concept

MODULE N

The graphical shape for modules is quite similar to the simple activities shape.

Note that, just like structured activities, the pitchfork symbol can appear in the mod-
ule graphical notation indicating that a detailed description is represented in a separate
diagram.

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

492 1. Martinez-Ortiz et al.

2.3.1 Advanced Sequencing: Personalization of the Learning Flow

To facilitate the personalization of the learning flow based on the evolution of the
learner during the performance of the UoL, e-LD’s sequencing notation incorporates
conditions. Conditions are also present in mainstream exchange languages, such as
IMS LD. However, the way of incorporating conditions in e-LD is radically different
from IMS LD. In IMS LD, conditions are not directly linked to the learning flow, but
appear as a separate set of reactive rules, which are also available for all the activities.
This feature makes the IMS LD level B very difficult to use and maintain. Even com-
puter science experts without an advanced knowledge in rule-based computation
systems (a computation model often used in contexts such as artificial intelligence
programming [4]) have difficulties using it, let alone an average instructor. By con-
trast, in e-LD, conditions are integrated into the learning flow, and they are restricted
to their occurrence in the diagram. This integration increases the usability of the nota-
tion, since now instructors are not required to think about a disaggregated set of rules
defined in another portion of the design. They only need to reason out each relevant
point in the natural evolution of a learning flow, which is a far lower cognitive load.

(b)

[exp 1]
condition node
-~ -

[else]

:
— — —{ merge node
[exp]

(a)

then branch
AN

Fig. 5. Notation for conditional sequencing

Fig. 5 depicts the graphical notation for conditions:

— Fig. 5 (a) shows an example of an if-then-else condition rule definition. The flow
between activities is guarded by expressions like [exp]. That is, the activity that has
a guarded incoming arrow will not be performed if the guard expression becomes
false. There is a special guard condition [else] that can be used to mark that this
flow will be followed if the guarding expression becomes false).

— Fig. 5 (b) shows an example of a condition definition where if-then-else rules are
nested supporting a detailed learning flow definition.

— Fig. 5 (c) shows an example of a condition which only contains the then part. If it
is only one branch Fig. 5 (d) notation can be used instead.

In turn, Fig. 6(a) depicts an example of the graphical notation for conditions. The
example scenario involves two activities ACTIVITY 1 and ACTIVITY 2 where these
two activities will be performed by a student. However ACTIVITY 2 starts when the
expression becomes true. Fig. 6(b) provides an excerpt of the IMS LD XML equiva-
lent to support the graphical notation depicted in Fig. 6(a), which is illustrative of the
economy of the graphical notation depicted.

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

A Flow-Oriented Visual Language for Learning Designs 493

3 Use Case Scenarios

The graphical notation included in e-LD and described above has been successfully
tested in two different scenarios: with advanced users (the development team from the
e-LD platform) and with PhD students from an e-learning course offered at the Com-
plutense University To test and improve the notation the development team used a
pool of well-known UoLs already created including:

— All the examples provided in the best practices document of the IMS LD
specification.

— Some popular examples developed by the Open University of the Netherlands
available in dspace.learningnetworks.org, such as Candidas 1I, Geoquiz 3, Learn-
ing to listen to Jazz and QuoBuilder 2.

(@) (b)

STUDENT <imsld:components>

<imsld:activities>
<imsld:learning-activity
identifier="A1">
<imsld:title>ACTIVITY 1l</imsld:title>
</imsld:learning-activity>
<imsld:learning-activity
identifier="AN">
<imsld:title>ACTIVITY 2</imsld:title>
</imsld:learning-activity>
<imsld:activity-structure
identifier="AS1"
structure-type="sequence"
number-to-select="2">
<imsld:learning-activitty-ref ref="A1"/>
<imsld:learning-activitty-ref ref="A2"/>
</imsld:activity-structure>

</imsld:activities>

</imsld:components>

<imsld:role-part>

<imsld:role-ref ref="rolel"/>
<imsld:activity-structure-ref ref="AS1"/>
</imsld:role-part>

<imsld:conditions>
<imsld:if>

-- exp goes here-->
</imsld:if>
<imsld: then>
<imsld:show>
<imsld:support-activity-ref ref="a2"/>
</imsld:show>
</imsld:then>

</imsld:conditions>

Fig. 6. Example of notation and IMS LD XML excerpt

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

494 1. Martinez-Ortiz et al.

As an example of UoL authoring, Fig. 7 shows an excerpt of the visual specifica-
tion diagram corresponding to the Learning to listen to Jazz UoL. This is a relevant
example involving IMS LD Level B features, since it addresses adaptability based on
student decisions and actions. This example also provides a simple learning style
evaluation, which is incarnated in how the learning path best suited for the learner’s
style is recommended by the UoL. In addition, the example shows how the progress
on the UoL is based on the result of the work that is done in the activities.

Act (Play 1) :

student teagher
Before you start

Monitor student
progress
some information about you

id-D996B9E6-4EA2-11D5-8D44-0004AC39A2pA= historical’]
‘ [id-L 4EA2-11D5-8D44-0004AC39A2F5="thematic’]

- \m_
[historicalRouteCompllete=1]

[id-D996BA21-4EA2-11D5-8D44-0004AC39A2F 53
id-D996BA22-4EA2-11D5-8D44-0004AC39A2F5:
id-D996BA23-4EA2-11D5-8D44-0004AC39A2F5:
id-D996BA24-4EA2-11D5-8D44-0004AC39A2F5>1]

Final reflection

Fig. 7. Excerpt of the Learning to Listen Jazz UoL diagram with the e-LD notation

4 Conclusions and Future Work

In this paper we have presented an EML visual notation specifically oriented to sim-
plify UoL authoring. However, it is important to note that we are not promoting yet
another new EML. The key idea is to use this author-oriented notation for the author-
ing process, and then translate the designs to the more machine-oriented notations of
standard EMLs (e.g. IMS LD) through importation/exportation processes.

As a result of the preliminary experiments we think that the graphical notation pro-
posed simplifies the process of authoring UoLs. The creation of UoLs of the complex-
ity of those analyzed in our practical experiments is a feat beyond the reach of most
designers, but students without a previous background in using EMLs were able to
recreate them using e-LD. However, further study is required, especially in reuse
scenarios, where non-experts create new UoLs based on UoL templates or previously
built UoLs.

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

A Flow-Oriented Visual Language for Learning Designs 495

Readers familiarized with the UML graphical notation will notice several parallel-
isms with the notation described in this work. This is intentional, given the back-
ground in Computer Science of the participants in the test case. However, different
notations can be developed or customized for a particular stakeholder or community.
Indeed, the e-LD authoring language is built using model-driven development princi-
ples [12]. On the one hand, it includes a semantic model, which characterizes the kind
of structures that make up a learning design. This model is the base for different
graphical models, which can be related with the semantic model using model trans-
Jormations (see [12] for more details). The graphical notation presented in this paper
is just one of these graphical models.

Our main short-term goal is to test the e-LD approach, and in particular the pre-
sented e-LD graphical notation with field users, particularly with the staff of the
Spanish National Center for Information and Educative Communication (CNICE) to
provide them with a support tool to help them in the design of educational templates.
It will allow them to create their documentation using the e-LD’s authoring tool and
to use the diagrams as an explanation of the sequencing of activities. As future work,
we will also explore the compatibility with other exchange EMLs like SCORM Se-
quencing and Navigation [2] and whether it is possible to integrate at design time the
authoring of UoLs using IMS LD and SCORM.

Acknowledgements

The Spanish Committee of Science and Technology (projects TIN2005-08788-C04-
01, FIT-350100-2007-163 and TIN2007-68125-C02-01) has partially supported this
work, as well as the Regional Government of Madrid (grant 4155/2005) and the
Complutense University of Madrid (research group 921340 and Santander/UCM
Project PR24/07 — 15865) and by the EU Alfa project CID (II-0511-A).

References

1. Aalst, W., Kees, H.: Workflow Management: Models, Methods, and Systems. MIT Press,
Cambridge (2004)

2. Advanced Distributed Learning (ADL), Shareable Content Object Reference Model
(SCORM) 2004 3rd Edition Sequencing and Navigation Version 1.0 (2006)

3. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide, 2nd
edn. Addison-Wesley, Reading (2005)

4. Brownston, L., Farell, R., Kant, E., Martin, N.: Programming Experts Systems in OPSS5:
An Introduction to Rule-based Programming. Addison Wesley, Reading (1985)

5. IMS. IMS Learning Design Information Model Version 1.0 (2003)(retrieved, July 12,
2007),
http://www.imsglobal.org/learningdesign/1ldvlp0/imsld_infovlpO0.
html

6. Koper, R., Tattersall, C. (eds.): Learning Design - A Handbook on Modelling and Deliver-
ing Networked Education and Training. Springer, Heidelberg (2005)

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

496

13.

1. Martinez-Ortiz et al.

Laforcade, P.: Graphical Representation of Abstract Learning Scenarios: the UMLALD
Experimentation. In: Advanced Learning Technologies ICALT 2007, July 18-20, 2007,
pp. 477479 (2007)

Martinez-Ortiz, 1., Moreno-Ger, P., Sierra-Rodriguez, J.L., Ferndndez-Manj6n, B.: Sup-
porting Authoring and Operationalization of Educational Modelling Languages. Journal of
Universal Computer Science 13(7), 938-947 (in press, 2007)

OMG. Unified Modeling Language: Superstructure version 2.1.1 (2007)(retrieved, July
10, 2007), http: //www.omg.org/cgi-bin/doc?formal/07-02-05

. OMG. Unified Modeling Language: Infrastructure version 2.1.1 (2007b)(retrieved, July

10, 2007), http: //www.omg.org/cgi-bin/doc?formal/07-02-04

. Paquette, G., Léonard, M., Lundgren-Cayrol, K., Mihaila, S., Gareau, D.: Learning Design

based on Graphical Knowledge-Modeling. Educational Technology & Society 9(1), 97—
112 (2006)

Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software Development, Technology,
Engineering, Management. Wiley, Chichester (2006)

Chen, P.P.: Database Design Using Entities and Relationships. In: Yao, S.B. (ed.) Princi-
ples of Data Base Design, pp. 174-210. Prentice-Hall, NJ (1985)

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

	A Flow-Oriented Visual Language for Learning Designs
	Introduction
	Graphical Notations for UoL Authoring
	Notation for Describing Learning Objectives
	Notation for Defining Activities
	Sequencing Notation

	Use Case Scenarios
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

