
Production and Maintenance of Content-Intensive Videogames: A
Document-Oriented Approach

Iván Martínez-Ortiz#, Pablo Moreno-Ger*, José Luis Sierra*, Baltasar Fernández-Manjón*

(#) Centro de Estudios Superiores Felipe II, Aranjuez, Madrid, Spain.
 (*) Dpto. Sistemas Informáticos y Programación. Fac. Informática. Universidad

Complutense, Madrid, Spain.

Abstract

<e-Game> is a tool for the rapid development of
adventure videogames with an educational purpose. It
provides a markup language (the <e-Game>
language) for structuring documents containing
storyboards, and a processor (the <e-Game> engine)
for executing games from these marked documents.
This paper describes how <e-Game> facilitates new
development models for the production and
maintenance of content-intensive applications with
domain-specific markup languages by applying our
ADDS approach (Approach for Document-oriented
Development of Software)
Keywords: Development Approach, Adventure
Videogames, Documental Paradigm, Edutainment,
XML

1 Introduction

Videogame development has become a prominent field
in software development. The average development
project nowadays employs hundreds in personnel and
has a budget of several million dollars [1]. That’s the
reason why it is imperative to apply sophisticated
Software Engineering methodologies, and that is
precisely what the videogame industry is successfully
doing [5]. However, in genres such as graphic
adventure games, what is attractive about the game lies
more in the brilliance of the dialogues or the surprising
situations than in the graphics or the technology.
Typical Software Engineering techniques in the field
of videogames do not necessarily confront the special
needs of such content-rich games, because if the
spotlight is on content instead of on technology, then
the quality of the product depends on scriptwriters, not
programmers.

Beyond the domain of videogames, the
development of content-rich applications has found
similar situations where it was imperative to have
experts in the domain of the application involved in the
development process. Several development processes
have been proposed but we want to focus our attention
on a specific methodology: the application of the
Documental Paradigm. In the documental paradigm,
developers and domain experts agree on the format of
a set of documents which will describe the main
features of the application (e.g. contents, relevant
properties of the user interface, etc.). In addition, they
agree on a descriptive markup language specifically
designed for describing the relevant structure of these
documents: the Domain-Specific Markup Language
(DSML) [8][10]. Once there is an agreement on the
document types and on the markup language, the
domain experts focus their effort on writing the
contents of the application in documents following the
specified language. On the other hand, developers
prepare a processor for the DSML that receives the
marked documents and runs the application.

However, the documental paradigm is a generic
approach. We would like to focus our attention on the
specific process suggested by the ADDS approach
(Approach to Document-based Development of
Software). This approach, which is described in more
detail below, suggests the necessary processes, tools
and interactions needed to successfully apply the
documental paradigm from a variety of perspectives.

This work shows how the ADDS model can be
applied to the production and maintenance of graphic
adventure games using the <e-Game> tool, which was
devised according to the documental paradigm. The
paper is structured as follows. Section 2 summarized
the ADDS approach. Section 3 describes how ADDS
has been applied in the <e-Game> context. Section 4
outlines the main features of <e-Game>: the <e-Game>

1

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

language and the <e-Game> engine. Finally, section 5
gives some conclusions and lines of future work.

2 The ADDS Approach

This section summarizes the main aspects of the
ADDS approach, which is described with more detail
in [8][10]. As outlined in Fig 1, ADDS comprises
three different views, which are briefly presented in
the following subsections.

2.1 Products and activities

The products and activities view shows the activities
in the approach together with the products produced
and consumed by these activities (Fig 1a):
- During the DSML provision activity, a

grammatical characterization of an application
DSML is produced. The cost of this activity can be

decreased by reusing DSMLs pre-stored in a
repository of DSMLs.

- During the Documentation activity, the main
features of the application will be described in
documents and the application DSML will be used
to make the structure of the resulting application
documents explicit.

- During the Operationalization activity a suitable
processor for the application DSML will be built.

- During the Application Execution activity the
application itself is produced by using the
processor on the marked application documents.

2.2 Sequencing

The sequencing view shows how the activities are
sequenced (Fig 1b). This view produces two different
cycles or loops. On the one hand, in the production
loop the application’s features are documented, those
documents are marked up, and the running application
is automatically generated from these marked

 Evolution
 loop

Developers

Application
Documents

Repository
of DSMLs

application
DSML

Operationalization

DSML
provision

Application
Documentation

Application

Processor
Application
Execution

(a)

document
domain aspects

provide the
DSML

describe the
 domain

 - document
 operational aspects
- help domain experts
- identify new markup
 needs

provide the
 processor

(b)

evaluate evaluate

clarify
domain
operations

(c)

[needs for
 changes in the
DSML]

[documentation ready
to be processed]

[application
accepted]

[needs for
 application
modification]

Production
loop

DSML
provision

Operationalization

Application
Execution

Application
Documentation

DSML
provision

Application
Documentation

Operationalization

Application
Execution

Domain
experts

Fig 1. The three views of ADDS: (a) products and activities, (b) sequencing of the activities, (c) participants and
their responsibilities in each activity

2

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

documents. On the other hand, the evolution loop is
initiated when new markup needs not covered by the
current DSML are discovered. This leads to an
evolution of the DSML to incorporate these needs,
which implies an evolution of the corresponding
processor. ADDS encourages the use of suitable
mechanisms to manage the evolution of the languages
and their processors. In [9] two of these mechanisms
are described.

2.3 Participants and responsibilities

The participants and responsibilities view outlines the
participants in the activities along with their
responsibilities (Fig 1c). The domain experts are
experts on the different aspects of the application’s
problem domain. In turn, the developers are experts in
computer science. The responsibilities of these two
participants in the different activities are as follows:
- During DSML provision, domain experts describe

the application domain to developers, who
formulate the grammar for the application DSML.

- During Documentation, domain experts document
and mark up the application’s features assisted by
the developers, who also detect new markup needs
and initiate new iterations of the evolution loop
when required.

- During Operationalization, the main responsibility
is for developers, who build the processor for the
DSML with the assistance of experts regarding the
nature of the domain operations.

- Finally, during Application execution both domain
experts and developers evaluate the application
generated with respect to functional and other
non-functional (e.g. performance) requirements,
initiating new iterations of the production loop
when needed.

3 Applying ADDS to the Domain of
Adventure Videogames: the <e-Game>
project

The main goal of the <e-Game> project is to provide
an effective method for developing educational games
[4]. If we want our videogames to be truly educational,
it is necessary to have pedagogues play a key role in
the development process. Therefore, we need to
facilitate the potentially difficult communication and
collaboration between experts and developers. In
<e-Game> we propose to use ADDS to organize these
interactions.

The ADDS approach would allow a teacher to
specify the contents of an educational game without
requiring practically any knowledge in Computer
Science beyond basic use of XML-based markup
languages and some exposure to the particular DSML
provided. The teacher writes the documents that define
the game and embeds the educational content there.
These documents are then fed to the engine which
produces and runs the videogame.

Instead of applying this model to the entire domain
of educational videogames, the specific genre of
graphic adventure games was chosen. This was a
design decision, based on a number of reasons:
- A DSML for the broad domain of videogames was

not a feasible solution given the diversity of
genres and game styles. Therefore we needed to
narrow the domain to specific genres.

- Graphic adventure games are the most content-
rich genre in videogames. Their success relies
strongly on their scripts and storyboards, and these
are a perfect starting point for the documents
required to drive the development process.

- The bias for content instead of action made this
genre a perfect solution for our educational
objectives.

- The genre lived a golden age in the 90s with many
successful and very similar titles published by
Sierra™ and LucasArts™. These titles set the
foundations of the genre and many of their traits
are nowadays considered commonalities and
expected in any videogame of the genre. All these
commonalities can be assumed and thus abstracted
from the DSML.

The remainder of this section will discuss the
details of the application of the ADDS model in
<e-Game>

3.1 Products and activities in <e-Game>

The particularization of the products and activities
view to the <e-Game> project is depicted in Fig 2.

In the initial DSML provision activity, the first draft
of the <e-Game> DSML was produced. Starting with
previous experience in the genre of adventure games,
the focus was on creating a descriptive language rather
than an operational one. This decision was based on
the notion that the authors (probably teachers) would
find this approach easier than the more programming-
like operational approach. The DSML grammar was
formalized on a DTD and a XML Schema [12].
Although the DTD is simpler and more compatible
with several tools, some of the aspects and restrictions
of the DSML can only be reflected in the XML

3

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

Schema.

Fig 2. Products and activities in <e-Game>

The Operationalization activity involves creating a

processor for the <e-Game> DSML called the
<e-Game> engine. This processor was built using the
Java platform due to portability concerns. The engine
reads documents describing adventure videogames and
produces the final videogame.

The Documentation activity (which in this project
is called the Videogame Documentation activity) is
driven by the production of the game’s storyboard. As
for products, the <e-Game> documents created by the
authors must also be complemented with a number of
external art assets (music, background images,
character animations). These assets are referenced in
the documents, but can be developed separately. This
activity is further refined during the production loop,
as indicated in the next subsection.

During the Application Execution activity (which
in this context is called Videogame Execution) the
games documented are run by the <e-Game> engine.

3.2 Sequencing in <e-Game>

The production loop of <e-Game> is quite
straightforward and clearly defines the development
process for this kind of games (Fig 3):
- The author informally writes a storyboard for the

adventure desired. This storyboard would include
descriptions of the different rooms and its
contents. These contents are objects and
characters, and they should be described too. The

storyboard should also include the possible
interactions with these characters and objects
(combination of objects, using an object with
another, conversations with characters, etc.).

Fig 3. The production loop in <e-Game>

- The author marks up the storyboard. The DSML
includes markup for scenarios, characters, objects,
interactions and conversations. Thus, marking the
storyboard should be a relatively simple step.

- The artists provide art assets for the scenarios,
objects and characters. These assets include
background images, images for objects,
animations for characters and different sound
effects (or background music). The approach
permits the independent development of these
assets, so they can be acquired from a repository
of artistic content instead. Otherwise, authors and
artist can work in parallel.

- The storyboard marked, along with the above-
mentioned assets, are fed to the engine in order to
produce the final game.

These steps can be iterated until the resulting
videogame is satisfactory and the author considers it
finished.

As for the evolution loop, the project is still on the
first iteration and the possible evolutions of the DSML
and the engine will be studied after some feedback is
gathered from the initial game developments.
However, the engine was designed with such
evolutions in mind.

3.3 Participants and responsibilities in <e-Game>

The participants in the <e-Game> project can be
divided roughly into three categories (Fig 4):
programmers, authors and artists.

The programmers are the developers responsible
for the initial provision of the <e-Game> DSML. That

<e-Game>
document

application
DSML

Operationalization

DSML
provision

Videogame
Documentation

<e-Game>
engine

Videogame
Execution

videogame

refs

art assets

Storyboard
Production

Storyboard
Markup

Art Assets
Authoring

Videogame
Execution

Videogame
documentation

4

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

initial version is accompanied by the corresponding
version of the engine.

Fig 4. Participants in <e-Game>

The authors are the domain experts who mainly
use the tools provided by the <e-Game> project. From
the original perspective, the authors are usually
teachers or experts in a specific domain, but, actually,
<e-Game> can be used to develop any kind of
adventure game. Thus, the author can be any person
interested in developing his/her own adventure games
without needing prior programming skills. The author
is responsible for writing the storyboard and marking it
using the grammar of the <e-Game> DSML.

Finally, the artists are the experts who create the
different assets that embellish the game and make it
attractive. These assets can be prepared with external
authoring tools.

4 The <e-Game> features

All this development process is supported by two main
entities, which were identified as products in the
products and activities view: The <e-Game> language
and the <e-Game> engine. The following subsections
describe these features.

4.1 The <e-Game> language

The language was proposed with two main objectives
in mind: the syntax should be as simple as possible and
the markup philosophy should be as close to a typical
storyboard as possible.

Since the main entities of adventure videogames
are the scenarios, characters, objects and actions, these
are the main XML elements suggested in the language.
The elements are defined separately and linked, using
XML’s built-in identifier-reference mechanism (Fig 5)

Fig 5. A simplified XML excerpt showing the basic
structure of the language. Conversation CON-1 is

triggered when speaking with character CHA-1 who
appears in scenario SCE-1

A scenario contains references to the
corresponding art assets (background image,
background music and hardness map) and a number of
exits that connect it to the other scenarios of the game.
In addition, it will contain references to the identifiers
of the characters and objects that populate the scenario.

Correspondingly, objects and characters will have
a unique identifier and will contain references to the
corresponding art assets (sequences of images for the
animation). In addition, each character or object will
contain a number of references to the identifiers of the
possible interactions which are related to them.

Finally, the interactions must have a unique
identifier and the description of the actions and the
outcomes.

4.2 The <e-Game> engine

The <e-Game> engine is used to execute the games
from their descriptive <e-Game> documents. This
processor was designed to facilitate its maintenance
and evolution. As depicted in Fig 6, it is architected in
terms of:
- A tree builder. This artefact is based on a standard

DOM parser [12], and it builds a tree
representation of the input <e-Game> document.

- A component repository. This repository contains
a set of game components, whose component
model is an evolution of that described in [7], and
which are assembled in the production of
videogames.

- A game generator, which is the core of the engine
and which processes the document tree to
assemble the game components. This artefact is
architected according with the operationalization
model described in [9].

Programmers

Developers

Authors

Artists
Domain
experts

 <scenario id="SCE-1">
 <character-ref idRef="CHA-1">
 <position>...</position>
 ...
 </character>
 ...
 </scenario>
 <character id="CHA-1">
 <conversation-ref idRef="CON-1" />
 ...
 </character>
 <conversation id="CON-1">
 ...
 </conversation>

5

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

Fig 6. High-level architecture of the <e-Game>
engine

5 Conclusions and Future Work

<e-Game> promotes a document-oriented approach to
enhance the production and maintenance of adventure
videogames with an educational purpose. The
document-oriented principles followed in <e-Game>
make it a more usable tool for authors without a deep
knowledge of computer science than other
programming-based technologies for game
development (e.g. [2]).

The current state of <e-Game> allows any teacher
to develop relatively simple adventure games provided
that he/she has access to art assets (either by contacting
an artist or by accessing a repository) and that he/she
receives a certain exposure to XML in general and the
<e-Game> language in particular.

In the near future, it will be interesting to explore
the potential of this methodology in fields outside
education where rapid development of simple games is
required. In particular, the field of casual gaming [3]
can benefit from this approach.

Since adventure games are as engaging as their
scripts, without any need for stunning graphics and
technology, we also envision a great potential in the
development of adventure games for devices of limited
capability, like PDAs or mobile phones [6] .

Finally, it is important to point out the growing
interest in games whose purpose is not to entertain, but
to transmit political ideas, propaganda and even
product advertisement [11]. The simplicity of
<e-Game> allows any person or institution to develop
a small adventure game with a low cost with the sole
purpose of transmitting one of such ideas.

Acknowledgements

The Spanish Committee of Science and Technology
(TIC2002-04067-C03-02 and TIN2004-08367-C02-
02) has partially supported this work. The Spanish
National Center of Information and Educative
Communication (CNICE) provided the art assets
displayed in the examples.

References

[1] Entertainment Software Association, Sales & Genre Data.
http://www.theesa.com/facts/sales_genre_data.php (last
visited 21 October 2005)
[2] Harbour, J and Smith, J. Beginner’s Guide to DarkBasic
Game Programming. Premier Press. 2003
[3] Mills, G. “Casual Games”. International Game
Developers Association White Paper, 2005. Available at
http://www.igda.org/casual/IGDA_CasualGames_Whitepape
r_2005.pdf
[4] Moreno-Ger, P, Martínez-Ortiz, I, and Fernández-
Manjón, B. “The <e-Game> Project: Facilitating the
Development of Educational Adventure Games”. Int.
Conference on Cognition and Exploratory Learning in the
Digital Age CELDA’05, Porto, Portugal, December 14-16,
2005
[5] Rucker, R. Software Engineering and computer games.
Addison-Wesley. 2002
[6] SCUMM Virtual Machine, PocketPC version, available at
http://www.scummvm.com, September 2005
[7] Sierra, J. L, Fernández-Valmayor, A, Fernández-Manjón,
B, and Navarro, A. “Developing Content-Intensive
Applications with XML Documents, Document
Transformations and Software Components”. 31th
Euromicro Conference on Software Engineering and
Advanced Applications, Porto, Portugal, August 31 –
September 2, 2005
[8] Sierra, J. L, Fernández-Manjón, B, Fernández-Valmayor,
A, and Navarro, A. “Document-oriented software
construction based on domain-specific markup languages”.
Int. Conf. on Information Technology: Computing and
Coding ITCC’05, Las Vegas, USA, April 4-6, 2005
[9] Sierra, J. L, Navarro, A, Fernández-Manjón, B, and
Fernández-Valmayor, A. “Incremental Definition and
Operationalization of Domain-Specific Markup Languages in
ADDS”. ACM SIGPLAN Notices, in press
[10] Sierra, J. L. Fernández-Valmayor, B.
Fernández-Manjón, and A. Navarro. “ADDS: A Document-
Oriented Approach for Application Development”. Journal
of Universal Computer Science 10(9), 2004, pp. 1302-1324
[11] Water Cooler Games web site.
http://www.watercoolergames.org/ (last visited 21 October
2005)
[12] World wide web consortium technical reports.
www.w3.org (last visited 21 October 2005)

Videogame

<e-Game>
document

Tree
builder

Game
generator

Component
Repository

6

Draft version: See http://www.e-ucm.es/publications/articles.html for updated citation information

